The effect of irradiation with a high-power ion beam on atmospheric oxidation of polycrystalline magnesium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Studies have been carried out of the influence of a high-power ion beam of nanosecond duration on the atmospheric oxidation of polycrystalline magnesium. A decrease in the magnesium oxide phase was detected with increasing beam current density, which is probably due to the intensification of the processes of gas-dynamic expansion of the surface. Subsequent exposure of unirradiated and irradiated samples to a powerful ion beam at a temperature of 240°C in air led to a slowdown in the growth of the oxide phase in the irradiated samples. In this case, the greatest effect was observed for samples irradiated by a beam with a current density of 150 A/cm2. The role of chemical processes, mechanical stresses and structural changes occurring in the beam-modified zone and influencing the oxidation process is discussed. The observed nonmonotonic dependences of the ratios of oxygen and carbon concentrations to magnesium for different heating times are explained by the formation of not only magnesium oxide, but also probably magnesium hydroxide and carbonate. It has been shown that the effect of increasing the oxidation resistance of magnesium irradiated with a powerful ion beam can also be influenced by an increase in the concentration of carbon during its penetration into the surface layer.

Full Text

Restricted Access

About the authors

T. V. Panova

Dostoevsky Omsk State University

Author for correspondence.
Email: panovatv@omsu.ru
Russian Federation, Omsk

V. S. Kovivchak

Dostoevsky Omsk State University

Email: panovatv@omsu.ru
Russian Federation, Omsk

References

  1. Jayasathyakawin S., Ravichandran M., Baskar N., Chairman C.A., Balasundaram R. // Materials Today: Proc. 2020. V. 27. P. 909. https://www.doi.org/10.1016/j.matpr.2020.01.255
  2. Chen J., Tan L., Yu X., Etim I.P., Ibrahim M., Yang K. // J. Mech. Behavior Biomed. Mater. 2018. V. 87. P. 68. https://www.doi.org/10.1016/j.jmbbm.2018.07.022
  3. Chen J., Xu Y., Kolawole S.K., Wang J., Su X., Tan L., Yang K. // Materials. 2022. V. 15. P. 5031. https://www.doi.org/10.3390/ma15145031
  4. Wei L., Gao Z. // RSC Adv. 2023. V. 13. Р. 8427. https://www.doi.org/10.1039/D2RA07829E
  5. Atrens A., Chen X., Shi Z. // Corros. Mater. Degrad. 2022. V. 3. P. 566. https://www.doi.org/10.3390/cmd3040031
  6. Галкин Н.Г., Ваванова С.В., Галкин К.Н., Баталов Р.И., Баязитов Р.М., Нуждин В.И. // Журнал технической физики. 2013. Т. 83. Вып. 1. С. 99.
  7. Nene S.S., Kashyap B.P., Prabhu N., Estrin Y., Al-Samman T. // J. Mater. Sci. 2015. V. 50. P. 3041. https://www.doi.org/10.1007/s10853-015-8846-y
  8. Лебедев В.А., Седых В.И. Металлургия магния. Екатеринбург: УГТУ-УПИ, 2010. 174 с.
  9. Bahmani A., Arthanari S., Shin K.S. // J. Magnesium Alloys. 2020. V. 8. P. 134. https://www.doi.org/10.1016/j.jma.2019.12.001
  10. Козлов И.А., Каримова С.А. // Авиационные материалы и технологии. 2014. № 2. С. 15. https://www.doi.org/10.18577/2071-9140-2014-0-2-15-20
  11. Yao W., Wu L., Huang G., Jiang B., Atrens A., Pan F. // J. Mater. Sci. Technol. 2020. V. 52. P. 100. https://www.doi.org/10.1016/j.jmst.2020.02.055
  12. Синявский В.С. // Технология легких сплавов. 2011. № 2. С. 77.
  13. Liu C., Liang J., Zhou J., Wang L., Li Q. // Appl. Surf. Sci. 2015. V. 343. P. 133. https://www.doi.org/10.1016/j.apsusc.2015.03.067
  14. Yu B., Dai J., Ruan Q., Liu Z., Chu P.K. // Coatings. 2020. V. 10. P. 734. https://www.doi.org/10.3390/coatings10080734
  15. Liu Y.R., Zhang K.M., Zou J.X., Liu D.K., Zhang T.C. // J. Alloy. Compd. 2018. V. 741. P. 65. https://www.doi.org/10.1016/j.jallcom.2017.12.227
  16. Kovivchak V.S., Nesov S.N., Panova T.V, Korusenko P.M. // Appl. Surf. Sci. 2024. V. 654. P. 159491. https://www.doi.org/10.1016/j.apsusc.2024.159491
  17. Panova T.V., Kovivchak V.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16. № 2. P. 347. https://www.doi.org/10.1134/S102745102202032X
  18. SRIM & TRIM (2013) http://www.srim.org/
  19. Романов В.В.Коррозия магния. М.: Изд-во Акад. наук СССР, 1961. 68 с.
  20. Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. Пер. с англ. / Ред. Поут Дж.М., Фоти Г. и др. М.: Машиностроение, 1987. 423 с.
  21. Грибков В.А., Григорьев В.И., Калин Б.А., Якушин В.Л. Перспективные радиационно-пучковые технологии обработки материалов. М.: Круглый год, 2001. 528 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern of a magnesium sample before irradiation (1) and after irradiation with a single pulse of a powerful ion beam with a current density of 150 A/cm2 (2).

Download (22KB)
3. Fig. 2. The ratio of the intensity of the diffraction reflection (200) MgO to (101) Mg for different sample annealing times in air: for an unirradiated sample (1) and after irradiation with a powerful ion beam with a current density of 50 (2), 100 (3) and 150 A/cm2 (4).

Download (15KB)
4. Fig. 3. Surface morphology of non-irradiated (a) and magnesium samples irradiated with a powerful ion beam with a current density of 50 (b), 100 (c) and 150 A/cm2 (d) after 12 hours of annealing at a temperature of 240°C.

Download (128KB)
5. Fig. 4. Dependence of the ratio of oxygen CO and magnesium CMg concentrations in samples before (1) and after irradiation with a powerful ion beam with a current density of 50 (2), 100 (3) and 150 A/cm2 (4) on the annealing time.

Download (17KB)
6. Fig. 5. Dependence of the ratio of carbon CC and magnesium CMg concentrations in samples before (1) and after irradiation with a powerful ion beam with a current density of 50 (2), 100 (3) and 150 A/cm2 (4) on the annealing time.

Download (22KB)

Copyright (c) 2025 Russian Academy of Sciences