Estimation of the coherently scattering domain size in alloys from neutron diffraction data
- Authors: Yerzhanov B.1,2, Bobrikov I.A.3, Balagurov A.M.1,4
-
Affiliations:
- Joint Institute for Nuclear Research
- Kazan (Volga Region) Federal University
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA)
- Lomonosov Moscow State University
- Issue: No 9 (2024)
- Pages: 12-24
- Section: Articles
- URL: https://gynecology.orscience.ru/1028-0960/article/view/664743
- DOI: https://doi.org/10.31857/S1028096024090027
- EDN: https://elibrary.ru/EIPTOI
- ID: 664743
Cite item
Abstract
An analysis of the diffraction spectra of the Fe74Al26 alloy was conducted using a high-resolution neutron diffractometer to determine the size distribution of structurally ordered clusters dispersed within the structurally disordered matrix of the alloy. The Scherrer method was generalized for this purpose, based on the analysis of diffraction peak profiles, determining peak widths at heights of 1/5 and 4/5 of the maximum, and assuming the validity of the gamma distribution for cluster sizes (Pielaszek method). A comparison of results obtained using the Scherrer, Williamson–Hall, and Pielaszek methods was carried out, demonstrating good agreement between them. An algorithm for calculating the log-normal distribution function of cluster/particle sizes is proposed. The experimental data were obtained using a time-of-flight neutron diffractometer, and the analysis was performed for two variants of variable scanning: in crystallographic (direct) (d-scale) and reciprocal (H-scale) spaces, with estimates of possible systematic errors. It was concluded that the determined average sizes possess the necessary degree of stability, meaning they weakly depend on the applied variable scanning and the total number of experimental data points.
Full Text

About the authors
B. Yerzhanov
Joint Institute for Nuclear Research; Kazan (Volga Region) Federal University
Author for correspondence.
Email: bekarys@jinr.ru
Russian Federation, Dubna, 141980; Kazan, 420008
I. A. Bobrikov
Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA)
Email: ibobrikov@cicenergigune.com
Spain, Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz 01510
A. M. Balagurov
Joint Institute for Nuclear Research; Lomonosov Moscow State University
Email: bala@nf.jinr.ru
Russian Federation, Dubna, 141980; Moscow, 119991
References
- Mittemeijer E.J., Welzel U. (Editors). Modern Diffraction Methods, , Wiley-VCH, Weinheim, 2012. 554p.
- Иверонова В.И., Ревкевич Г.П. // Теория рассеяния рентгеновских лучей. Москва: Изд-во МГУ, 1978. С. 278.
- Цыбуля С.В., Черепанова С.В. // Введение в структурный анализ нанокристаллов. Новосибирск: Изд-во Новосибирский государственный университет, 2008. С. 92.
- Балагуров А.М. Дифракция нейтронов для решения структурных и материаловедческих задач. Москва: Изд-во Физфак МГУ им. М.В. Ломоносова, 2017. С. 305.
- Mittemeijer E.J., Welzel U. // Z. Kristallogr. 2008. V. 223. № 27. P. 552. https://doi.org/10.1524/zkri.2008.1213
- Scardi P., Ortolani M., Leoni M. // Mater. Sci. Forum. 2010. V. 651. P. 155. https://doi.org/10.4028/www.scientific.net/MSF.651.155
- Pielaszek R. // J. Alloys Compd. 2004. V. 382. P. 128. https://doi.org/10.1016/j.jallcom.2004.05.040
- Vorobiev A., Chernyshov D., Gordeev G., Orlova D. // J. Appl. Cryst. 2008. V. 41. P. 831. https://doi.org/10.1107/S002188980802339X
- Wojnarowicz J., Chudoba T., Gierlotka S., Sobczak K., Lojkowski W. // Crystals. 2018. V. 8. № 179. https://doi.org/10.3390/cryst8040179
- Balagurov A.M., Sumnikov S.V., Cifre J., Palacheva V.V., Chubov D.G., Golovin I.S. // J. Alloys and Comp. 2023. V. 932. P. 167663. https://doi.org/https://doi.org/10.1016/j.jallcom.2022. 167663
- Balagurov А.М. // Neutron News. 2005. V. 16. № 3. P. 8. https://doi.org/10.1080/10446830500454346
- Балагуров А.М., Бобриков И.А., Бокучава Г.Д., Журавлев В.В., Симкин В.Г. // ЭЧАЯ. 2015. Т. 46. № 3. С. 453. https://doi.org/10.1134/S1063779615030041
- Wojdyr M. // J. Appl. Crystallogr 2010. V. 43. P. 1126. https://doi.org/https://doi.org/10.1107/S0021889810030499
- Ibberson R.M. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 600. P. 47. https://doi.org/https://doi.org/10.1016/j.nima. 2008.11.066
- Fischer P., Frey G., Koch M., Konnecke M., Pomjakushin V., Schefer J., Thut R., Schlumpf N., Burge R., Greuter U., Bondt S., Berruyer E. // Physica B. 2000. V. 276–278. P. 146. https://doi.org/https://doi.org/10.1016/S0921-4526(99)01399-X
- Колмогоров А.Н. // Теория вероятностей и математическая статистика. Москва: Наука, 1986. С. 264.
- Scardi P., Leoni M. // Acta Crystallogr. A. 2001. V. 57. № 5. P. 604. https://doi.org/10.1107/S0108767301008881
- Scardi P., Leoni M., Faber J. // Powder Diffraction. 2006. V. 21. № 4. P. 270. https://doi.org/10.1154/1.2358359
Supplementary files
