Development of a Combined Oxidative Stress and Endoplasmic Reticulum Stress-Related Prognostic Signature for Hepatocellular Carcinoma


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Oxidative stress and endoplasmic reticulum stress are important components of the cellular stress process, which plays a critical role in tumor initiation and progression.

Methods:First, the correlation between oxidative stress and endoplasmic reticulum stress was detected in 68 human hepatocellular carcinoma (HCC) tissue microarray samples by immunohistochemistry. Differentially expressed oxidative stress- and endoplasmic reticulum stressrelated genes (OESGs) then were screened in HCC. Next, an OESGs prognostic signature was constructed for HCC in the training cohort (TCGA-LIHC from The Cancer Genome Atlas), by least absolute shrinkage and selection operator Cox and stepwise Cox regression analyses, and was verified in the external cohort (GSE14520 from the Gene Expression Omnibus). The MCP counter was employed to evaluate immune cell infiltration. The C-index was used to evaluate the predictive power of prognostic signature. Finally, a prognostic nomogram model was constructed to predict the survival probability of patients with HCC based on the results of Cox regression analysis.

Results:We demonstrated a positive correlation between oxidative stress and endoplasmic reticulum stress in human HCC samples. We then identified five OESGs as a prognostic signature consisting of IL18RAP, ECT2, PPARGC1A, STC2, and NQO1 for HCC. Related risk scores correlated with tumor stage, grade, and response to transcatheter arterial chemoembolization therapy, and the higher risk score group had less T cells, CD8+ T cells, cytotoxic lymphocytes and natural killer cell infiltration. The C-index of our OESGs prognostic signature was superior to four previously published signatures. Furthermore, we developed a nomogram based on the OESGs prognostic signature and clinical parameters for patients with HCC that is an effective quantitative analysis tool to predict patient survival.

Conclusion:The OESGs signature showed excellent performance in predicting survival and therapeutic responses for patients with HCC.

Авторлар туралы

Hui Ma

Liver Cancer Insitute, Zhongshan Hospital, Fudan University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Zhongchen Li

Liver Cancer Insitute, Zhongshan Hospital, Fudan University

Email: info@benthamscience.net

Rongxin Chen

Liver Cancer Insitute, Zhongshan Hospital, Fudan University

Email: info@benthamscience.net

Zhenggang Ren

Liver Cancer Insitute, Zhongshan Hospital, Fudan University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6. doi: 10.1038/s41572-020-00240-3 PMID: 33479224
  3. Ally, A.; Balasundaram, M.; Carlsen, R.; Chuah, E.; Clarke, A.; Dhalla, N.; Holt, R.A.; Jones, S.J.M.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Cheung, D.; Wong, T.; Brooks, D.; Robertson, A.G.; Bowlby, R.; Mungall, K.; Sadeghi, S.; Xi, L.; Covington, K.; Shinbrot, E.; Wheeler, D.A.; Gibbs, R.A.; Donehower, L.A.; Wang, L.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Helsel, C.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Gabriel, S.B.; Meyerson, M.; Cibulskis, C.; Murray, B.A.; Shih, J.; Beroukhim, R.; Cherniack, A.D.; Schumacher, S.E.; Saksena, G.; Pedamallu, C.S.; Chin, L.; Getz, G.; Noble, M.; Zhang, H.; Heiman, D.; Cho, J.; Gehlenborg, N.; Saksena, G.; Voet, D.; Lin, P.; Frazer, S.; Defreitas, T.; Meier, S.; Lawrence, M.; Kim, J.; Creighton, C.J.; Muzny, D.; Doddapaneni, H.V.; Hu, J.; Wang, M.; Morton, D.; Korchina, V.; Han, Y.; Dinh, H.; Lewis, L.; Bellair, M.; Liu, X.; Santibanez, J.; Glenn, R.; Lee, S.; Hale, W.; Parker, J.S.; Wilkerson, M.D.; Hayes, D.N.; Reynolds, S.M.; Shmulevich, I.; Zhang, W.; Liu, Y.; Iype, L.; Makhlouf, H.; Torbenson, M.S.; Kakar, S.; Yeh, M.M.; Jain, D.; Kleiner, D.E.; Jain, D.; Dhanasekaran, R.; El-Serag, H.B.; Yim, S.Y.; Weinstein, J.N.; Mishra, L.; Zhang, J.; Akbani, R.; Ling, S.; Ju, Z.; Su, X.; Hegde, A.M.; Mills, G.B.; Lu, Y.; Chen, J.; Lee, J-S.; Sohn, B.H.; Shim, J.J.; Tong, P.; Aburatani, H.; Yamamoto, S.; Tatsuno, K.; Li, W.; Xia, Z.; Stransky, N.; Seiser, E.; Innocenti, F.; Gao, J.; Kundra, R.; Zhang, H.; Heins, Z.; Ochoa, A.; Sander, C.; Ladanyi, M.; Shen, R.; Arora, A.; Sanchez-Vega, F.; Schultz, N.; Kasaian, K.; Radenbaugh, A.; Bissig, K-D.; Moore, D.D.; Totoki, Y.; Nakamura, H.; Shibata, T.; Yau, C.; Graim, K.; Stuart, J.; Haussler, D.; Slagle, B.L.; Ojesina, A.I.; Katsonis, P.; Koire, A.; Lichtarge, O.; Hsu, T-K.; Ferguson, M.L.; Demchok, J.A.; Felau, I.; Sheth, M.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.; Hutter, C.M.; Sofia, H.J.; Verhaak, R.G.W.; Zheng, S.; Lang, F.; Chudamani, S.; Liu, J.; Lolla, L.; Wu, Y.; Naresh, R.; Pihl, T.; Sun, C.; Wan, Y.; Benz, C.; Perou, A.H.; Thorne, L.B.; Boice, L.; Huang, M.; Rathmell, W.K.; Noushmehr, H.; Saggioro, F.P.; Tirapelli, D.P.C.; Junior, C.G.C.; Mente, E.D.; Silva, O.C., Jr; Trevisan, F.A.; Kang, K.J.; Ahn, K.S.; Giama, N.H.; Moser, C.D.; Giordano, T.J.; Vinco, M.; Welling, T.H.; Crain, D.; Curley, E.; Gardner, J.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Kelley, R.; Park, J-W.; Chandan, V.S.; Roberts, L.R.; Bathe, O.F.; Hagedorn, C.H.; Auman, J.T.; O’Brien, D.R.; Kocher, J-P.A.; Jones, C.D.; Mieczkowski, P.A.; Perou, C.M.; Skelly, T.; Tan, D.; Veluvolu, U.; Balu, S.; Bodenheimer, T.; Hoyle, A.P.; Jefferys, S.R.; Meng, S.; Mose, L.E.; Shi, Y.; Simons, J.V.; Soloway, M.G.; Roach, J.; Hoadley, K.A.; Baylin, S.B.; Shen, H.; Hinoue, T.; Bootwalla, M.S.; Van Den Berg, D.J.; Weisenberger, D.J.; Lai, P.H.; Holbrook, A.; Berrios, M.; Laird, P.W. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 2017, 169(7), 1327-1341.e23. doi: 10.1016/j.cell.2017.05.046 PMID: 28622513
  4. Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.H.; He, A.R.; Ryoo, B.Y.; Yau, T.; Kaseb, A.O.; Burgoyne, A.M.; Dayyani, F.; Spahn, J.; Verret, W.; Finn, R.S.; Toh, H.C.; Lujambio, A.; Wang, Y. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med., 2022, 28(8), 1599-1611. doi: 10.1038/s41591-022-01868-2 PMID: 35739268
  5. Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid. Med. Cell. Longev., 2016, 2016, 1-10. doi: 10.1155/2016/7891574 PMID: 27957239
  6. Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer, 2022, 22(5), 280-297. doi: 10.1038/s41568-021-00435-0 PMID: 35102280
  7. Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer, 2021, 21(2), 71-88. doi: 10.1038/s41568-020-00312-2 PMID: 33214692
  8. Pavlović, N.; Heindryckx, F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J., 2022, 289(22), 7163-7176. doi: 10.1111/febs.16145 PMID: 34331743
  9. Lin, Y.; Jiang, M.; Chen, W.; Zhao, T.; Wei, Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother., 2019, 118, 109249. doi: 10.1016/j.biopha.2019.109249 PMID: 31351428
  10. Xiong, S.; Chng, W.J.; Zhou, J. Crosstalk between endoplasmic reticulum stress and oxidative stress: A dynamic duo in multiple myeloma. Cell. Mol. Life Sci., 2021, 78(8), 3883-3906. doi: 10.1007/s00018-021-03756-3 PMID: 33599798
  11. Guo, Y.; Yang, J.; Gao, H.; Tian, X.; Zhang, X.; Kan, Q. Development and verification of a combined immune- and metabolism-related prognostic signature for hepatocellular carcinoma. Front. Immunol., 2022, 13, 927635. doi: 10.3389/fimmu.2022.927635 PMID: 35874741
  12. Ma, H.; Kang, Z.; Foo, T.K.; Shen, Z.; Xia, B. Disrupted BRCA1‐PALB2 interaction induces tumor immunosuppression and T‐lymphocyte infiltration in HCC through cGAS‐STING pathway. Hepatology, 2023, 77(1), 33-47. doi: 10.1002/hep.32335 PMID: 35006619
  13. John, T.; Liu, G.; Tsao, M-S. Overview of molecular testing in non-small-cell lung cancer: Mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene, 2009, 28(S1)(Suppl. 1), S14-S23. doi: 10.1038/onc.2009.197 PMID: 19680292
  14. Roessler, S.; Jia, H.L.; Budhu, A.; Forgues, M.; Ye, Q.H.; Lee, J.S.; Thorgeirsson, S.S.; Sun, Z.; Tang, Z.Y.; Qin, L.X.; Wang, X.W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res., 2010, 70(24), 10202-10212. doi: 10.1158/0008-5472.CAN-10-2607 PMID: 21159642
  15. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550. doi: 10.1073/pnas.0506580102 PMID: 16199517
  16. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  17. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573. doi: 10.1093/bioinformatics/btq170 PMID: 20427518
  18. Rizvi, A.A.; Karaesmen, E.; Morgan, M.; Preus, L.; Wang, J.; Sovic, M.; Hahn, T.; Sucheston-Campbell, L.E. gwasurvivr: An R package for genome-wide survival analysis. Bioinformatics, 2019, 35(11), 1968-1970. doi: 10.1093/bioinformatics/bty920 PMID: 30395168
  19. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22. doi: 10.18637/jss.v033.i01 PMID: 20808728
  20. Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218. doi: 10.1186/s13059-016-1070-5 PMID: 27765066
  21. Cabrita, R.; Lauss, M.; Sanna, A.; Donia, M.; Skaarup Larsen, M.; Mitra, S.; Johansson, I.; Phung, B.; Harbst, K.; Vallon-Christersson, J.; van Schoiack, A.; Lövgren, K.; Warren, S.; Jirström, K.; Olsson, H.; Pietras, K.; Ingvar, C.; Isaksson, K.; Schadendorf, D.; Schmidt, H.; Bastholt, L.; Carneiro, A.; Wargo, J.A.; Svane, I.M.; Jönsson, G. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 2020, 577(7791), 561-565. doi: 10.1038/s41586-019-1914-8 PMID: 31942071
  22. Wakiyama, H.; Masuda, T.; Motomura, Y.; Hu, Q.; Tobo, T.; Eguchi, H.; Sakamoto, K.; Hirakawa, M.; Honda, H.; Mimori, K. Cytolytic activity (CYT) score is a prognostic biomarker reflecting host immune status in hepatocellular carcinoma (HCC). Anticancer Res., 2018, 38(12), 6631-6638. doi: 10.21873/anticanres.13030 PMID: 30504371
  23. Lee, J.S. The mutational landscape of hepatocellular carcinoma. Clin. Mol. Hepatol., 2015, 21(3), 220-229. doi: 10.3350/cmh.2015.21.3.220 PMID: 26523267
  24. Fu, X.W.; Song, C.Q. Identification and validation of pyroptosis-related gene signature to predict prognosis and reveal immune infiltration in hepatocellular carcinoma. Front. Cell Dev. Biol., 2021, 9, 748039. doi: 10.3389/fcell.2021.748039 PMID: 34820376
  25. Zheng, Y.; Liu, Y.; Zhao, S.; Zheng, Z.; Shen, C.; An, L.; Yuan, Y. Large-scale analysis reveals a novel risk score to predict overall survival in hepatocellular carcinoma. Cancer Manag. Res., 2018, 10, 6079-6096. doi: 10.2147/CMAR.S181396 PMID: 30538557
  26. Jin, S.; Cao, J.; Kong, L.B. Identification and validation in a novel quantification system of the glutamine metabolism patterns for the prediction of prognosis and therapy response in hepatocellular carcinoma. J. Gastrointest. Oncol., 2022, 13(5), 2505-2521. doi: 10.21037/jgo-22-895 PMID: 36388696
  27. Xiang, X.H.; Yang, L.; Zhang, X.; Ma, X.H.; Miao, R.C.; Gu, J.X.; Fu, Y.N.; Yao, Q.; Zhang, J.Y.; Liu, C.; Lin, T.; Qu, K. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma. World J. Gastroenterol., 2019, 25(14), 1715-1728. doi: 10.3748/wjg.v25.i14.1715 PMID: 31011256
  28. Cao, M.Q.; You, A.B.; Cui, W.; Zhang, S.; Guo, Z.G.; Chen, L.; Zhu, X.D.; Zhang, W.; Zhu, X.L.; Guo, H.; Deng, D.J.; Sun, H.C.; Zhang, T. Cross talk between oxidative stress and hypoxia via thioredoxin and HIF‐2α drives metastasis of hepatocellular carcinoma. FASEB J., 2020, 34(4), 5892-5905. doi: 10.1096/fj.202000082R PMID: 32157720
  29. Zhu, Y.; Liu, W.; Wang, Z.; Wang, Y.; Tan, C.; Pan, Z.; Wang, A.; Liu, J.; Sun, G. ARHGEF2/EDN1 pathway participates in ER stress-related drug resistance of hepatocellular carcinoma by promoting angiogenesis and malignant proliferation. Cell Death Dis., 2022, 13(7), 652. doi: 10.1038/s41419-022-05099-8 PMID: 35896520
  30. Hoseini, Z.; Sepahvand, F.; Rashidi, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J. Cell. Physiol., 2018, 233(3), 2116-2132. doi: 10.1002/jcp.25930 PMID: 28345767
  31. Wang, T.; Chen, B.; Meng, T.; Liu, Z.; Wu, W. Identification and immunoprofiling of key prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Bioengineered, 2021, 12(1), 1555-1575. doi: 10.1080/21655979.2021.1918538 PMID: 33955820
  32. Srougi, M.C.; Burridge, K. The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage. PLoS One, 2011, 6(2), e17108. doi: 10.1371/journal.pone.0017108 PMID: 21373644
  33. Xu, D.; Wang, Y.; Wu, J.; Zhang, Z.; Chen, J.; Xie, M.; Tang, R.; Chen, C.; Chen, L.; Lin, S.; Luo, X.; Zheng, J. ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway. Cell Death Dis., 2021, 12(2), 162. doi: 10.1038/s41419-021-03450-z PMID: 33558466
  34. Aisyah, R.; Sadewa, A.H.; Patria, S.Y.; Wahab, A. The PPARGC1A Is the gene responsible for thrifty metabolism related metabolic diseases: A scoping review. Genes, 2022, 13(10), 1894. doi: 10.3390/genes13101894 PMID: 36292779
  35. Zuo, Q.; He, J.; Zhang, S.; Wang, H.; Jin, G.; Jin, H.; Cheng, Z.; Tao, X.; Yu, C.; Li, B.; Yang, C.; Wang, S.; Lv, Y.; Zhao, F.; Yao, M.; Cong, W.; Wang, C.; Qin, W. PPARγ coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARγ-dependent WNT/β-Catenin/pyruvate dehydrogenase kinase isozyme 1 axis. Hepatology, 2021, 73(2), 644-660. doi: 10.1002/hep.31280 PMID: 32298475
  36. Qie, S.; Sang, N. Stanniocalcin 2 (STC2): A universal tumour biomarker and a potential therapeutical target. J. Exp. Clin. Cancer Res., 2022, 41(1), 161. doi: 10.1186/s13046-022-02370-w PMID: 35501821
  37. Wu, Z.; Cheng, H.; Liu, J.; Zhang, S.; Zhang, M.; Liu, F.; Li, Y.; Huang, Q.; Jiang, Y.; Chen, S.; Lv, L.; Li, D.; Zeng, J.Z. The oncogenic and diagnostic potential of stanniocalcin 2 in hepatocellular carcinoma. J. Hepatocell. Carcinoma, 2022, 9, 141-155. doi: 10.2147/JHC.S351882 PMID: 35300206
  38. Ross, D.; Siegel, D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol., 2021, 41, 101950. doi: 10.1016/j.redox.2021.101950 PMID: 33774477
  39. Shimokawa, M.; Yoshizumi, T.; Itoh, S.; Iseda, N.; Sakata, K.; Yugawa, K.; Toshima, T.; Harada, N.; Ikegami, T.; Mori, M. Modulation of Nqo1 activity intercepts anoikis resistance and reduces metastatic potential of hepatocellular carcinoma. Cancer Sci., 2020, 111(4), 1228-1240. doi: 10.1111/cas.14320 PMID: 31968140
  40. Chevet, E.; Hetz, C.; Samali, A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov., 2015, 5(6), 586-597. doi: 10.1158/2159-8290.CD-14-1490 PMID: 25977222
  41. Mandula, J.K.; Chang, S.; Mohamed, E.; Jimenez, R.; Sierra-Mondragon, R.A.; Chang, D.C.; Obermayer, A.N.; Moran-Segura, C.M.; Das, S.; Vazquez-Martinez, J.A.; Prieto, K.; Chen, A.; Smalley, K.S.M.; Czerniecki, B.; Forsyth, P.; Koya, R.C.; Ruffell, B.; Cubillos-Ruiz, J.R.; Munn, D.H.; Shaw, T.I.; Conejo-Garcia, J.R.; Rodriguez, P.C. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 2022, 40(10), 1145-1160.e9. doi: 10.1016/j.ccell.2022.08.016 PMID: 36150390

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024