The effect of irradiation with a high-power ion beam on atmospheric oxidation of polycrystalline magnesium
- Authors: Panova T.V.1, Kovivchak V.S.1
-
Affiliations:
- Dostoevsky Omsk State University
- Issue: No 4 (2025)
- Pages: 49-55
- Section: Articles
- URL: https://gynecology.orscience.ru/1028-0960/article/view/689152
- DOI: https://doi.org/10.31857/S1028096025040077
- EDN: https://elibrary.ru/FBZSGV
- ID: 689152
Cite item
Abstract
Studies have been carried out of the influence of a high-power ion beam of nanosecond duration on the atmospheric oxidation of polycrystalline magnesium. A decrease in the magnesium oxide phase was detected with increasing beam current density, which is probably due to the intensification of the processes of gas-dynamic expansion of the surface. Subsequent exposure of unirradiated and irradiated samples to a powerful ion beam at a temperature of 240°C in air led to a slowdown in the growth of the oxide phase in the irradiated samples. In this case, the greatest effect was observed for samples irradiated by a beam with a current density of 150 A/cm2. The role of chemical processes, mechanical stresses and structural changes occurring in the beam-modified zone and influencing the oxidation process is discussed. The observed nonmonotonic dependences of the ratios of oxygen and carbon concentrations to magnesium for different heating times are explained by the formation of not only magnesium oxide, but also probably magnesium hydroxide and carbonate. It has been shown that the effect of increasing the oxidation resistance of magnesium irradiated with a powerful ion beam can also be influenced by an increase in the concentration of carbon during its penetration into the surface layer.
Keywords
Full Text

About the authors
T. V. Panova
Dostoevsky Omsk State University
Author for correspondence.
Email: panovatv@omsu.ru
Russian Federation, Omsk
V. S. Kovivchak
Dostoevsky Omsk State University
Email: panovatv@omsu.ru
Russian Federation, Omsk
References
- Jayasathyakawin S., Ravichandran M., Baskar N., Chairman C.A., Balasundaram R. // Materials Today: Proc. 2020. V. 27. P. 909. https://www.doi.org/10.1016/j.matpr.2020.01.255
- Chen J., Tan L., Yu X., Etim I.P., Ibrahim M., Yang K. // J. Mech. Behavior Biomed. Mater. 2018. V. 87. P. 68. https://www.doi.org/10.1016/j.jmbbm.2018.07.022
- Chen J., Xu Y., Kolawole S.K., Wang J., Su X., Tan L., Yang K. // Materials. 2022. V. 15. P. 5031. https://www.doi.org/10.3390/ma15145031
- Wei L., Gao Z. // RSC Adv. 2023. V. 13. Р. 8427. https://www.doi.org/10.1039/D2RA07829E
- Atrens A., Chen X., Shi Z. // Corros. Mater. Degrad. 2022. V. 3. P. 566. https://www.doi.org/10.3390/cmd3040031
- Галкин Н.Г., Ваванова С.В., Галкин К.Н., Баталов Р.И., Баязитов Р.М., Нуждин В.И. // Журнал технической физики. 2013. Т. 83. Вып. 1. С. 99.
- Nene S.S., Kashyap B.P., Prabhu N., Estrin Y., Al-Samman T. // J. Mater. Sci. 2015. V. 50. P. 3041. https://www.doi.org/10.1007/s10853-015-8846-y
- Лебедев В.А., Седых В.И. Металлургия магния. Екатеринбург: УГТУ-УПИ, 2010. 174 с.
- Bahmani A., Arthanari S., Shin K.S. // J. Magnesium Alloys. 2020. V. 8. P. 134. https://www.doi.org/10.1016/j.jma.2019.12.001
- Козлов И.А., Каримова С.А. // Авиационные материалы и технологии. 2014. № 2. С. 15. https://www.doi.org/10.18577/2071-9140-2014-0-2-15-20
- Yao W., Wu L., Huang G., Jiang B., Atrens A., Pan F. // J. Mater. Sci. Technol. 2020. V. 52. P. 100. https://www.doi.org/10.1016/j.jmst.2020.02.055
- Синявский В.С. // Технология легких сплавов. 2011. № 2. С. 77.
- Liu C., Liang J., Zhou J., Wang L., Li Q. // Appl. Surf. Sci. 2015. V. 343. P. 133. https://www.doi.org/10.1016/j.apsusc.2015.03.067
- Yu B., Dai J., Ruan Q., Liu Z., Chu P.K. // Coatings. 2020. V. 10. P. 734. https://www.doi.org/10.3390/coatings10080734
- Liu Y.R., Zhang K.M., Zou J.X., Liu D.K., Zhang T.C. // J. Alloy. Compd. 2018. V. 741. P. 65. https://www.doi.org/10.1016/j.jallcom.2017.12.227
- Kovivchak V.S., Nesov S.N., Panova T.V, Korusenko P.M. // Appl. Surf. Sci. 2024. V. 654. P. 159491. https://www.doi.org/10.1016/j.apsusc.2024.159491
- Panova T.V., Kovivchak V.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16. № 2. P. 347. https://www.doi.org/10.1134/S102745102202032X
- SRIM & TRIM (2013) http://www.srim.org/
- Романов В.В.Коррозия магния. М.: Изд-во Акад. наук СССР, 1961. 68 с.
- Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. Пер. с англ. / Ред. Поут Дж.М., Фоти Г. и др. М.: Машиностроение, 1987. 423 с.
- Грибков В.А., Григорьев В.И., Калин Б.А., Якушин В.Л. Перспективные радиационно-пучковые технологии обработки материалов. М.: Круглый год, 2001. 528 с.
Supplementary files
