A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome


Citar

Texto integral

Resumo

Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.

Sobre autores

Vinod Gauttam

Department of Pharmacognosy, Shiva Institute of Pharmacy

Email: info@benthamscience.net

Kavita Munjal

Department of Pharmacognosy, Amity Institute of Pharmacy,, Amity University

Autor responsável pela correspondência
Email: info@benthamscience.net

Hitesh Chopra

Department of Biosciences, Saveetha School of Engineering,, Saveetha Institute of Medical and Technical Sciences,

Email: info@benthamscience.net

Aftab Ahmad

Department of Pharmacology,, King Abdulaziz University

Email: info@benthamscience.net

Mahesh Rana

Department of Agriculture, M.M. (Deemed to be University)

Email: info@benthamscience.net

Mohammad Kamal

Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University,

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Eckel RH, Alberti KGMM, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2010; 375(9710): 181-3. doi: 10.1016/S0140-6736(09)61794-3 PMID: 20109902
  2. Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev 2008; 29(7): 777-822. doi: 10.1210/er.2008-0024 PMID: 18971485
  3. Tabatabaei-Malazy O, Saeedi Moghaddam S, Rezaei N, et al. A nationwide study of metabolic syndrome prevalence in Iran; A comparative analysis of six definitions. PLoS One 2021; 16(3): e0241926. doi: 10.1371/journal.pone.0241926 PMID: 33657130
  4. Córdoba-Rodríguez DP, Iglesia I, Gomez-Bruton A, et al. Fat-free/lean body mass in children with insulin resistance or metabolic syndrome: A systematic review and meta-analysis. BMC Pediatr 2022; 22(1): 58. doi: 10.1186/s12887-021-03041-z PMID: 35065638
  5. George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: An emerging entity in the era of obesity. World J Diabetes 2015; 6(4): 613-20. doi: 10.4239/wjd.v6.i4.613 PMID: 25987958
  6. Aboonabi A, Meyer RR, Singh I. The association between metabolic syndrome components and the development of atherosclerosis. J Hum Hypertens 2019; 33(12): 844-55. doi: 10.1038/s41371-019-0273-0 PMID: 31636352
  7. Sonali V, Sumeet G, Rina D, Kavita M, Meenakshi D, Dinesh Kumar M. Unravelling the approaches to treat osteoarthritis: A focus on the potential of medicinal plants. Pharmacognosy Res 2023; 15(1): 13-25.
  8. Deepak K, Pandey S, Kumar S, Kumar A, Rai DK, Munjal K. Change in bone mineral density in premenopausal women with rheumatoid arthritis managed with or without prednisolone. IJMRHS 2020; 3(10): 201-10.
  9. Newgard CB. Metabolomics and metabolic diseases: Where do we stand? Cell Metab 2017; 25(1): 43-56. doi: 10.1016/j.cmet.2016.09.018 PMID: 28094011
  10. Tyagi S, Singh U, Kalra T, Munjal K. Applications of metabolomics - A systematic study of the unique chemical fingerprints: An overview. Int J Pharm Sci Rev Res 2010; 3(1): 83-6.
  11. Alkefai N, Mir SR, Amin S, Ahamad J, Munjal K, Gauttam V. NMR in analysis of food toxins. Analysis of Naturally Occurring Food Toxins of Plant Origin. 2022; pp. 131-9.
  12. Pandey SN, Rangra NK, Singh S, Arora S, Gupta V. Evolving role of natural products from traditional medicinal herbs in the treatment of Alzheimer’s disease. ACS Chem Neurosci 2021; 12(15): 2718-28. doi: 10.1021/acschemneuro.1c00206 PMID: 34010562
  13. Haye A, Ansari M, Saini A, Ahmed Z, Munjal K, Shamsi Y. Polyherbal formulation improves glucose-lipid metabolism and prevent hepatotoxicity in streptozotocin-induced diabetic rats: Plausible role of IRS-PI3K-Akt-GLUT2 signaling. Pharmacog Mag 2022; 18(77): 52-65.
  14. Berwal R. Comparison of serum 25-hydroxyvitamin D levels after a single oral dose of vitamin D3 formulations in mild vitamin D3 deficiency. J Pharmacol Pharmacother 2021; 12: 163-7.
  15. Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: Past history and future perspective. J HerbMed Pharmacol 2018; 7(1): 1-7. doi: 10.15171/jhp.2018.01
  16. Couturier K, Batandier C, Awada M, et al. Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Arch Biochem Biophys 2010; 501(1): 158-61. doi: 10.1016/j.abb.2010.05.032 PMID: 20515642
  17. Sartorius T, Peter A, Schulz N, et al. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity. PLoS One 2014; 9(3): e92358. doi: 10.1371/journal.pone.0092358 PMID: 24643026
  18. Solomon TPJ, Blannin AK. Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. Eur J Appl Physiol 2009; 105(6): 969-76. doi: 10.1007/s00421-009-0986-9 PMID: 19159947
  19. Cottrell JJ, Furness JB, Wijesiriwardana UA, et al. Effect of heat stress on respiratory alkalosis and insulin sensitivity in cinnamon supplemented pigs. Animals 2020; 10(4): 690.
  20. Hasanzade F, Toliat M, Emami SA, Emamimoghaadam Z. The effect of cinnamon on glucose of type II diabetes patients. J Tradit Complement Med 2013; 3(3): 171-4. doi: 10.4103/2225-4110.114900 PMID: 24716174
  21. Kizilaslan N, Erdem NZ. The effect of different amounts of cinnamon consumption on blood glucose in healthy adult individuals. Int J Food Sci 2019; 2019: 1-9. doi: 10.1155/2019/4138534 PMID: 30949494
  22. Maierean SM, Serban MC, Sahebkar A, et al. The effects of cinnamon supplementation on blood lipid concentrations: A systematic review and meta-analysis. J Clin Lipidol 2017; 11(6): 1393-406. doi: 10.1016/j.jacl.2017.08.004 PMID: 28887086
  23. Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003; 26(12): 3215-8. doi: 10.2337/diacare.26.12.3215 PMID: 14633804
  24. Miah MA, Himel MH, Sujan KM, Mustari A, Haque MI. Protective effects of cinnamon powder against hyperlipidemia and hepatotoxicity in butter fed female albino mice. Saudi J Biol Sci 2022; 29(4): 3069-74. doi: 10.1016/j.sjbs.2022.01.047 PMID: 35531151
  25. Hannan JMA, Ali L, Rokeya B, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br J Nutr 2007; 97(3): 514-21. doi: 10.1017/S0007114507657869 PMID: 17313713
  26. Kannappan S, Anuradha CV. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin & metformin in a rat model. Indian J Med Res 2009; 129(4): 401-8. PMID: 19535835
  27. Vijayakumar MV, Bhat MK. Hypoglycemic effect of a novel dialysed fenugreek seeds extract is sustainable and is mediated, in part, by the activation of hepatic enzymes. Phytother Res 2008; 22(4): 500-5. doi: 10.1002/ptr.2351 PMID: 18338783
  28. Amini MR, Payandeh N, Sheikhhossein F, et al. The effects of fenugreek seed consumption on blood pressure: A systematic review and meta-analysis of randomized controlled trials. High Blood Press Cardiovasc Prev 2023; 30(2): 123-33. doi: 10.1007/s40292-023-00565-6 PMID: 36763260
  29. Hassani SS, Arezodar FF, Esmaeili SS, Gholami-Fesharaki M. Effect of fenugreek use on fasting blood glucose, glycosylated hemoglobin, body mass index, waist circumference, blood pressure and quality of life in patients with type 2 diabetes mellitus: A randomized, double-blinded, placebo-controlled clinical trials. Galen Med J 2019; 8: e1432. doi: 10.31661/gmj.v8i0.1432 PMID: 34466512
  30. Hadi A, Arab A, Hajianfar H, et al. The effect of fenugreek seed supplementation on serum irisin levels, blood pressure, and liver and kidney function in patients with type 2 diabetes mellitus: A parallel randomized clinical trial. Complement Ther Med 2020; 49: 102315. doi: 10.1016/j.ctim.2020.102315 PMID: 32147060
  31. Heshmat-Ghahdarijani K, Mashayekhiasl N, Amerizadeh A, Teimouri JZ, Sadeghi M. Effect of fenugreek consumption on serum lipid profile: A systematic review and meta-analysis. Phytother Res 2020; 34(9): 2230-45. doi: 10.1002/ptr.6690
  32. Hosseini SA, Hamzavi K, Safarzadeh H, Salehi O. Interactive effect of swimming training and fenugreek (Trigonella foenum graecum L.) extract on glycemic indices and lipid profile in diabetic rats. Arch Physiol Biochem 2023; 129(2): 349-53. doi: 10.1080/13813455.2020.1826529 PMID: 33017260
  33. Sharma RD, Raghuram TC, Rao NS. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr 1990; 44(4): 301-6. PMID: 2194788
  34. Srinivasan K. Dietary spices as beneficial modulators of lipid profile in conditions of metabolic disorders and diseases. Food Funct 2013; 4(4): 503-21. doi: 10.1039/c2fo30249g PMID: 23364205
  35. Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: A memoir. J Clin Biochem Nutr 2007; 41(2): 77-81. doi: 10.3164/jcbn.2007010 PMID: 18193099
  36. Turner S, Diako C, Kruger R, et al. Consuming gymnema sylvestre reduces the desire for high-sugar sweet foods. Nutrients 2020; 12(4): 1046. doi: 10.3390/nu12041046
  37. Chen G, Xu Y, Zhang H, Muema FW, Guo M. Gymnema sylvestre extract ameliorated streptozotocin-induced hyperglycemia in T2DM rats via gut microbiota. Food frontiers 2023; 4(3): 1426-39. doi: 10.1002/fft2.238
  38. Al-Romaiyan A, Liu B, Asare-Anane H, et al. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro. Phytother Res 2010; 24(9): 1370-6. doi: 10.1002/ptr.3125
  39. Al-Romaiyan A, King AJ, Persaud SJ, Jones PM. A novel extract of Gymnema sylvestre improves glucose tolerance in vivo and stimulates insulin secretion and synthesis in vitro. Phytother Res 2013; 27(7): 1006-11. doi: 10.1002/ptr.4815
  40. Zuñiga LY, González-Ortiz M, Martínez-Abundis E. Effect of Gymnema sylvestre administration on metabolic syndrome, insulin sensitivity, and insulin secretion. J Med Food 2017; 20(8): 750-4. doi: 10.1089/jmf.2017.0001 PMID: 28459647
  41. Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 2014; 94(5): 834-40. doi: 10.1002/jsfa.6458
  42. Gaytán Martínez LA, Sánchez-Ruiz LA, Zuñiga LY, González-Ortiz M, Martínez-Abundis E. Effect of Gymnema sylvestre administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J Med Food 2021; 24(1): 28-32. doi: 10.1089/jmf.2020.0024 PMID: 32460589
  43. Zhong Y, Xiao Y, Gao J, et al. Curcumin improves insulin sensitivity in high-fat diet-fed mice through gut microbiota. Nutr Metab 2022; 19(1): 76. doi: 10.1186/s12986-022-00712-1 PMID: 36348361
  44. Zou T, Li S, Wang B, Wang Z, Liu Y, You J. Curcumin improves insulin sensitivity and increases energy expenditure in high-fat-diet–induced obese mice associated with activation of FNDC5/irisin. Nutrition 2021; 90: 111263. doi: 10.1016/j.nut.2021.111263 PMID: 33975064
  45. Na LX, Zhang YL, Li Y, et al. Curcumin improves insulin resistance in skeletal muscle of rats. Nutr Metab Cardiovasc Dis 2011; 21(7): 526-33. doi: 10.1016/j.numecd.2009.11.009 PMID: 20227862
  46. Li P, Ding L, Cao S, et al. Curcumin metabolites contribute to the effect of curcumin on ameliorating insulin sensitivity in high-glucose-induced insulin-resistant HepG2 cells. J Ethnopharmacol 2020; 259: 113015. doi: 10.1016/j.jep.2020.113015 PMID: 32464315
  47. Ding L, Li J, Song B, et al. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol 2016; 304: 99-109. doi: 10.1016/j.taap.2016.05.011 PMID: 27208389
  48. Li S, You J, Wang Z, et al. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int 2021; 143: 110270. doi: 10.1016/j.foodres.2021.110270 PMID: 33992371
  49. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 2014; 232(1): 40-51. doi: 10.1016/j.atherosclerosis.2013.10.016 PMID: 24401215
  50. Zingg J-M, Hasan ST, Nakagawa K, et al. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors 2017; 43(1): 42-53.
  51. Lee HI, McGregor RA, Choi MS, et al. Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life Sci 2013; 93(18-19): 693-9. doi: 10.1016/j.lfs.2013.09.014 PMID: 24063989
  52. Zhai SS, Ruan D, Zhu YW, et al. Protective effect of curcumin on ochratoxin A–induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult Sci 2020; 99(2): 1124-34. doi: 10.1016/j.psj.2019.10.041 PMID: 32036964
  53. Ganugula R, Arora M, Jaisamut P, Wiwattanapatapee R, Jørgensen HG, Venkatpurwar VP. Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of type 1 diabetes mellitus. Br J Pharmacol 2017; 174(13): 2074-84. doi: 10.1111/bph.13816
  54. Osterman CJD, Lynch JC, Leaf P, et al. Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS One 2015; 10(7): e0132845. doi: 10.1371/journal.pone.0132845 PMID: 26177391
  55. Pastorelli D, Fabricio ASC, Giovanis P, et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol Res 2018; 132: 72-9. doi: 10.1016/j.phrs.2018.03.013 PMID: 29614381
  56. Kanai M, Yoshimura K, Asada M, et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011; 68(1): 157-64. doi: 10.1007/s00280-010-1470-2 PMID: 20859741
  57. Dairam A, Fogel R, Daya S, Limson JL. Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem 2008; 56(9): 3350-6. doi: 10.1021/jf0734931 PMID: 18422331
  58. Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging 2017; 9(1): 187-208. doi: 10.18632/aging.101149 PMID: 28070018
  59. Boonla O, Kukongviriyapan U, Pakdeechote P, et al. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide 2014; 42: 44-53. doi: 10.1016/j.niox.2014.09.001 PMID: 25194767
  60. Farzaei MH, Zobeiri M, Parvizi F, et al. Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 2018; 10(7): 855. doi: 10.3390/nu10070855
  61. Xin M, Yang Y, Zhang D, Wang J, Chen S, Zhou D. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression. Osteoporos Int 2015; 26(11): 2665-76. doi: 10.1007/s00198-015-3153-7 PMID: 25963235
  62. Seong KM, Yu M, Lee KS, Park S, Jin YW, Min KJ. Curcumin mitigates accelerated aging after irradiation in Drosophila by reducing oxidative stress. BioMed Res Int 2015; 2015: 1-8. doi: 10.1155/2015/425380 PMID: 25815315
  63. Zhao J, Chen Y, Chen Q, Hong T, Zhong Z, He J. Curcumin ameliorates cardiac fibrosis by regulating macrophage-fibroblast crosstalk via IL18-P-SMAD2/3 signaling pathway inhibition. Front Pharmacol 2022; 12: 784041.
  64. Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol 2012; 167(7): 1550-62. doi: 10.1111/j.1476-5381.2012.02109.x PMID: 22823335
  65. Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol 2020; 8: 479. doi: 10.3389/fcell.2020.00479
  66. Islam R, Dash D, Singh R. Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine 2022; 149: 155720. doi: 10.1016/j.cyto.2021.155720 PMID: 34634654
  67. Johnson S, Shaikh SB, Muneesa F, Rashmi B, Bhandary YP. Radiation induced apoptosis and pulmonary fibrosis: Curcumin an effective intervention? Int J Radiat Biol 2020; 96(6): 709-17. doi: 10.1080/09553002.2020.1739773 PMID: 32149561
  68. Shimizu K, Sunagawa Y, Funamoto M, et al. The synthetic curcumin analogue GO-Y030 effectively suppresses the development of pressure overload-induced heart failure in mice. Sci Rep 2020; 10(1): 7172. doi: 10.1038/s41598-020-64207-w PMID: 32346115
  69. Kong D, Zhang Z, Chen L, et al. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol 2020; 36: 101600. doi: 10.1016/j.redox.2020.101600 PMID: 32526690
  70. Abo-Zaid MA, Shaheen ES, Ismail AH. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. J Food Biochem 2020; 44(6): e13219. doi: 10.1111/jfbc.13219
  71. Zhao JL, Zhang T, Shao X, Zhu JJ, Guo MZ. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. BMC Complement Altern Med 2019; 19(1): 280. doi: 10.1186/s12906-019-2702-6 PMID: 31647008
  72. Hsu PK, Pan FFC, Hsieh CS. mcIRBP-19 of bitter melon peptide effectively regulates diabetes mellitus (DM) patients’ blood sugar levels. Nutrients 2020; 12(5): 1252. doi: 10.3390/nu12051252 PMID: 32354072
  73. Kim B, Lee HS, Kim HJ, et al. Momordica charantia (bitter melon) efficacy and safety on glucose metabolism in Korean prediabetes participants: A 12-week, randomized clinical study. Food Sci Biotechnol 2023; 32(5): 697-704. doi: 10.1007/s10068-022-01214-9 PMID: 37009042
  74. Huang CY, Cheng YH, Chen SD. Hot Air-assisted Radio Frequency (HARF) drying on wild bitter gourd extract. Foods 2022; 11(8): 1173. doi: 10.3390/foods11081173 PMID: 35454760
  75. Pan F, Hsu P-K, Chang W-H. Exploring the factors affecting bitter melon peptide intake behavior: A health belief model perspective. Risk Manag Healthcare Policy 2020; 13: 2219-26. doi: 10.2147/RMHP.S274154
  76. Sun K, Ding M, Fu C, et al. Effects of dietary wild bitter melon (Momordica charantia var. abbreviate Ser.) extract on glucose and lipid metabolism in HFD/STZ-induced type 2 diabetic rats. J Ethnopharmacol 2023; 306: 116154. doi: 10.1016/j.jep.2023.116154 PMID: 36634725
  77. Dhar D, Raina K, Kant R, et al. Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer. Carcinogenesis 2019; 40(9): bgz114. doi: 10.1093/carcin/bgz114 PMID: 31194859
  78. Shimada T, Kato F, Dwijayanti DR, et al. Bitter melon fruit extract enhances intracellular ATP production and insulin secretion from rat pancreatic β-cells. Br J Nutr 2022; 127(3): 377-83. doi: 10.1017/S0007114521001082 PMID: 33762029
  79. Mahwish SF. Bitter melon (Momordica charantia L.) fruit bioactives charantin and vicine potential for diabetes prophylaxis and treatment. Plants 2021; 10(4): 730.
  80. Chang CI, Cheng SY, Nurlatifah AO, et al. Bitter melon extract yields multiple effects on intestinal epithelial cells and likely contributes to anti-diabetic functions. Int J Med Sci 2021; 18(8): 1848-56. doi: 10.7150/ijms.55866 PMID: 33746602
  81. Deora N, Venkatraman K. Aloe vera in diabetic dyslipidemia: Improving blood glucose and lipoprotein levels in pre-clinical and clinical studies. J Ayurveda Integr Med 2022; 13(4): 100675. doi: 10.1016/j.jaim.2022.100675 PMID: 36481618
  82. Anandh Babu P, Liu D. Green tea catechins and cardiovascular health: An update. Curr Med Chem 2008; 15(18): 1840-50. doi: 10.2174/092986708785132979 PMID: 18691042
  83. Babu SN, Govindarajan S, Vijayalakshmi MA, Noor A. Role of zonulin and GLP-1/DPP-IV in alleviation of diabetes mellitus by peptide/polypeptide fraction of Aloe vera in streptozotocin-induced diabetic wistar rats. J Ethnopharmacol 2021; 272: 113949. doi: 10.1016/j.jep.2021.113949 PMID: 33610707
  84. Babu SN, Govindarajan S, Noor A. Aloe vera and its two bioactive constituents in alleviation of diabetes-proteomic & mechanistic insights. J Ethnopharmacol 2021; 280: 114445. doi: 10.1016/j.jep.2021.114445 PMID: 34303804
  85. Govindarajan S, Babu SN, Vijayalakshmi MA, Manohar P, Noor A. Aloe vera carbohydrates regulate glucose metabolism through improved glycogen synthesis and downregulation of hepatic gluconeogenesis in diabetic rats. J Ethnopharmacol 2021; 281: 114556. doi: 10.1016/j.jep.2021.114556 PMID: 34438036
  86. Abubakar AM, Dibal NI, Attah MOO, Chiroma SM. Exploring the antioxidant effects of Aloe vera: Potential role in controlling liver function and lipid profile in high fat and fructose diet (HFFD) fed mice. Pharmacol Res Mod Chin Med 2022; 4: 100150. doi: 10.1016/j.prmcm.2022.100150
  87. Deora N, Sunitha MM, Satyavani M, et al. Alleviation of diabetes mellitus through the restoration of β-cell function and lipid metabolism by Aloe vera (L.) Burm. f. extract in obesogenic WNIN/GR-Ob rats. J Ethnopharmacol 2021; 272: 113921. doi: 10.1016/j.jep.2021.113921 PMID: 33588009
  88. Nam YH, Hong BN, Rodriguez I, et al. Steamed ginger may enhance insulin secretion through KATP channel closure in pancreatic β-cells potentially by increasing 1-dehydro-6-gingerdione content. Nutrients 2020; 12(2): 324.
  89. Purnomo Y, Triliana R, Wibisono N. Modulating effect of soybean (Glycine max) seed and ginger (Zingiber officinale) rhizoma on plasma protein profile of diabetic rat. AIP Conf Proc 2023; 2634(1): 020028. doi: 10.1063/5.0111318
  90. Morvaridzadeh M, Fazelian S, Agah S, et al. Effect of ginger (Zingiber officinale) on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Cytokine 2020; 135: 155224. doi: 10.1016/j.cyto.2020.155224 PMID: 32763761
  91. Ballester P, Cerdá B, Arcusa R, Marhuenda J, Yamedjeu K, Zafrilla P. Effect of ginger on inflammatory diseases. Molecules 2022; 27(21): 7223.
  92. Yang C, Long D, Sung J, Alghoul Z, Merlin D. Orally administered natural lipid nanoparticle-loaded 6-shogaol shapes the anti-inflammatory microbiota and metabolome. Pharmaceutics 2021; 13(9): 1355. doi: 10.3390/pharmaceutics13091355 PMID: 34575431
  93. Carnuta MG, Deleanu M, Barbalata T, et al. Zingiber officinale extract administration diminishes steroyl-CoA desaturase gene expression and activity in hyperlipidemic hamster liver by reducing the oxidative and endoplasmic reticulum stress. Phytomedicine 2018; 48: 62-9. doi: 10.1016/j.phymed.2018.04.059 PMID: 30195881
  94. Al Asoom L, Alassaf MA, AlSulaiman NS, et al. The effectiveness of Nigella sativa and ginger as appetite suppressants: An experimental study on healthy wistar rats. Vasc Health Risk Manag 2023; 19: 1-11.
  95. Soares APC, Faria NC, Graciano GF, et al. Ginger infusion increases diet-induced thermogenesis in healthy individuals: A randomized crossover trial. Food Biosci 2022; 50: 102005. doi: 10.1016/j.fbio.2022.102005
  96. Estruch R, Martínez-González MA, Corella D, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann Intern Med 2006; 145(1): 1-11. doi: 10.7326/0003-4819-145-1-200607040-00004 PMID: 16818923
  97. Covas MI, Nyyssönen K, Poulsen HE, et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann Intern Med 2006; 145(5): 333-41. doi: 10.7326/0003-4819-145-5-200609050-00006 PMID: 16954359
  98. Fisher NDL, Hughes M, Gerhard-Herman M, Hollenberg NK. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 2003; 21(12): 2281-6. doi: 10.1097/00004872-200312000-00016 PMID: 14654748
  99. Faridi Z, Njike VY, Dutta S, Ali A, Katz DL. Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am J Clin Nutr 2008; 88(1): 58-63. doi: 10.1093/ajcn/88.1.58 PMID: 18614724
  100. Magrone T, Russo MA, Jirillo E. Cocoa and dark chocolate polyphenols: From biology to clinical applications. Front Immunol 2017; 8: 677.
  101. Kramer K, Yeboah-Awudzi M, Magazine N, King JM, Xu Z, Losso JN. Procyanidin B2 rich cocoa extracts inhibit inflammation in Caco-2 cell model of in vitro celiac disease by down-regulating interferon-gamma- or gliadin peptide 31-43-induced transglutaminase-2 and interleukin-15. J Funct Foods 2019; 57: 112-20. doi: 10.1016/j.jff.2019.03.039
  102. Nabofa EEW, Alada ARA. Cardiovascular effects of caffeine in rabbits involve beta-1 adrenergic receptor activation. J Caffeine Adenosine Res 2020; 10(2): 84-91. doi: 10.1089/caff.2019.0019
  103. Shi D, Nikodijević O, Jacobson KA, Daly JW. Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Mol Neurobiol 1993; 13(3): 247-61. doi: 10.1007/BF00733753 PMID: 8242688
  104. Daly JW, Shi D, Nikodijevic O, Jacobson KA. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 1994; 7(2): 201-13. PMID: 25821357
  105. Aslan A, Gok O, Erman O, Kuloglu T. Ellagic acid impedes carbontetrachloride-induced liver damage in rats through suppression of NF-kB, Bcl-2 and regulating Nrf-2 and caspase pathway. Biomed Pharmacother 2018; 105: 662-9. doi: 10.1016/j.biopha.2018.06.020 PMID: 29902765
  106. Choi YH, Jin GY, Li GZ, Yan GH. Cornuside suppresses lipopolysaccharide-induced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol Pharm Bull 2011; 34(7): 959-66. doi: 10.1248/bpb.34.959 PMID: 21719998
  107. Kim MG, Kim S, Boo KH, Kim JH, Kim CS. Anti-inflammatory effects of immature Citrus unshiu fruit extracts via suppression of NF-κB and MAPK signal pathways in LPS-induced RAW264.7 macrophage cells. Food Sci Biotechnol 2023. doi: 10.1007/s10068-023-01390-2
  108. Lallo S, Hardianti B, Djabir YY, et al. Piper retrofractum ameliorates imiquimod-induced skin inflammation via modulation of TLR4 axis and suppression of NF-κB activity. Heliyon 2023; 9(9): e20151. doi: 10.1016/j.heliyon.2023.e20151 PMID: 37809486
  109. Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol Metab Syndr 2019; 11(1): 41. doi: 10.1186/s13098-019-0437-7 PMID: 31149032
  110. Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 1994; 91(19): 9151-4. doi: 10.1073/pnas.91.19.9151 PMID: 8090784
  111. Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30: 72-130. doi: 10.1016/j.molmet.2019.09.010 PMID: 31767182
  112. Sandhu H, Wiesenthal SR, MacDonald PE, et al. Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs. Diabetes 1999; 48(5): 1045-53. doi: 10.2337/diabetes.48.5.1045 PMID: 10331409
  113. Ribnicky DM, Poulev A, Watford M, Cefalu WT, Raskin I. Antihyperglycemic activity of Tarralin™, an ethanolic extract of Artemisia dracunculus L. Phytomedicine 2006; 13(8): 550-7. doi: 10.1016/j.phymed.2005.09.007 PMID: 16920509
  114. Malech HL, DeLeo FR, Quinn MT. The role of neutrophils in the immune system: An overview. Methods Mol Biol 2014; 1124: 3-10. doi: 10.1007/978-1-62703-845-4_1 PMID: 24504942
  115. Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: Implications for pathogenesis and therapy. Eur Respir Rev 2022; 31(163): 210241. doi: 10.1183/16000617.0241-2021
  116. Özek G, Schepetkin IA, Yermagambetova M, et al. Innate immunomodulatory activity of cedrol, a component of essential oils isolated from Juniperus species. Molecules 2021; 26(24): 7644. doi: 10.3390/molecules26247644 PMID: 34946725
  117. Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Chemical composition and immunomodulatory activity of essential oils from Rhododendron albiflorum. Molecules 2021; 26(12): 3652. doi: 10.3390/molecules26123652 PMID: 34203809
  118. Schepetkin I, Özek G, Özek T, Kirpotina L, Khlebnikov A, Quinn M. Chemical composition and immunomodulatory activity of Hypericum perforatum essential oils. Biomolecules 2020; 10(6): 916. doi: 10.3390/biom10060916 PMID: 32560389
  119. Scott MC, Bourgeois A, Yu Y, Burk DH, Smith BJ, Floyd ZE. Extract of Artemisia dracunculus L. modulates osteoblast proliferation and mineralization. Int J Mol Sci 2023; 24(17): 13423. doi: 10.3390/ijms241713423 PMID: 37686232
  120. Kirk-Ballard H, Wang ZQ, Acharya P, et al. An extract of Artemisia dracunculus L. inhibits ubiquitin-proteasome activity and preserves skeletal muscle mass in a murine model of diabetes. PLoS One 2013; 8(2): e57112. doi: 10.1371/journal.pone.0057112 PMID: 23437325
  121. Chen R, Armamento-Villareal R. Obesity and skeletal fragility. J Clin Endocrinol Metab 2023; dgad415. doi: 10.1210/clinem/dgad415 PMID: 37440585
  122. Lin X, Patil S, Gao Y-G, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 2020; 11: 757. doi: 10.3389/fphar.2020.00757
  123. Kelley D, Mitrakou A, Marsh H, et al. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest 1988; 81(5): 1563-71. doi: 10.1172/JCI113489 PMID: 3130396
  124. Buehring B, Binkley N. Myostatin-the holy grail for muscle, bone, and fat? Curr Osteoporos Rep 2013; 11(4): 407-14. doi: 10.1007/s11914-013-0160-5 PMID: 24072591
  125. Loiselle AE, Paul EM, Lewis GS, Donahue HJ. Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res 2013; 31(1): 147-54. doi: 10.1002/jor.22178
  126. Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci 2020; 21(20): 7513. doi: 10.3390/ijms21207513 PMID: 33053789
  127. Mera P, Laue K, Ferron M, et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 2016; 23(6): 1078-92. doi: 10.1016/j.cmet.2016.05.004 PMID: 27304508
  128. Mera P, Laue K, Wei J, Berger JM, Karsenty G. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab 2016; 5(10): 1042-7. doi: 10.1016/j.molmet.2016.07.002 PMID: 27689017
  129. Lin X, Brennan-Speranza T, Levinger I, Yeap B. Undercarboxylated osteocalcin: Experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients 2018; 10(7): 847. doi: 10.3390/nu10070847 PMID: 29966260
  130. Oh H-J, Jin H, Kim B-Y, Lee O-H, Lee B-Y. A combined Angelica gigas and Artemisia dracunculus extract prevents dexamethasone-induced muscle atrophy in mice through the Akt/mTOR/FoxO3a signaling pathway. Cells 2022; 11(20): 3245.
  131. Malik J, Munjal K, Deshmukh R. Attenuating effect of standardized lyophilized Cinnamomum zeylanicum bark extract against streptozotocin-induced experimental dementia of Alzheimer’s type. J Basic Clin Physiol Pharmacol 2015; 26(3): 275-85. doi: 10.1515/jbcpp-2014-0012 PMID: 25301673
  132. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran J Basic Med Sci 2016; 19(12): 1258-70. PMID: 28096957
  133. Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J Pharm Pharmacol 2019; 71(12): 1735-61. doi: 10.1111/jphp.13173 PMID: 31646653
  134. Fayaz E, Damirchi A, Zebardast N, Babaei P. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition 2019; 65: 173-8. doi: 10.1016/j.nut.2019.03.009 PMID: 31170681
  135. Rani I, Munjal K, Singla RK, Gautam R. Artificial intelligence and machine learning-based new drug discovery process with molecular modelling. Bioinfor Tools Pharm Drug Prod Devel. 2023; pp. 19-35. doi: 10.1002/9781119865728.ch2
  136. Qin B, Polansky MM, Anderson RA. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats. Horm Metab Res 2010; 42(3): 187-93. doi: 10.1055/s-0029-1242746
  137. Alvarez-Collazo J, Alonso-Carbajo L, López-Medina AI, et al. Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Arch 2014; 466(11): 2089-99. doi: 10.1007/s00424-014-1472-8 PMID: 24563220
  138. Anderson RA, Zhan Z, Luo R, et al. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med 2016; 6(4): 332-6. doi: 10.1016/j.jtcme.2015.03.005 PMID: 27774415
  139. Beecher GR. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J Nutr 2003; 133(10): 3248S-54S. doi: 10.1093/jn/133.10.3248S PMID: 14519822
  140. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 2004; 52(12): 4026-37. doi: 10.1021/jf049696w PMID: 15186133
  141. Peng X, Cheng KW, Ma J, et al. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J Agric Food Chem 2008; 56(6): 1907-11. doi: 10.1021/jf073065v PMID: 18284204
  142. Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 2000; 48(3): 849-52. doi: 10.1021/jf9904517 PMID: 10725162
  143. Anderson RA, Broadhurst CL, Polansky MM, et al. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem 2004; 52(1): 65-70. doi: 10.1021/jf034916b PMID: 14709014
  144. Imparl-Radosevich J, Deas S, Polansky MM, et al. Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: Implications for cinnamon regulation of insulin signalling. Horm Res 1998; 50(3): 177-82. PMID: 9762007
  145. Jarvill-Taylor KJ, Anderson RA, Graves DJ. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J Am Coll Nutr 2001; 20(4): 327-36. doi: 10.1080/07315724.2001.10719053 PMID: 11506060
  146. Cheng DM, Kuhn P, Poulev A, Rojo LE, Lila MA, Raskin I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem 2012; 135(4): 2994-3002. doi: 10.1016/j.foodchem.2012.06.117 PMID: 22980902
  147. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25(1): 4-7. doi: 10.1016/j.it.2003.10.013 PMID: 14698276
  148. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome. Circulation 2005; 111(11): 1448-54. doi: 10.1161/01.CIR.0000158483.13093.9D PMID: 15781756
  149. Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys 2007; 459(2): 214-22. doi: 10.1016/j.abb.2006.12.034 PMID: 17316549
  150. Gurnell M, Savage DB, Chatterjee VKK, O’Rahilly S. The metabolic syndrome: peroxisome proliferator-activated receptor gamma and its therapeutic modulation. J Clin Endocrinol Metab 2003; 88(6): 2412-21. doi: 10.1210/jc.2003-030435 PMID: 12788836
  151. Kim SH, Choung SY. Antihyperglycemic and antihyperlipidemic action of Cinnamomi cassiae (Cinnamon bark) extract in C57BL/Ks db/db mice. Arch Pharm Res 2010; 33(2): 325-33. doi: 10.1007/s12272-010-0219-0 PMID: 20195835
  152. Qin B, Panickar KS, Anderson RA. Cinnamon: Potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 2010; 4(3): 685-93. doi: 10.1177/193229681000400324 PMID: 20513336
  153. Badalzadeh R, Shaghaghi M, Mohammadi M, Dehghan G, Mohammadi Z. The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats. Adv Pharm Bull 2014; 4(S2): 515-20. PMID: 25671183
  154. Anwar H, Navaid S, Muzaffar H, Hussain G, Faisal MN, Ijaz MU. Analyzing cross-talk of EPO and EGF genes along with evaluating therapeutic potential of Cinnamomum verum in cigarette-smoke-induced lung pathophysiology in rat model. Food Sci Nutr 2023; 11(3): 1486-98. doi: 10.1002/fsn3.3188
  155. Gul M, Liu ZW, Iahtisham Ul H, et al. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): A review. Antioxidants 2022; 11(5): 816.
  156. Saini R, Sharma N, Oladeji OS, et al. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol 2022; 282: 114570. doi: 10.1016/j.jep.2021.114570 PMID: 34480995
  157. Tewari D, Mocan A, Parvanov ED, et al. Ethnopharmacological approaches for therapy of jaundice: Part II. highly used plant species from acanthaceae, euphorbiaceae, asteraceae, combretaceae, and fabaceae families. Front Pharmacol 2017; 8: 519. doi: 10.3389/fphar.2017.00519 PMID: 28848436
  158. Kim HY, Okubo T, Juneja LR, Yokozawa T. The protective role of amla (Emblica officinalis Gaertn.) against fructose-induced metabolic syndrome in a rat model. Br J Nutr 2010; 103(4): 502-12. doi: 10.1017/S0007114509991978 PMID: 19878614
  159. Gauttam VK, Munjal K. Bioactivity guided fractionation of potent antiacne plant extract against Propionibacterium acnes. Afr J Biotechnol 2018; 17(13): 458-65.
  160. Usharani P, Merugu PL, Nutalapati C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: A randomised, double blind, placebo controlled clinical study. BMC Complement Altern Med 2019; 19(1): 97. doi: 10.1186/s12906-019-2509-5 PMID: 31060549
  161. Gupta MK, Mathur KC, Yadav K, Sharma P, Tilwani K, Kumar P, Eds. Effect of Amla (Emblica officinalis) on various physiological and biochemical parameters of metabolic syndrome. Scholars J Appl Sci 2016; 4(2c): 469-75.
  162. Naidu M, Sridhar Y, Rani P, Mateen A. Comparison of two β2 adrenoceptor agonists by different routes of administration to assess human endothelial function. Indian J Pharmacol 2007; 39(3): 168-9.
  163. Rambaran C, Jiang B, Ritter JM, Shah A, Kalra L, Chowienczyk PJ. Assessment of endothelial function: Comparison of the pulse wave response to β2-adrenoceptor stimulation with flow mediated dilatation. Br J Clin Pharmacol 2008; 65(2): 238-43. doi: 10.1111/j.1365-2125.2007.03006.x
  164. Usharani P, Fatima N, Muralidhar N. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: A randomized, double-blind, controlled study. Diabetes Metab Syndr Obes 2013; 6: 275-84. PMID: 23935377
  165. He HF, Wei K, Yin J, Ye Y. Insight into tea flavonoids: Composition and chemistry. Food Rev Int 2021; 37(8): 812-23. doi: 10.1080/87559129.2020.1721530
  166. Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci 2020; 21(5): 1744. doi: 10.3390/ijms21051744 PMID: 32143309
  167. Yang CS, Zhang J, Zhang L, Huang J, Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. 2016; 60(1): 160-74. doi: 10.1002/mnfr.201500428
  168. Yang CS, Hong J. Prevention of chronic diseases by tea: Possible mechanisms and human relevance. Annu Rev Nutr 2013; 33(1): 161-81. doi: 10.1146/annurev-nutr-071811-150717 PMID: 23642203
  169. Munjal K, Uniyal R, Kumar A, Arora A, Gupta A, Haye A. Development of validated hptlc method for quantification of luteolin in eclipta alba and its formulation. World J Pharm Pharm Sci 2020; 9(11): 2685-95.
  170. Koch W, Zagórska J, Marzec Z, Kukula-Koch W. Applications of tea (Camellia sinensis) and its active constituents in cosmetics. Molecules 2019; 24(23): 4277.
  171. Chu DH. Development and structure of skin. In: Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, Wolff K, Eds. Fitzpatrick’s Dermatology in General Medicine, 8e. New York, NY: The McGraw-Hill Companies 2012.
  172. Deana R, Turetta L, Donà M, et al. Green tea epigallocatechin-3- gallate inhibits platelet signalling pathways triggered by both proteolytic and non-proteolytic agonists. Thromb Haemost 2003; 89(5): 866-74. doi: 10.1055/s-0037-1613474 PMID: 12719785
  173. Lee DH, Kim YJ, Kim HH, et al. Inhibitory effects of epigallocatechin-3-gallate on microsomal cyclooxygenase-1 activity in platelets. Biomol Ther 2013; 21(1): 54-9. doi: 10.4062/biomolther.2012.075 PMID: 24009859
  174. Koch W, Baj T, Kukula-Koch W, Marzec Z. Dietary intake of specific phenolic compounds and their effect on the antioxidant activity of daily food rations Open Chem 2015; 13: 869-76. doi: 10.1515/chem-2015-0100
  175. Tobi SE, Gilbert M, Paul N, McMillan TJ. The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int J Cancer 2002; 102(5): 439-44. doi: 10.1002/ijc.10730 PMID: 12432544
  176. Mnich CD, Hoek KS, Virkki LV, et al. Green tea extract reduces induction of p53 and apoptosis in UVB-irradiated human skin independent of transcriptional controls. Exp Dermatol 2009; 18(1): 69-77. doi: 10.1111/j.1600-0625.2008.00765.x PMID: 18631247
  177. Camouse MM, Domingo DS, Swain FR, et al. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp Dermatol 2009; 18(6): 522-6. doi: 10.1111/j.1600-0625.2008.00818.x PMID: 19492999
  178. Chen D, Chen G, Sun Y, Zeng X, Ye H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res Int 2020; 137: 109584.
  179. Wei X, Chen M, Xiao J, et al. Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polym 2010; 79(2): 418-22. doi: 10.1016/j.carbpol.2009.08.030
  180. Chen D, Chen G, Ding Y, et al. Polysaccharides from the flowers of tea (Camellia sinensis L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression. J Funct Foods 2019; 61: 103470. doi: 10.1016/j.jff.2019.103470
  181. Chen D, Chen G, Wan P, et al. Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro of polysaccharides from the flowers of Camellia sinensis induced by human gut microbiota. Food Funct 2017; 8(12): 4619-29. doi: 10.1039/C7FO01024A PMID: 29143827
  182. Wani SA, Kumar P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J Saudi Soc Agric Sci 2018; 17(2): 97-106. doi: 10.1016/j.jssas.2016.01.007
  183. Mbarki S, Alimi H, Bouzenna H, Elfeki A, Hfaiedh N. Phytochemical study and protective effect of Trigonella foenum graecum (Fenugreek seeds) against carbon tetrachloride-induced toxicity in liver and kidney of male rat. iomed Pharmacother 2017; 88: 19-26.
  184. Zia T, Hasnain SN, Hasan SK. Evaluation of the oral hypoglycaemic effect of Trigonella foenum-graecum L. (methi) in normal mice. J Ethnopharmacol 2001; 75(2-3): 191-5. doi: 10.1016/S0378-8741(01)00186-6 PMID: 11297850
  185. Kassaian N, Azadbakht L, Forghani B, Amini M. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. Int J Vitam Nutr Res 2009; 79: 34-9.
  186. Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J Assoc Physicians India 2001; 49: 1057-61. PMID: 11868855
  187. Luo W, Deng J, He J, et al. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med 2023; 27(14): 1959-74. doi: 10.1111/jcmm.17787
  188. Nassiri-Asl M, Hosseinzadeh H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive constituents: An update. Phytother Res 2016; 30(9): 1392-403. doi: 10.1002/ptr.5644 PMID: 27196869
  189. Peng N, Clark JT, Prasain J, Kim H, White CR, Wyss JM. Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2005; 289(3): R771-5. doi: 10.1152/ajpregu.00147.2005 PMID: 16105821
  190. Kumar A, Mansoori N. Comparative efficacy study of a polyherbal formulation with other available drugs in propiobacterium acnes induced rat model. EJBPS 2019; 6(1): 362-74.
  191. Sivaprakasapillai B, Edirisinghe I, Randolph J, Steinberg F, Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism 2009; 58(12): 1743-6. doi: 10.1016/j.metabol.2009.05.030 PMID: 19608210
  192. Aldini G, Carini M, Piccoli A, Rossoni G, Facino RM. Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: new evidences for cardio-protection. Life Sci 2003; 73(22): 2883-98. doi: 10.1016/S0024-3205(03)00697-0 PMID: 14511773
  193. Quesada H, del Bas JM, Pajuelo D, et al. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int J Obes 2009; 33(9): 1007-12. doi: 10.1038/ijo.2009.136
  194. Costa GF, Ognibene DT, Costa CA, et al. Vitis vinifera L. grape skin extract prevents development of hypertension and altered lipid profile in spontaneously hypertensive rats: Role of oxidative stress. Prev Nutr Food Sci 2020; 25(1): 25-31. doi: 10.3746/pnf.2020.25.1.25 PMID: 32292752
  195. Meng L, Jiao Y, Zhou X, et al. Leaf extract from Vitis vinifera L. reduces high fat diet-induced obesity in mice. Food Funct 2021; 12(14): 6452-63. doi: 10.1039/D1FO00460C PMID: 34076007
  196. da Costa GF, Santos IB, de Bem GF, et al. The beneficial effect of anthocyanidin-rich Vitis vinifera L. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytother Res 2017; 31(10): 1621-32. doi: 10.1002/ptr.5898 PMID: 28840618
  197. Santos IB, de Bem GF, Cordeiro VSC, et al. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet–fed mice. Nutr Res 2017; 43: 69-81. doi: 10.1016/j.nutres.2017.05.007 PMID: 28739056
  198. Chan EWC, Wong SK. Phytochemistry and pharmacology of ornamental gingers, Hedychium coronarium and Alpinia purpurata: A review. J Integr Med 2015; 13(6): 368-79. doi: 10.1016/S2095-4964(15)60208-4 PMID: 26559362
  199. Nammi S, Sreemantula S, Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol 2009; 104(5): 366-73. doi: 10.1111/j.1742-7843.2008.00362.x PMID: 19413656
  200. Sayed S, Ahmed M, El-Shehawi A, et al. Ginger water reduces body weight gain and improves energy expenditure in rats. Foods 2020; 9(1): 38. doi: 10.3390/foods9010038
  201. Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J Nutr Biochem 2019; 70: 105-15. doi: 10.1016/j.jnutbio.2019.05.001 PMID: 31200315
  202. Kim HJ, Kim B, Mun EG, Jeong SY, Cha YS. The antioxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice. Nutr Res Pract 2018; 12(6): 503-11. doi: 10.4162/nrp.2018.12.6.503 PMID: 30515278
  203. Wang J, Wang P, Li D, Hu X, Chen F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur J Nutr 2020; 59(2): 699-718. doi: 10.1007/s00394-019-01938-1 PMID: 30859364
  204. Park SH, Jung SJ, Choi EK, et al. The effects of steamed ginger ethanolic extract on weight and body fat loss: A randomized, double-blind, placebo-controlled clinical trial. Food Sci Biotechnol 2020; 29(2): 265-73. doi: 10.1007/s10068-019-00649-x PMID: 32064135
  205. Seo SH, Fang F, Kang I. Ginger (Zingiber officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed C57BL/6 mice. Int J Environ Res Public Health 2021; 18(2): 631.
  206. Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the tlr4 signaling pathway. Int J Mol Sci 2018; 19(9): 2729.
  207. Dongare S, Gupta SK, Mathur R, et al. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms. Mol Vis 2016; 22: 599-609. PMID: 27293376
  208. Tuorkey MJ. Cancer therapy with phytochemicals: Present and future perspectives. Biomed Environ Sci 2015; 28(11): 808-19. doi: 10.1016/S0895-3988(15)30111-2 PMID: 26695359
  209. Han Q, Yuan Q, Xie G, Huo J, Bao Y, Xie G. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ. Oncotarget 2017; 8(26): 42001-6. doi: 10.18632/oncotarget.16719 PMID: 28410218
  210. Pan MH, Hsieh MC, Hsu PC, et al. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol Nutr Food Res 2008; 52(12): 1467-77. doi: 10.1002/mnfr.200700515 PMID: 18683823
  211. Ahn SI, Lee JK, Youn HS. Inhibition of homodimerization of toll- like receptor 4 by 6-shogaol. Mol Cells 2009; 27(2): 211-5. doi: 10.1007/s10059-009-0026-y PMID: 19277504
  212. Park SJ, Lee MY, Son BS, Youn HS. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci Biotechnol Biochem 2009; 73(7): 1474-8. doi: 10.1271/bbb.80738 PMID: 19584560
  213. Pérez Gutiérrez RM, Muñiz-Ramirez A, Garcia-Campoy AH. Evaluation of the antidiabetic potential of extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in mice, Zebrafish, and pancreatic β-cell. Plants 2021; 10(7): 1438.
  214. Alshathly M. Efficacy of ginger (Zingiber officinale) in ameliorating streptozotocin-induced diabetic liver injury in rats: Histological and biochemical studies. J Microsc Ultrastruct 2019; 7(2): 91-101. doi: 10.4103/JMAU.JMAU_16_19 PMID: 31293891
  215. Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr 2006; 96(4): 660-6. doi: 10.1079/BJN20061849 PMID: 17010224
  216. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr 2012; 108(7): 1194-201. doi: 10.1017/S0007114511006635 PMID: 22152092
  217. Khandouzi N, Shidfar F, Rajab A, Rahideh T, Hosseini P, Mir Taheri M. The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients. Iran J Pharm Res 2015; 14(1): 131-40. PMID: 25561919
  218. Li Y, Tran V, Duke C, Roufogalis B. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Med 2012; 78(14): 1549-55. doi: 10.1055/s-0032-1315041 PMID: 22828920
  219. Chilakala R, Shanmugam K, Subbaiah V, Reddy KS. Hepato-protective and antioxidant effect of ginger on hepatic tissue in experimental diabetic rats. Res J Pharm Biol Chem Sci 2015; 6: 961-7.
  220. Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int J Prev Med 2013; 4(S1): S36-42. PMID: 23717767
  221. Fan M, Kim E-K, Choi Y-J, Tang Y, Moon S-H. The role of Momordica charantia in resisting obesity. Int J Environ Res Public Health 2019; 16(18): 3251. doi: 10.3390/ijerph16183251
  222. Tsai CH, Chen ECF, Tsay HS, Huang C. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial. Nutr J 2012; 11(1): 4. doi: 10.1186/1475-2891-11-4 PMID: 22243626
  223. Gauttam VK, Munjal K, Mujwar S, Sawale J, Rohilla M, Gupta S. Comparative study of developed formulation and market formulation for antidiabetic potential in alloxan-induced diabetic wistar rats. J Young Pharm 2022; 14(4): 387-93. doi: 10.5530/jyp.2022.14.78
  224. Huang WC, Tsai TH, Huang CJ, et al. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food Funct 2015; 6(8): 2550-60. doi: 10.1039/C5FO00550G PMID: 26098998
  225. Soo May L, Sanip Z, Ahmed Shokri A, Abdul Kadir A, Md Lazin MR. The effects of Momordica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: A single-blinded, randomized controlled trial. Complement Ther Clin Pract 2018; 32: 181-6. doi: 10.1016/j.ctcp.2018.06.012 PMID: 30057048
  226. Fan M, Lee JI, Ryu YB, Choi YJ, Tang Y, Oh M. Comparative analysis of metabolite profiling of Momordica charantia leaf and the anti-obesity effect through regulating lipid metabolism. Int J Environ Res Public Health 2021; 18(11): 5584. doi: 10.3390/ijerph18115584
  227. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 2019; 20(4): 242-58. doi: 10.1038/s41580-018-0093-z PMID: 30610207
  228. Abulizi A, Camporez JP, Jurczak MJ, et al. Adipose glucocorticoid action influences whole-body metabolism via modulation of hepatic insulin action. FASEB J 2019; 33(7): 8174-85. doi: 10.1096/fj.201802706R PMID: 30922125
  229. Choi SK, Park S, Jang S, et al. Cascade regulation of PPARγ2 and C/EBPα signaling pathways by celastrol impairs adipocyte differentiation and stimulates lipolysis in 3T3-L1 adipocytes. Metabolism 2016; 65(5): 646-54. doi: 10.1016/j.metabol.2016.01.009 PMID: 27085773
  230. Kim N, Kim H, Im J, Kwak W, Kim Y, Kim D. Pulsatilla koreana nakai downregulates C/EBPs/PPAR-gamma and suppresses fatty acid synthase via activation of AMPK-alpha in 3T3-L1 cells. Indian J Pharm Sci 2019; 81.
  231. Zhang J, Wang X, Hao L, et al. Nrf2 is crucial for the down-regulation of Cyp7a1 induced by arachidonic acid in Hepg2 cells. Environ Toxicol Pharmacol 2017; 52: 21-6. doi: 10.1016/j.etap.2017.03.003 PMID: 28364638
  232. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 2016; 23(5): 770-84. doi: 10.1016/j.cmet.2016.04.011 PMID: 27166942
  233. Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: A potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev 2018; 39: 151-8. doi: 10.1016/j.cytogfr.2018.01.004 PMID: 29395659
  234. Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
  235. Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021. doi: 10.3389/fphar.2020.01021 PMID: 33041781
  236. Pourhabibi-Zarandi F, Shojaei-Zarghani S, Rafraf M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int J Clin Pract 2021; 75(10): e14280. doi: 10.1111/ijcp.14280 PMID: 33914984
  237. Bagherniya M, Darand M, Askari G, Guest PC, Sathyapalan T, Sahebkar A. The clinical use of curcumin for the treatment of rheumatoid arthritis: A systematic review of clinical trials. Adv Exp Med Biol 2021; 1291: 251-63. doi: 10.1007/978-3-030-56153-6_15 PMID: 34331695
  238. Qin S, Huang L, Gong J, et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr J 2017; 16(1): 68. doi: 10.1186/s12937-017-0293-y PMID: 29020971
  239. Satyavert GS. Pharmacokinetics and tissue distribution of hydrazinocurcumin in rats. Pharmacol Rep 2021; 73(6): 1734-43.
  240. Munjal K, Ahmad S, Gupta A, Haye A, Amin S, Mir S. Polyphenol-enriched fraction and the compounds isolated from Garcinia indica fruits ameliorate obesity through suppression of digestive enzymes and oxidative stress. Pharmacogn Mag 2020; 16(70): 236-45.
  241. Yadav R, Jee B, Awasthi SK. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells. Indian J Clin Biochem 2015; 30(1): 109-12. doi: 10.1007/s12291-014-0452-2 PMID: 25646051
  242. Gorabi AM, Abbasifard M, Imani D, et al. Effect of curcumin on C-reactive protein as a biomarker of systemic inflammation: An updated meta-analysis of randomized controlled trials. Phytother Res 2022; 36(1): 85-97. doi: 10.1002/ptr.7284 PMID: 34586711
  243. Sáenz J, Alba G, Reyes-Quiroz ME, et al. Curcumin enhances LXRα in an AMP-activated protein kinase-dependent manner in human macrophages. J Nutr Biochem 2018; 54: 48-56. doi: 10.1016/j.jnutbio.2017.11.006 PMID: 29242172
  244. Yang R, Chu X, Sun L, et al. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet. Phytother Res 2018; 32(4): 715-22. doi: 10.1002/ptr.6023 PMID: 29468762
  245. Mollica MP, Mattace Raso G, Cavaliere G, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017; 66(5): 1405-18. doi: 10.2337/db16-0924 PMID: 28223285
  246. Pu Y, Zhang H, Wang P, Zhao Y, Li Q, Wei X. Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell Physiol Biochem 2013; 32(5): 1167-77.
  247. Zhang J, Wang Y, Bao C, et al. Curcumin-loaded PEG-PDLLA nanoparticles for attenuating palmitate-induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway. Int J Mol Med 2019; 44(2): 672-82. doi: 10.3892/ijmm.2019.4228 PMID: 31173176
  248. Chung CC, Kao YH, Liou JP, Chen YJ. Curcumin suppress cardiac fibroblasts activities by regulating proliferation, migration, and the extracellular matrix. Zhonghua Minguo Xinzangxue Hui Zazhi 2014; 30(5): 474-82. PMID: 27122821
  249. Fang G, Chen S, Huang Q, Chen L, Liao D. Curcumin suppresses cardiac fibroblasts activities by regulating the proliferation and cell cycle via the inhibition of the p38 MAPK/ERK signaling pathway. Mol Med Rep 2018; 18(2): 1433-8. doi: 10.3892/mmr.2018.9120 PMID: 29901190
  250. Rogero M, Calder P. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 2018; 10(4): 432. doi: 10.3390/nu10040432 PMID: 29601492
  251. Maloney E, Sweet IR, Hockenbery DM, et al. Activation of NF-kappaB by palmitate in endothelial cells: A key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol 2009; 29(9): 1370-5. doi: 10.1161/ATVBAHA.109.188813 PMID: 19542021
  252. Quan J, Liu J, Gao X, et al. Palmitate induces interleukin-8 expression in human aortic vascular smooth muscle cells via Toll-like receptor 4/nuclear factor-κB pathway (TLR4/NF-κB-8). J Diabetes 2014; 6(1): 33-41. doi: 10.1111/1753-0407.12073 PMID: 23826669
  253. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9(2): 240-6. doi: 10.1016/S0955-0674(97)80068-3 PMID: 9069263
  254. Nareika A, Im YB, Game BA, et al. High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor κB and AP-1 activities. J Endocrinol 2007; 196(1): 45-55. doi: 10.1677/JOE-07-0145 PMID: 18180316
  255. Liu Z, Lei M, Jiang Y, et al. High glucose attenuates VEGF expression in rat multipotent adult progenitor cells in association with inhibition of JAK2/STAT3 signalling. J Cell Mol Med 2009; 13(9b): 3427-36. doi: 10.1111/j.1582-4934.2008.00502.x PMID: 18798867
  256. Pan Y, Wang Y, Zhao Y, et al. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes 2014; 63(10): 3497-511. doi: 10.2337/db13-1577 PMID: 24848068
  257. Sun Y, Hu X, Hu G, Xu C, Jiang H. Curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells. Biol Pharm Bull 2015; 38(8): 1134-41. doi: 10.1248/bpb.b15-00012 PMID: 26235577
  258. González-Reyes S, Guzmán-Beltrán S, Medina-Campos ON, Pedraza-Chaverri J. Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. Oxid Med Cell Longev 2013; 2013: 1-14. doi: 10.1155/2013/801418 PMID: 24454990
  259. Ren L, Zhan P, Wang Q, et al. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem Biophys Res Commun 2019; 514(3): 691-8. doi: 10.1016/j.bbrc.2019.05.010 PMID: 31078267
  260. Nirmala C, Puvanakrishnan R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 1996; 159(2): 85-93. doi: 10.1007/BF00420910 PMID: 8858558
  261. Rahnavard M, Hassanpour M, Ahmadi M, et al. Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J Cell Biochem 2019; 120(7): 11965-72. doi: 10.1002/jcb.28480 PMID: 30775806
  262. Chopra H, Dey PS, Das D, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021; 26(16): 4998.
  263. Li W, Wu M, Tang L, et al. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol Appl Pharmacol 2015; 282(2): 175-83. doi: 10.1016/j.taap.2014.12.001 PMID: 25497288
  264. González-Salazar A, Molina-Jijón E, Correa F, et al. Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovasc Toxicol 2011; 11(4): 357-64. doi: 10.1007/s12012-011-9128-9 PMID: 21769543
  265. Li T, Jin J, Pu F, et al. Cardioprotective effects of curcumin against myocardial I/R injury: A systematic review and meta-analysis of preclinical and clinical studies. Front Pharmacol 2023; 14: 1111459. doi: 10.3389/fphar.2023.1111459 PMID: 36969839
  266. Yang Y, Duan W, Lin Y, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med 2013; 65: 667-79. doi: 10.1016/j.freeradbiomed.2013.07.007 PMID: 23880291

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024