Transformative Potential and Healthcare Applications of 3D Printing


Citar

Texto integral

Resumo

:Additive manufacturing, sometimes referred to as 3D printing or AM, has numerous applications in industries like manufacturing, aviation, aerospace, vehicles, and education. It has recently made considerable inroads into the healthcare industry, backed by technology breakthroughs such as fused deposition modeling, binder jetting, and inkjet printing. A variety of biomaterials, such as polycaprolactone, polycarbonate, polypropylene, and polylactic acid, have contributed to this increase. This essay delves into the revolutionary possibilities of 3D printing in healthcare, to shed light on the idea of customized medications via the improvement of efficiency and cost. Researchers are using polymers and additive manufacturing to make customized medical devices. However, obstacles including bureaucratic hurdles, technological developments, and the choice of appropriate materials and printers stand in the way of widespread implementation. To fully realize the promise of 3D printing in healthcare, these challenges must be overcome. The article highlights the revolutionary potential of 3D printing in healthcare by following its development from art and construction to customized drugs and patient-specific medical equipment. In addition to addressing issues like quality control and technological limitations, it emphasizes its wide range of applications in surgical planning, dentistry, and anatomical models. The necessity of adapting regulations and instructional programs is highlighted by discussing future trends like bioprinting and FDA-approved innovations. In order to properly utilize 3D printing in healthcare, this adaption is essential. Personalized prescriptions and increased efficacy from the incorporation of 3D printing could revolutionize the healthcare industry. But even with these advances, problems like choosing the right materials and getting over administrative roadblocks prevent widespread implementation. These challenges need to be successfully overcome for 3D printing in healthcare to reach its full potential.

Sobre autores

Aayush Prakash

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Autor responsável pela correspondência
Email: info@benthamscience.net

Deependra Singh

Department of Biotechnology, Graphic Era Hill University

Email: info@benthamscience.net

Bibliografia

  1. Litman T. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. Acta Pathol Microbiol Scand Suppl 2019; 127(5): 386-424. doi: 10.1111/apm.12934 PMID: 31124204
  2. Prodan Žitnik I, Černe D, Mancini I, et al. Personalized laboratory medicine: A patient-centered future approach. Clin Chem Lab Med (CCLM) 2018; 56(12): 1981-91. doi: 10.1515/cclm-2018-0181 PMID: 29990304
  3. Rui Y, Gang X, Shuang-Shuang M, et al. Three-dimensional printing: Review of application in medicine and hepatic surgery. Cancer Biol Med 2016; 13(4): 443-51. doi: 10.20892/j.issn.2095-3941.2016.0075 PMID: 28154775
  4. Chen G, Xu Y, Chi Lip Kwok P, Kang L. Pharmaceutical applications of 3D printing. Addit Manuf 2020; 34: 101209. doi: 10.1016/j.addma.2020.101209
  5. Pandey M, Choudhury H, Fern JLC, et al. 3D printing for oral drug delivery: A new tool to customize drug delivery. Drug Deliv Transl Res 2020; 10(4): 986-1001. doi: 10.1007/s13346-020-00737-0 PMID: 32207070
  6. Pugliese R, Beltrami B, Regondi S, Lunetta C. Polymeric biomaterials for 3D printing in medicine: An overview. Annal 3D Printed Med 2021; 2(2): 100011. doi: 10.1016/j.stlm.2021.100011.
  7. Dizon JRC, Espera AH Jr, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 2018; 20: 44-67. doi: 10.1016/j.addma.2017.12.002
  8. Miller AT, Safranski DL, Wood C, Guldberg RE, Gall K. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. J Mech Behav Biomed Mater 2017; 75: 1-13. doi: 10.1016/j.jmbbm.2017.06.038 PMID: 28689135
  9. Steyrer B, Neubauer P, Liska R, Stampfl J. Visible light photoinitiator for 3D-printing of tough methacrylate resins. Materials (Basel) 2017; 10(12): 1445. doi: 10.3390/ma10121445 PMID: 29257107
  10. Nuseir A, Hatamleh MM, Alnazzawi A, Al-Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: Optimized digital workflow from scan to fit. J Prosthodont 2019; 28(1): 10-4. doi: 10.1111/jopr.13001 PMID: 30461125
  11. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016; 28(22): 4449-54. doi: 10.1002/adma.201503132 PMID: 26402320
  12. Egan P, Wang X, Greutert H, Shea K, Wuertz-Kozak K, Ferguson S. Mechanical and biological characterization of 3D printed lattices. 3D Print Addit Manuf 2019; 6(2): 73-81. doi: 10.1089/3dp.2018.0125.
  13. Crump MR, Bidinger SL, Pavinatto FJ, Gong AT, Sweet RM, MacKenzie JD. Sensorized tissue analogues enabled by a 3D-printed conductive organogel. NPJ Flex Electron 2021; 5(1): 7. doi: 10.1038/s41528-021-00104-0.
  14. Eliades T, Panayi N, Papageorgiou SN. From biomimetics to smart materials and 3D technology: Applications in orthodontic bonding, debonding, and appliance design or fabrication. Jpn Dent Sci Rev 2023; 59(59): 403-11. doi: 10.1016/j.jdsr.2023.10.005 PMID: 38022388
  15. Khaled SA, Alexander MR, Wildman RD, et al. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm 2018; 538(1-2): 223-30. doi: 10.1016/j.ijpharm.2018.01.024 PMID: 29353082
  16. Tian P, Yang F, Xu Y, et al. Oral disintegrating patient-tailored tablets of warfarin sodium produced by 3D printing. Drug Dev Ind Pharm 2018; 44(12): 1918-23. doi: 10.1080/03639045.2018.1503291 PMID: 30027774
  17. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm 2018; 545(1-2): 144-52. doi: 10.1016/j.ijpharm.2018.04.055 PMID: 29705104
  18. Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl 2013; 19(12): 1304-10. doi: 10.1002/lt.23729 PMID: 23959637
  19. Novakov T, Jackson MJ, Robinson GM, Ahmed W, Phoenix DA. Laser sintering of metallic medical materials-A review. Int J Adv Manuf Technol 2017; 93(5-8): 2723-52. doi: 10.1007/s00170-017-0705-3
  20. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos, Part B Eng 2018; 143(143): 172-96. doi: 10.1016/j.compositesb.2018.02.012
  21. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 2017; 7(7): 120-33. doi: 10.1016/j.apmt.2017.02.004
  22. Zhang W, Wu AS, Sun J, et al. Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Compos Sci Technol 2017; 150: 102-10. doi: 10.1016/j.compscitech.2017.07.017
  23. Gordeev EG, Galushko AS, Ananikov VP. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS One 2018; 13(6): e0198370. doi: 10.1371/journal.pone.0198370 PMID: 29879163
  24. Ng TY, Koay SC, Chan MY, Choo HL, Ong TK. Preparation and characterisation of 3D printer filament from post-used styrofoam. AIP Conference Proceedings 2020; 2233(1): 020022. doi: 10.1063/5.0001340.
  25. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater Today 2018; 21(1): 22-37. doi: 10.1016/j.mattod.2017.07.001
  26. Jiang J, Xu X, Stringer J. Support structures for additive manufacturing: A review. J manuf mater 2018; 2(4): 64. doi: 10.3390/jmmp2040064
  27. Miedzińska D, Gieleta R, Popławski A. Experimental study on the influence of curing time on strength behavior of SLA-printed samples loaded with different strain rates. Materials (Basel) 2020; 13(24): 5825. doi: 10.3390/ma13245825 PMID: 33371299
  28. Placone JK, Mahadik B, Fisher JP. Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioeng 2020; 4(1): 010901. doi: 10.1063/1.5127860 PMID: 32072121
  29. Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 2010; 35(10): 1217-56. doi: 10.1016/j.progpolymsci.2010.04.002
  30. Dziadek M, Pawlik J, Menaszek E, Stodolak-Zych E, Cholewa-Kowalska K. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103(8): 1580-93. doi: 10.1002/jbm.b.33350 PMID: 25533304
  31. Alaboodi AS, Sivasankaran S. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. J Manuf Process 2018; 35: 479-91. doi: 10.1016/j.jmapro.2018.08.035
  32. Wang L, Sanders JE, Gardner DJ, Han Y. Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene. Prog Addit Manuf 2018; 3(4): 205-14. doi: 10.1007/s40964-018-0053-3
  33. Tripathi N, Misra M, Mohanty AK. Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: Recent developments, challenges, and opportunities. ACS Engineering Au 2021; 1(1): 7-38. doi: 10.1021/acsengineeringau.1c00011.
  34. Valerga AP, Batista M, Fernandez-Vidal SR, Gamez AJ. Impact of chemical post-processing in fused deposition modeling (FDM) on polylactic acid (PLA) surface quality and structure. Polymers (Basel) 2019; 11(3): 566. doi: 10.3390/polym11030566 PMID: 30960550
  35. Rosenzweig D, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 2015; 16(7): 15118-35. doi: 10.3390/ijms160715118 PMID: 26151846
  36. Kurtz SM. Chemical and radiation stability of PEEK. PEEK biomaterials handbook. William Andrew Publishing 2012; pp. 75-9. doi: 10.1016/B978-1-4377-4463-7.10006-5
  37. Kang J, Zhang J, Zheng J, Wang L, Li D, Liu S. 3D-printed PEEK implant for mandibular defects repair - A new method. J Mech Behav Biomed Mater 2021; 116: 104335. doi: 10.1016/j.jmbbm.2021.104335 PMID: 33494021
  38. Mostafaei A, Kimes KA, Stevens EL, et al. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam. Acta Mater 2017; 131: 482-90. doi: 10.1016/j.actamat.2017.04.010
  39. Ziaee M, Crane NB. Binder jetting: A review of process, materials, and methods. Addit Manuf 2019; 28(28): 781-801. doi: 10.1016/j.addma.2019.05.031
  40. Jandyal A, Chaturvedi I, Wazir I, Raina A, Ul Haq MI. 3D printing – A review of processes, materials and applications in industry 4.0. SUSOC 2022; 3(3): 33-42. doi: 10.1016/j.susoc.2021.09.004
  41. Mostafaei A, Elliott AM, Barnes JE, et al. Binder jet 3D printing-process parameters, materials, properties, modeling, and challenges. Prog Mater Sci 2021; 119: 100707. doi: 10.1016/j.pmatsci.2020.100707
  42. Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 2008; 10(2): 96-104. doi: 10.1016/j.jmapro.2009.03.002
  43. Sivarupan T, Balasubramani N, Saxena P, et al. A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting. Addit Manufact 2021; 40(12): 101889. doi: 10.1016/j.addma.2021.101889.
  44. Mostafaei A, Stevens EL, Ference JJ, Schmidt DE, Chmielus M. Binder jet printing of partial denture metal framework from metal powder. Mater Sci Technol 2017; 289-91.
  45. Marczyk J, Ostrowska K, Hebda M. Influence of binder jet 3D printing process parameters from irregular feedstock powder on final properties of Al parts. Adv Powd Technol 2022; 103768. doi: 10.1016/j.apt.2022.103768.
  46. Miyanaji H. Binder jetting additive manufacturing process fundamentals and the resultant influences on part quality. Master's Thesis-University of Louisville 2018. doi: 10.18297/etd/3058
  47. Nandwana P, Elliott AM, Siddel D, Merriman A, Peter WH, Babu SS. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges. Curr Opin Solid State Mater Sci 2017; 21(4): 207-18. doi: 10.1016/j.cossms.2016.12.002
  48. Paranthaman MP, Shafer CS, Elliott AM, et al. Binder jetting: A novel NdFeB bonded magnet fabrication process. J Miner Met Mater Soc 2016; 68(7): 1978-82. doi: 10.1007/s11837-016-1883-4
  49. Enneti RK, Prough KC, Wolfe TA, Klein A, Studley N, Trasorras JL. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. Int J Refract Hard Met 2018; 71: 28-35. doi: 10.1016/j.ijrmhm.2017.10.023
  50. Garzón EO, Alves JL, Neto RJ. Post-process influence of infiltration on binder jetting technology. Mat Design Appl. 2017; pp. 233-56. doi: 10.1007/978-3-319-50784-2_19
  51. Levy A, Miriyev A, Elliott A, Babu SS, Frage N. Additive manufacturing of complex-shaped graded TiC/steel composites. Mater Des 2017; 118: 198-203. doi: 10.1016/j.matdes.2017.01.024
  52. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016; 61(5): 315-60. doi: 10.1080/09506608.2015.1116649
  53. Kumbhar NN, Mulay AV. Post-processing methods used to improve the surface finish of products which are manufactured by additive manufacturing technologies: A review. J Inst Eng (India) 2018; 99(4): 481-7. doi: 10.1007/s40032-016-0340-z
  54. Castro MA, Rodríguez-González P, Barreiro J, Fernández-Abia AI. Behaviour of infiltrating materials on calcium sulphate hemihydrate parts made by 3D printing. Procedia Manuf 2017; 13: 848-55. doi: 10.1016/j.promfg.2017.09.190
  55. Cordero Z, Elliott A. Collaboration for the advancement of indirect 3d printing technology. 2016. Available from: https://www.ornl.gov/sites/default/files/2019-06/web_The_ExOne_Company_MDF.pdf
  56. Konda Gokuldoss P, Kolla S, Eckert J. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (Basel) 2017; 10(6): 672. doi: 10.3390/ma10060672.
  57. Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm 2020; 576: 118963. doi: 10.1016/j.ijpharm.2019.118963 PMID: 31857185
  58. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 2015; 96: 380-7. doi: 10.1016/j.ejpb.2015.07.027 PMID: 26277660
  59. Gültekin HE, Tort S, Acartürk F. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing. Pharm Res 2019; 36(9): 128. doi: 10.1007/s11095-019-2655-y PMID: 31250313
  60. Khaled SA, Alexander MR, Irvine DJ, et al. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech 2018; 19(8): 3403-13. doi: 10.1208/s12249-018-1107-z PMID: 30097806
  61. Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing. J Control Release 2000; 66(1): 1-9. doi: 10.1016/S0168-3659(99)00225-4 PMID: 10708873
  62. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 2015; 494(2): 643-50. doi: 10.1016/j.ijpharm.2015.07.067 PMID: 26235921
  63. Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech 2021; 22(1): 49. doi: 10.1208/s12249-020-01905-8 PMID: 33458797
  64. Pereira BC, Isreb A, Isreb M, Forbes RT, Oga EF, Alhnan MA. Additive manufacturing of a point-of-care "Polypill:" Fabrication of concept capsules of complex geometry with bespoke release against cardiovascular disease. Adv Healthc Mater 2020; 9(13): 2000236. doi: 10.1002/adhm.202000236 PMID: 32510859
  65. Awad A, Fina F, Trenfield SJ, et al. 3D printed pellets (miniprintlets): A novel, multi-drug, controlled release platform technology. Pharmaceutics 2019; 11(4): 148. doi: 10.3390/pharmaceutics11040148 PMID: 30934899
  66. Pereira BC, Isreb A, Forbes RT, et al. ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur J Pharm Biopharm 2019; 135: 94-103. doi: 10.1016/j.ejpb.2018.12.009 PMID: 30579852
  67. Baumgartner A, Drame K, Geutjens S, Airaksinen M. Does the polypill improve patient adherence compared to its individual formulations? A systematic review. Pharmaceutics 2020; 12(2): 190. doi: 10.3390/pharmaceutics12020190.
  68. Algahtani MS, Mohammed AA, Ahmad J. Extrusion-based 3D printing for pharmaceuticals: Contemporary research and applications. Curr Pharm Des 2018; 24(42): 4991-5008. doi: 10.2174/1381612825666190110155931.
  69. Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives. J Pharm Investig 2019; 49: 575-85.
  70. Li Q, Guan X, Cui M, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm 2018; 535(1-2): 325-32. doi: 10.1016/j.ijpharm.2017.10.037 PMID: 29051121
  71. Huanbutta K, Sangnim T. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. J Drug Deliv Sci Technol 2019; 52: 831-7. doi: 10.1016/j.jddst.2019.06.004
  72. Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release 2022; 341(341): 132-46. doi: 10.1016/j.jconrel.2021.11.025 PMID: 34813879
  73. Sachdeva V K, Banga A. Microneedles and their applications. Recent Pat Drug Deliv Formul 2011; 5(2): 95-132. doi: 10.2174/187221111795471445
  74. Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C 2019; 102: 743-55. doi: 10.1016/j.msec.2019.04.063 PMID: 31147046
  75. Tarfaoui M, Nachtane M, Goda I, Qureshi Y, Benyahia H. 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic. Materials (Basel) 2020; 13(15): 3339. doi: 10.3390/ma13153339.
  76. Swennen GRJ, Pottel L, Haers PE. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. Int J Oral Maxillofac Surg 2020; 49(5): 673-7. doi: 10.1016/j.ijom.2020.03.015 PMID: 32265088
  77. Cui L, Kiernan S, Gilchrist MD. Designing the energy absorption capacity of functionally graded foam materials. Mater Sci Eng A 2009; 507(1-2): 215-25. doi: 10.1016/j.msea.2008.12.011
  78. Grajewski D, Górski F, Zawadzki P, Hamrol A. Application of virtual reality techniques in design of ergonomic manufacturing workplaces. Procedia Comput Sci 2013; 25(25): 289-301. doi: 10.1016/j.procs.2013.11.035
  79. Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz 2017; 60(5): 677-88. doi: 10.1016/j.bushor.2017.05.011.
  80. Lin L, Fang Y, Liao Y, Chen G, Gao C, Zhu P. 3D printing and digital processing techniques in dentistry: A review of literature. Adv Eng Mater 2019; 21(6): 1801013. doi: 10.1002/adem.201801013
  81. Trenfield SJ, Awad A, Madla CM, et al. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 2019; 16(10): 1081-94. doi: 10.1080/17425247.2019.1660318 PMID: 31478752
  82. Ventola CL. Medical applications for 3D printing: Current and projected uses. PT 2014; 39(10): 704-11. PMID: 25336867
  83. Ballard DH, Trace AP, Ali S, et al. Clinical applications of 3D printing: Primer for radiologists. Acad Radiol 2018; 25(1): 52-65. doi: 10.1016/j.acra.2017.08.004 PMID: 29030285
  84. Zeidler H, Klemm D, Böttger-Hiller F, Fritsch S, Le Guen MJ, Singamneni S. 3D printing of biodegradable parts using renewable biobased materials. Procedia Manuf 2018; 21: 117-24. doi: 10.1016/j.promfg.2018.02.101
  85. Shahrubudin N, Koshy P, Alipal J, Kadir MHA, Lee TC. Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms. Heliyon 2020; 6(4): e03734. doi: 10.1016/j.heliyon.2020.e03734 PMID: 32322726
  86. Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B Mater Biol Med 2020; 8(15): 2930-50. doi: 10.1039/D0TB00034E PMID: 32239017
  87. Beg S, Almalki WH, Malik A, et al. 3D printing for drug delivery and biomedical applications. Drug Discov Today 2020; 25(9): 1668-81. doi: 10.1016/j.drudis.2020.07.007.
  88. Mostafaei A, Rodriguez De Vecchis P, Nettleship I, Chmielus M. Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625. Mater Des 2019; 162: 375-83. doi: 10.1016/j.matdes.2018.11.051
  89. Ricles LM, Coburn JC, Di Prima M, Oh SS. Regulating 3D-printed medical products. Sci Transl Med 2018; 10(461): eaan6521. doi: 10.1126/scitranslmed.aan6521 PMID: 30282697
  90. Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2023; 32(32): 222-41. PMID: 37869723
  91. Kucukdeger E, Johnson BN. Closed-loop controlled conformal 3D printing on moving objects via tool-localized object position sensing. J Manuf Process 2023; 89(89): 39-49. doi: 10.1016/j.jmapro.2023.01.020
  92. Lao W, Li M, Masia L, Tan MJ. Approaching rectangular extrudate in 3D printing for building and construction by experimental iteration of nozzle design. Proceedings of Solid Freeform Fabrication (SFF) Symposium. 2017 Austin, Texas, USA. doi: 10.32656/sff.2017.208.
  93. Simpson TW, Williams CB, Hripko M. Preparing industry for additive manufacturing and its applications: Summary recommendations from a National Science Foundation workshop. Addit Manuf 2017; 13(13): 166-78. doi: 10.1016/j.addma.2016.08.002
  94. Iftekar SF, Aabid A, Amir A, Baig M. Advancements and limitations in 3D printing materials and technologies: A critical review. Polymers (Basel) 2023; 15(11): 2519. doi: 10.3390/polym15112519.
  95. Panda SK, Rath KC, Mishra S, Khang A. Revolutionizing product development: The growing importance of 3D printing technology. Mater Today Proc 2023; 31.
  96. Abdullah N, Hanafi H, Nawang NI. Digital era and intellectual property challenges in Malaysia. Pertanika J Soc Sci Humanit 2021; 29.
  97. Pahlevanzadeh F, Emadi R, Valiani A, et al. Three-dimensional printing constructs based on the chitosan for tissue regeneration: State of the art, developing directions and prospect trends. Materials (Basel) 2020; 13(11): 2663. doi: 10.3390/ma13112663.
  98. Ganguli A, Pagan-Diaz GJ, Grant L, et al. 3D printing for preoperative planning and surgical training: A review. Biomed Microdevices 2018; 20(3): 65. doi: 10.1007/s10544-018-0301-9 PMID: 30078059
  99. Jakus AE. An Introduction to 3D printing-past, present, and future promise. 3D Printing in Orthopaedic Surgery Elsevier. 2019; pp. 1-15. doi: 10.1016/B978-0-323-58118-9.00001-4.
  100. Tijing LD, Dizon JR, Ibrahim I, Nisay AR, Shon HK, Advincula RC. 3D printing for membrane separation, desalination and water treatment. Appl Mater 2020; 18(8): 100486. doi: 10.1016/j.apmt.2019.100486.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024