Investigation of the Potential Mechanism of Compound Dragon's Blood Capsule against Myocardial Ischemia Based on Network Pharmacology


Cite item

Full Text

Abstract

Background:Dragon's blood is widely consumed in China, Vietnam and Laos to promote blood circulation. A Compound Dragon's blood capsule (CDC) is a patented medicine composed of dragon’s blood, notoginseng, and borneol. This combination is purported to stabilize coronary heart disease and myocardial ischemia. However, the possible mechanisms and the characterization of its drug targets’ relevance at the systemic level remain unclear.

Aim:The present study aims to reveal the potential mechanisms of CDC’s anti-myocardial ischemia effect

Materials and Methods:The potential mechanisms were investigated by network pharmacology and qRT-PCR was used to verify the expression levels of key genes of PI3k-Akt pathway.

Results:S1PR2 and AGTR1 were the common targets, which involved 6 biological processes annotated by KEGG and GO analysis. The qRT-PCR results showed a remarkable increase in the expression of Pi3k, Pdk1, Akt, Mdm2, Bcl2, and mTOR. Results also showed a decline in the expression of P53 and Casp3 after CDC intervention.

Conclusion:CDC has a significant anti-myocardial ischemia effect through the PI3k/Akt pathway, which demonstrates that CDC is a suitable adjuvant to treat CHD and provides a theoretical basis for its further clinical application.

About the authors

Xin Su

Chinese Academy of Medical Sciences, Yunnan Branch, Institute of Medicinal Plant Development

Email: info@benthamscience.net

Hongwei Xue

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College

Email: info@benthamscience.net

Yang Lou

Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development

Email: info@benthamscience.net

Xinkai Lv

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College

Email: info@benthamscience.net

Xiao Mi

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College

Email: info@benthamscience.net

Juan Lu

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College

Author for correspondence.
Email: info@benthamscience.net

Xi Chen

Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol., 2019, 16(4), 203-212. doi: 10.1038/s41569-018-0119-4 PMID: 30467329
  2. Boyle, S.H.; Samad, Z.; Becker, R.C.; Williams, R.; Kuhn, C.; Ortel, T.L.; Kuchibhatla, M.; Prybol, K.; Rogers, J.; O’Connor, C.; Velazquez, E.J.; Jiang, W. Depressive symptoms and mental stress-induced myocardial ischemia in patients with coronary heart disease. Psychosom. Med., 2013, 75(9), 822-831. doi: 10.1097/PSY.0b013e3182a893ae PMID: 24163385
  3. Wang, Y.; Zhang, Z.Z.; Wu, Y.; Zhan, J.; He, X.H.; Wang, Y.L. Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation. Exp. Ther. Med., 2013, 5(1), 315-319. doi: 10.3892/etm.2012.766 PMID: 23251290
  4. Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Chaudhary, U.; Bhatia, J.; Ojha, S.; Arya, D.S. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev., 2016, 2016, 1-10. doi: 10.1155/2016/7580731 PMID: 27087891
  5. Riazuddin, S.; Husnain, T.; Malik, T.; Farooqi, H.; Abbar, S.T. Establishment of callus-tissue culture and the induction of organogenesis in chickpea. Cancer Treat. Rev., 1988, 29(5), 407-415.
  6. Su, D.; Zhou, Y.; Hu, S.; Guan, L.; Shi, C.; Wang, Q.; Chen, Y.; Lu, C.; Li, Q.; Ma, X. Role of GAB1/PI3K/AKT signaling high glucose-induced cardiomyocyte apoptosis. Biomed. Pharmacother., 2017, 93, 1197-1204. doi: 10.1016/j.biopha.2017.07.063 PMID: 28738535
  7. Feng, F.B.; Qiu, H.Y. RETRACTED: Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed. Pharmacother., 2018, 102, 1209-1220. doi: 10.1016/j.biopha.2018.03.142 PMID: 29710540
  8. Okada, T.; Enkhjargal, B.; Travis, Z.D.; Ocak, U.; Tang, J.; Suzuki, H.; Zhang, J.H. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol. Neurobiol., 2019, 56(12), 8203-8219. doi: 10.1007/s12035-019-01668-9 PMID: 31203572
  9. Dvir, D.; Battler, A. Conventional and novel drug therapeutics to relief myocardial ischemia. Cardiovasc. Drugs Ther., 2010, 24(4), 319-323. doi: 10.1007/s10557-010-6254-8 PMID: 20658184
  10. Wan, X.; Meng, J.; Dai, Y.; Zhang, Y.; Yan, S. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia. PLoS One, 2014, 9(2), e88137. doi: 10.1371/journal.pone.0088137 PMID: 24505402
  11. Min, Li. Potential effectiveness of chinese patent medicine tongxinluo capsule for secondary prevention after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol., 2018, 9, 830.
  12. Liu, F.; Huang, Z.Z.; Sun, Y.H.; Li, T.; Yang, D.H.; Xu, G.; Su, Y.Y.; Zhang, T. Four main active ingredients derived from a traditional chinese medicine guanxin shutong capsule cause cardioprotection during myocardial ischemia injury calcium overload suppression. Phytother. Res., 2017, 31(3), 507-515. doi: 10.1002/ptr.5787 PMID: 28164397
  13. Yin, H.; Zhang, J.; Lin, H.; Qiao, Y.; Wang, R.; Lu, H.; Liang, S. Effect of traditional Chinese medicine Shu‐mai‐tang on angiogenesis, arteriogenesis and cardiac function in rats with myocardial ischemia. Phytother. Res., 2009, 23(1), 92-98. doi: 10.1002/ptr.2565 PMID: 18814204
  14. Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol., 2023, 309, 116306. doi: 10.1016/j.jep.2023.116306 PMID: 36858276
  15. Niu, B.; Zhang, H.; Li, C.; Yan, F.; Song, Y.; Hai, G.; Jiao, Y.; Feng, Y. Network pharmacology study on the active components of Pterocypsela elata and the mechanism of their effect against cerebral ischemia. Drug Des. Devel. Ther., 2019, 13, 3009-3019. doi: 10.2147/DDDT.S207955 PMID: 31564827
  16. Liu, A.L.; Du, G.H. Network pharmacology: New guidelines for drug discovery. Acta Pharmacol. Sin., 2010, 45(12), 1472-1477.
  17. Lyu, X.K.; Chang, X.Y.; Mi, X.; Hu, M.G.; Yu, Y.; Wang, J.C.; Hu, S.M.; Chen, X.; Li, Y.H.; Lu, J. Compound Dragon’s blood capsule alleviates the degree of myocardial ischemia by improving inflammation and oxidative stress Res. Squa., 2022, 2022, 1086482. doi: 10.21203/rs.3.rs-1086482/v1
  18. Cui, Z.; Gu, L.; Liu, T.; Liu, Y.; Yu, B.; Kou, J.; Li, F.; Yang, K. Ginsenoside Rd attenuates myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca2+ pathways. Eur. J. Pharmacol., 2023, 957, 176044. doi: 10.1016/j.ejphar.2023.176044 PMID: 37660968
  19. Qin, G.W.; Lu, P.; Peng, L.; Jiang, W. Ginsenoside Rb1 inhibits cardiomyocyte autophagy via PI3K/Akt/mTOR signaling pathway and reduces myocardial ischemia/reperfusion injury. Am. J. Chin. Med., 2021, 49(8), 1913-1927. doi: 10.1142/S0192415X21500907 PMID: 34775933
  20. Li, Q.; Yuan, M.; Li, X.; Li, J.; Xu, M.; Wei, D.; Wu, D.; Wan, J.; Mei, S.; Cui, T.; Wang, J.; Zhu, Z. New dammarane-type triterpenoid saponins from Panax notoginseng saponins. J. Ginseng Res., 2020, 44(5), 673-679. doi: 10.1016/j.jgr.2018.12.001 PMID: 32913396
  21. Ramli, F.F.; Ali, A.; Ibrahim, N.I. Molecular-signaling pathways of ginsenosides Rb in myocardial ischemia-reperfusion injury: A mini review. Int. J. Med. Sci., 2022, 19(1), 65-73. doi: 10.7150/ijms.64984 PMID: 34975299
  22. Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res., 2020, 53(2), e9106. doi: 10.1590/1414-431x20199106 PMID: 31994603
  23. Xiangyan, Li. Compound K inhibits autophagy-mediated apoptosis through activation of the PI3K-Akt signaling pathway thus protecting against ischemia/reperfusion injury. Cell. Physiol. Biochem., 2018, 476, 2589-2601.
  24. Zhang, X.; Chen, B.; Wu, J.; Sha, J.; Yang, B.; Zhu, J.; Sun, J.; Hartung, J.; Bao, E. Aspirin enhances the protection of Hsp90 from heat-stressed injury in cardiac microvascular endothelial cells through PI3K-Akt and PKM2 pathways. Cells, 2020, 9(1), 243. doi: 10.3390/cells9010243 PMID: 31963688
  25. Liu, M.; Yang, P.; Fu, D.; Gao, T.; Deng, X.; Shao, M.; Liao, J.; Jiang, H.; Li, X. Allicin protects against myocardial I/R by accelerating angiogenesis via the miR-19a-3p/PI3K/AKT axis. Aging, 2021, 13(19), 22843-22855. doi: 10.18632/aging.203578 PMID: 34607973
  26. Chen, X.; Zhabyeyev, P.; Azad, A.K.; Wang, W.; Minerath, R.A.; Desaulniers, J.; Grueter, C.E.; Murray, A.G.; Kassiri, Z.; Vanhaesebroeck, B. Endothelial and cardiomyocyte PI3Kβ divergently regulate cardiac remodelling in response to ischaemic injury. Cardiovasc. Res., 2019, 115(8), 1343-1356.
  27. Liu, J.; Fan, C.; Yu, L.; Yang, Y.; Jiang, S.; Ma, Z.; Hu, W.; Li, T.; Yang, Z.; Tian, T.; Duan, W.; Yu, S. Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells. Cytokine, 2016, 77, 88-97. doi: 10.1016/j.cyto.2015.11.006 PMID: 26551859
  28. Tedgui, A.; Mallat, Z. Inflammation and atherosclerosis. Nephrologie, 2003, 24(7), 411-414. PMID: 14650755
  29. Jeong, C.W.; Yoo, K.Y.; Lee, S.H.; Jeong, H.J.; Lee, C.S.; Kim, S.J. Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3β and inhibition of p38 MAPK and JNK. J. Cardiovasc. Pharmacol. Ther., 2012, 17(4), 387-394. doi: 10.1177/1074248412438102 PMID: 22396328
  30. Dong, L.Y.; Li, S.; Zhen, Y.L.; Wang, Y.N.; Shao, X.; Luo, Z.G. Cardioprotection of vitexin on myocardial ischemia/reperfusion injury in rat via regulating inflammatory cytokines and MAPK pathway. Am. J. Chin. Med., 2013, 41(6), 1251-1266. doi: 10.1142/S0192415X13500845 PMID: 24228599
  31. Blaustein, M.P.; Lederer, W.J. Sodium/calcium exchange: Its physiological implications. Physiol. Rev., 1999, 79(3), 763-854. doi: 10.1152/physrev.1999.79.3.763 PMID: 10390518
  32. Der Sarkissian, S.; Huentelman, M.J.; Stewart, J.; Katovich, M.J.; Raizada, M.K. ACE2: A novel therapeutic target for cardiovascular diseases. Prog. Biophys. Mol. Biol., 2006, 91(1-2), 163-198. doi: 10.1016/j.pbiomolbio.2005.05.011 PMID: 16009403
  33. Fernández-Hernando, C.; Ackah, E.; Yu, J.; Suárez, Y.; Murata, T.; Iwakiri, Y.; Prendergast, J.; Miao, R.Q.; Birnbaum, M.J.; Sessa, W.C. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab., 2007, 6(6), 446-457. doi: 10.1016/j.cmet.2007.10.007 PMID: 18054314
  34. Ackah, E.; Yu, J.; Zoellner, S.; Iwakiri, Y.; Skurk, C.; Shibata, R.; Ouchi, N.; Easton, R.M.; Galasso, G.; Birnbaum, M.J.; Walsh, K.; Sessa, W.C. Akt1/protein kinase B is critical for ischemic and VEGF-mediated angiogenesis. J. Clin. Invest., 2005, 115(8), 2119-2127. doi: 10.1172/JCI24726 PMID: 16075056
  35. Zhang, Y.; Zhang, L.; Chu, W.; Wang, B.; Zhang, J.; Zhao, M.; Li, X.; Li, B.; Lu, Y.; Yang, B.; Shan, H. Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell. Physiol. Biochem., 2010, 26(6), 991-998. doi: 10.1159/000324012 PMID: 21220930
  36. Li, Y.S.; Wang, J.X.; Jia, M.M.; Liu, M.; Li, X.J.; Tang, H.B. Dragon’s blood inhibits chronic inflammatory and neuropathic pain responses by blocking the synthesis and release of substance P in rats. J. Pharmacol. Sci., 2012, 118(1), 43-54. doi: 10.1254/jphs.11160FP
  37. Choy, C.S.; Hu, C.M.; Chiu, W.T.; Lam, C.S.K.; Ting, Y.; Tsai, S.H.; Wang, T.C. Suppression of lipopolysaccharide-induced of inducible nitric oxide synthase and cyclooxygenase-2 by Sanguis Draconis, a dragon’s blood resin, in RAW 264.7 cells. J. Ethnopharmacol., 2008, 115(3), 455-462. doi: 10.1016/j.jep.2007.10.012 PMID: 18060707
  38. Ha, J.; Park, C.; Park, C.; Park, S. Improved prediction of miRNA-disease associations based on matrix completion with network regularization. Cells, 2020, 9(4), 881. doi: 10.3390/cells9040881 PMID: 32260218
  39. Ha, J.; Park, C. MLMD: Metric learning for predicting MiRNA-disease associations. IEEE Access, 2021, 9, 78847-78858. doi: 10.1109/ACCESS.2021.3084148
  40. Ha, J. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association. Knowl. Base. Syst., 2023, 263, 110295. doi: 10.1016/j.knosys.2023.110295
  41. Ha, J. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint. J. Pers. Med., 2022, 12(6), 885. doi: 10.3390/jpm12060885 PMID: 35743670

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers