Methods for Increasing the Efficiency of the Electroforming Process of Open Metal–Insulator–Metal Sandwich Structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The metal–insulator–metal sandwich structures with the end surface of the insulator film (insulating slit) open to the gas environment were manufactured using thin-film technology. Electroforming, which consists of applying voltage according to a specific algorithm, causes the formation of conductive phase particles due to the destruction of organic molecules adsorbed on the open surface of the insulator by electron impact during the electric current flow. The accumulation of particles leads to the growth of a linked conductive cluster (a conductive carbon medium) and the formation of a conductive nanostructure with the memristor properties in the insulating slit. The practical use of such structures is limited by the low efficiency of electroforming: relatively long process times (on the order of several seconds) and an increased probability of electrical breakdown of the structure. Several ways to improve the efficiency of the electroforming process are presented. Firstly, the use of the correct voltage polarity for the open TiN–SiO2–W sandwich structure, when W should be the anode, which sharply reduces the probability of breakdown. Secondly, the use of two-stage electroforming: first, the formation of conductive channels in an “oil-free” vacuum after annealing in it, when the voltage can be applied in parallel to a large number of structures, and then in an “oil” vacuum containing organic molecules, at significantly lower voltages and exposures. Thirdly, replacing the tungsten anode with a molybdenum one, which, while maintaining the advantages of tungsten, leads to an increase in the initial conductivity of the open sandwich structure (TiN–SiO2–Mo) by several orders of magnitude, and therefore to an acceleration of the electroforming process and a decrease in the applied voltages.

Texto integral

Acesso é fechado

Sobre autores

V. Mordvintsev

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Autor responsável pela correspondência
Email: Mordvintsev-Viktor@yandex.ru
Rússia, Yaroslavl, 150067

E. Gorlachev

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: Mordvintsev-Viktor@yandex.ru
Rússia, Yaroslavl, 150067

S. Kudryavtsev

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: Mordvintsev-Viktor@yandex.ru
Rússia, Yaroslavl, 150067

Bibliografia

  1. Chua L. // Appl. Phys. A. 2011. V. 102. P. 765. https://doi.org.10.1007/s00339-011-6264-9
  2. Yang J.J., Strukov D.B., Stewart D.R. // Nat. Nanotechnol. 2013. V. 8. P. 13. https://doi.org.10.1038/nnano.2012.240
  3. Abunahla H., Mohammad B. Memristor Technology: Synthesis and Modeling for Sensing and Security Applications. Cham: Springer, 2018. 106 p.
  4. Sun W., Gao B., Chi M., Xia Q., Yang J.J., Qian H., Wu H. // Nat. Commun. 2019. V. 10. P. 3453. https://doi.org.10.1038/s41467-019-11411-6
  5. Фадеев А.В., Руденко К.В. // Микроэлектроника. 2021. Т. 50. № 5. С. 347. https://doi.org.10.31857/S0544126921050021
  6. Sung C., Hwang H., Yoo I.K. // J. Appl. Phys. 2018. V. 124. P. 151903. https://doi.org.10.1063/1.5037835
  7. Ielmini D., Wang Z., Liu Y. // APL Mater. 2021. V. 9. P. 050702. https://doi.org.10.1063/5.0047641
  8. Huang Y., Kiani F., Ye F., Xia Q. // Appl. Phys. Lett. 2023. V. 122. P. 110501. https://doi.org.10.1063/5.0133044
  9. Kumar D., Aluguri R., Chand U., Tseng T.Y. // Ceram. Int. 2017. V. 43. P. S547. https://doi.org.10.1016/j.ceramint.2017.05.289
  10. Prasad O.K., Chandrasekaran S., Chung C.-H., Chang K.-M., Simanjuntak F.M. // Appl. Phys. Lett. 2022. V. 121. P. 233505. https://doi.org.10.1063/5.0123583
  11. Koroleva A.A., Kuzmichev D.S., Kozodaev M.G., Zabrosaev I.V., Korostylev E.V., Markeev A.M. // Appl. Phys. Lett. 2023. V. 122. P. 022905. https://doi.org.10.1063/5.0138218
  12. Ielmini D. // Semicond. Sci. Technol. 2016. V. 31. P. 063002. https://doi.org.10.1088/0268-1242/31/6/063002
  13. Исаев А.Г., Пермякова О.О., Рогожин А.Е. // Микроэлектроника. 2023. Т. 52. № 2. С. 127. https://doi.org.10.31857/S0544126923700242
  14. Liu P., Luo H., Yin X., Wang X., He X., Zhu J., Xue H., Mao W., Pu Y. // Appl. Phys. Lett. 2022. V. 121. P. 233501. https://doi.org.10.1063/5.0127880
  15. Wen X., Tang W., Lin Z., Peng X., Tang Z., Hou L. // Appl. Phys. Lett. 2023. V. 122. P. 173301. https://doi.org.10.1063/5.0147149
  16. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. P. 1801187. https://doi.org.10.1002/adma.201801187
  17. Wang Y., Chen Y.-T., Xue F., Zhou F., Chang Y.-F., Fowler B., Lee J.C. // Appl. Phys. Lett. 2012. V. 100. P. 083502. https://doi.org.10.1063/1.3687724
  18. Захаров П.С., Итальянцев А. Г. // Труды МФТИ. 2015. Т. 7. № 2. С. 113.
  19. Тихов C.B., Горшков О.Н., Антонов И.Н., Касаткин А.П., Королев Д.С., Белов А.И., Михайлов А.Н., Тетельбаум Д.И. // ЖТФ. 2016. Т. 86. Вып. 5. С. 107. http://journals.ioffe.ru/articles/viewPDF/43081
  20. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 174.
  21. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 183.
  22. Мордвинцев В.М., Шумилова Т.К. // Микроэлектроника. 1999. Т. 28. № 2. С. 122.
  23. Мордвинцев В.М., Горлачев Е.С., Кудрявцев С.Е. // Микроэлектроника. 2022. Т. 51. № 4. С. 304. https://doi.org.10.31857/S0544126922040093
  24. Мордвинцев В.М., Кудрявцев С.Е., Наумов В.В., Горлачев Е.С. // Микроэлектроника. 2023. Т. 52. № 5. С. 431. https://doi.org.10.31857/S0544126923700515
  25. Патент № 2769536 (РФ). Способ электроформовки при изготовлении элемента памяти / ФТИАН РАН. Мордвинцев В.М., Горлачев Е.С., Кудрявцев С.Е. // Официальный бюлл. “Изобретения. Полезные модели” Федеральной службы по интеллектуальной собственности (Роспатент). 2022. № 10.
  26. Горлачев Е.С., Мордвинцев В.М., Кудрявцев С.Е. // Микроэлектроника. 2024. Т. 53. № 1. С. 74.
  27. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. // ЖТФ. 2018. Т. 88. Вып. 11. С. 1681. https://doi.org.10.21883/JTF.2018.11.46630.2551

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of open ‘sandwich’-MDM-structure after electroforming: 1 - lower electrode from TiN (anode); 2 - layer of ‘natural’ oxide on the surface of the lower electrode (TiO2); 3 - SiO2 layer with thickness about 20 nm; 4 - upper electrode from W or Mo (cathode); 5 - conducting nanostructure; 6 - insulating gap with variable width h ≈ 1 nm; 7 - insulating slot.

Baixar (151KB)
3. Fig. 2. Typical VAC (U - voltage between electrodes, ‘minus’ at the upper W electrode, J - current through the structure) of the electroforming process of an open “sandwich” TiN-SiO2-W structure in an ‘oil’ vacuum. Parameters of the triangular voltage pulse: amplitude 10.5 V, voltage change rate 2 V/s. Current limitation at the level of 190 μA.

Baixar (50KB)
4. Fig. 3. Typical quasi-static VACs of open ‘sandwich’ TiN-SiO2-W structures in ‘oil’ vacuum after electroforming. The rate of voltage change is 2 V/s. The polarity of voltage U: 1 - ‘plus’ on W; 2 - ‘minus’ on W.

Baixar (52KB)
5. Fig. 4. Characteristic quasi-static VACs of open ‘sandwich’ TiN-SiO2-W structures in ‘oil-free’ vacuum after their annealing (200°C, 60 min in ‘oil-free’ vacuum, first stage of electroforming). Voltage change rate of 2 V/s. Voltage passages up to 14 V: 1 - first; 2 - third.

Baixar (74KB)
6. Fig. 5. Typical VAC of the electroforming process of an open ‘sandwich’ TiN-SiO2-W structure in “oil” vacuum after its annealing (200°C, 60 min in ‘oil-free’ vacuum) and one voltage pass up to 14 V (similar to curve 1 in Fig. 4) in ‘oil-free’ vacuum (the second stage of electroforming). The rate of voltage change is 2 V/s.

Baixar (39KB)
7. Fig. 6. Characteristic initial currents (before formation of conductive phase particles) in open ‘sandwich’ structures: 1 - TiN-SiO2-W; 2 - TiN-SiO2-Mo. The rate of voltage change is 2 V/s.

Baixar (47KB)
8. Fig. 7. Typical VAC of the electroforming process of an open TiN-SiO2-Mo sandwich structure in ‘oil-free’ vacuum (without pre-annealing and voltage pass). The rate of voltage change is 2 V/s.

Baixar (52KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024