Investigation of Intercalation and De-Intercalation of Lithium Ions in Thin-Film Lithium-Ion Battery by Rutherford Backscattering Spectrometry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents an in-situ study of lithium distribution in an all-solid-state thin-film lithium-ion battery by Rutherford Backscattering Spectrometry (RBS). Helium ions (4He+) with energy 1.8 MeV were used in the experiment under conditions of normal falling to the surface. The angle of ion scattering was 165°. Based on the energy loss of scattered ions, the lithium concentration in the battery layers was obtained in both the charge and discharge state. It was found that the lithium concentrations obtained using RBS and the galvanostatic method coincide numerically, provided that the 4He+ stopping cross section for lithium in anode layer were two times smaller than for single element.

全文:

受限制的访问

作者简介

S. Kurbatov

RUDN University

编辑信件的主要联系方式.
Email: kurbatov-93@bk.ru
Moscow, 117198

N. Melesov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: melesovns@mail.ru
俄罗斯联邦, Yaroslavl, 150067

E. Parshin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: melesovns@mail.ru
俄罗斯联邦, Yaroslavl, 150067

A. Rudy

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: melesovns@mail.ru
俄罗斯联邦, Yaroslavl, 150067

A. Mironenko

Demidov Yaroslavl State University

Email: melesovns@mail.ru
俄罗斯联邦, Yaroslavl, 150003

V. Naumov

Demidov Yaroslavl State University

Email: melesovns@mail.ru
俄罗斯联邦, Yaroslavl, 150003

A. Skundin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the RAS

Email: melesovns@mail.ru
俄罗斯联邦, Moscow, 119071

V. Bachurin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: melesovns@mail.ru
俄罗斯联邦, Yaroslavl, 150067

参考

  1. Cras F.L., Pecquenard B., Dubois V., Phan V.P., Guy‐Bouyssou D. // Adv. Energy Mater. 2015. V. five. №19. P. 1501061. https://doi.org/10.1002/aenm.201501061
  2. Iida S.I., Terashima M., Mamiya K., Chang H.Y., Sasaki S., Ono A., Kimoto T., Miyayama T. // Journal of Vacuum Science & Technology B. 2021. V. 39. № 4. https://doi.org/10.1116/6.0001044
  3. Jeong E., Hong C., Tak Y., Nam S.C., Cho S. // Journal of power sources. 2006. V. 159. №1. P. 223. https://doi.org/10.1016/j.jpowsour.2006.04.042
  4. Uhart A., Ledeuil J.B., Pecquenard B., Le Cras F., Proust M., Martinez H. // ACS applied materials & interfaces. 2017. V. 9. № 38. P. 33238. https://doi.org/10.1021/acsami.7b07270
  5. Masuda H., Ishida N., Ogata Y., Ito D., Fujita D. // Journal of Power Sources. 2018. V. 400. P. 527. https://doi.org/10.1016/j.jpowsour.2018.08.040
  6. Yamamoto K., Iriyama Y., Asaka T., Hirayama T., Fujita H., Nonaka K., Miyahara K., Sugita Y., Ogumi Z. // Electrochemistry communications. 2012. V. 20. P. 113.
  7. Oukassi S., Bazin A., Secouard C., Chevalier I., Poncet S., Poulet S., Boissel J-M., Geffraye F., Brun J., Salot R. // 2019 IEEE IEDM. 2019. P. 26.1.1–26.1.4. https://doi.org/10.1109/IEDM19573.2019.8993483
  8. Wang Z., Santhanagopalan D., Zhang W., Wang F., Xin H.L. He, K., Li J., Dudney N.J., Meng Y.S. // Nano letters. 2016. V. 16. № 6. P. 3760–3767. https://doi.org/10.1021/acs.nanolett.6b01119
  9. Matsuda Y., Kuwata N., Okawa T., Dorai A., Kamishima O., Kawamura J. // Solid State Ionics. 2019. V. 335. P. 7–14. https://doi.org/10.1016/j.ssi.2019.02.010
  10. Inaba M., Iriyama Y., Ogumi Z., Todzuka Y., Tasaka A. // Journal of Raman spectroscopy. 1997. V. 28. № 8. P. 613–617. https://doi.org/10.1002/(SICI)1097–4555(199708)28:8<613::AID-JRS138>3.0.CO;2-T
  11. Chen C., Jiang M., Zhou T., Raijmakers L., Vezhlev E., Wu B., Schülli T.U., Danilov D.L., Wei Y., Eichel R-A., Notten P.H. // Adv. Energy Mater. 2021. V. 11. № 13. P. 2003939. https://doi.org/10.1002/aenm.202003939
  12. Tsuchiya B., Morita K., Nagata S., Kato T., Iriyama Y., Tsuchida H., Majima T. // Surface and Interface Analysis. 2014. V. 46. № 12–13. P. 1187–1191. https://doi.org/10.1002/sia.5620
  13. Oudenhoven J.F. M., Labohm F., Mulder M., Niessen R.A. H., Mulder F.M., Notten P. // Advanced Materials. 2011. V. 35. № 23. P. 4103–4106. https://doi.org/10.1002/adma.201101819
  14. Mathayan V., Morita K., Tsuchiya B., Ye R., Baba M., Primetzhofer D. // Materials Today Energy. 2021. V. 21. P. 100844. https://doi.org/10.1016/j.mtener.2021.100844
  15. Wang B., Bates J.B., Hart F.X., Sales B.C., Zuhr R.A., Robertson J.D. // J. Electrochem. Soc. 1996. V. 143. № 10. P. 3203. https://doi.org/10.1149/1.1837188
  16. Lee S.J., Baik H.K., Lee S.M. // Electrochemistry Communications. 2003. V. 5. № 1. P. 32–35. https://doi.org/10.1016/S1388–2481(02)00528–3
  17. Fujibayashi T., Kubota Y., Iwabuchi K., Yoshii N. // AIP Advances. 2017. V. 7. № 8. https://doi.org/10.1063/1.4999915
  18. Рудый А.С., Мироненко А.А., Наумов В.В., Федоров И.С., Скундин А.М., Торцева Ю.С. // Микроэлектроника. 2021. Т. 50. № 5. С. 370–375. https://doi.org/10.31857/S0544126921050057
  19. Mayer M. SIMNRA User’s Guide. Germany: Max-Planck Institut fur Plasmaphysik, 2011. 220 p
  20. Альвиев Х.Х. // Электрохимическая энергетика. 2013. Т. 13. № 4. С. 225–227.
  21. Востриков В.Г., Каменских А.И., Ткаченко Н.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 1. С. 28–35. https://doi.org/10.31857/S1028096020010203
  22. Беспалова О.В., Борисов A.M., Востриков В.Г., Куликаускас В.С., Малюков Е.Е., Моломин В.И., Потапенко Е.М., Романовский Е.А., Серков М.В. // Известия РАН. Серия физическая. 2008. Т. 72. № 7. С. 1028–1030.
  23. Борисов А.М., Виргильев Ю.С., Дьячковский А.П., Машкова Е.С., Немов A.С., Сорокин А.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2006. № 4. С. 9–13.
  24. Кикоин И.К. Таблицы физических величин. Справочник. М.: Атомиздат, 1976. 1008 с.
  25. Kurbatov S.V., Rudy A.S., Naumov V.V., Mironenko A.A., O.V. Savenko O.V., Smirnova M.A., Mazaletskiy L.A., Pukhov D.E. // Russian Microelectronics. 2024. V. 53. № 3. P. 202–216. DOI: https://doi.org/10.1134/S1063739724600250
  26. Chu W.K. Backscattering spectrometry. Academic Press, 1978. 384 p.
  27. Ziegler J.F., Manoyan J.M. The stopping of ions in compounds // Nuclear Inst. and Methods in Physics Research. B. 1988. V. 35. № 3–4. P. 215–228. https://doi.org/10.1016/0168–583X(88)90273-X

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. (a) - Photograph of the TTLIA sample with layer designations, (b) - sample on the ROP analyser stage: 1 - lower titanium current collector, 2 - LiPON/LiCoO2 layer boundary, 3 - open part of the Si@O@Al layer, 4 - upper titanium current collector.

下载 (295KB)
3. Fig. 2. Schematic of scattering of a normally incident He+ beam on a TTLIA.

下载 (78KB)
4. Fig. 3. Charge-discharge curves of TTLIA with Ti/Si@O@Al(anode)LiPON(electrolyte)/LiCoO2(cathode)/Ti structure: (a) - current 8 μA, potential window 1.5-3.8 V, (b) - current 4 μA, potential window 1.5-3.8 V. (1 - battery charge, 2 - discharge).

下载 (200KB)
5. Fig. 4. SEM image of the transverse spalling of the TTLIA.

下载 (387KB)
6. Fig. 5. Reserford backscattering spectra of TTLIA in charged (curve 1 in the figure) and discharged (curve 2 in the figure) states; (a) - charge-discharge current of 8 μA, (b) - current of 4 μA. The initial energy of probing He+ ions is 1.8 MeV, irradiation dose D = 10 μCl, channel width is 2.2376 keV.

下载 (382KB)
7. Fig. 6. Comparison of experimental spectra (curve - 1) with the results of SIMNRA modelling (Fig. 2): (a) - in discharged state, current 8 μA, (b) - in charged state, current 8 μA, (c) - in discharged state, current 4 μA and (d) - in charged state, current 4 μA. The channel width is 2.2376 keV and the zero offset is 26 keV.

下载 (504KB)

版权所有 © Russian Academy of Sciences, 2024