Exploring Mechanisms of Houshiheisan in Treating Ischemic Stroke with Network Pharmacology and Independent Cascade Model


Цитировать

Полный текст

Аннотация

Background:Houshiheisan (HSHS) has been effective in the treatment of ischemic stroke (IS) for centuries. However, its mechanisms are still underexplored.

Objective:The objective of this study is to identify the active ingredients and mechanisms of HSHS in treating IS.

Methods:We searched the main active compounds in HSHS and their potential targets, and key targets related to IS. Based on the common targets of HSHS and IS, we further expanded genes by KEGG database to obtain target genes and related genes, as well as gene interactions in the form of A→B, and then constructed a directed network including traditional Chinese medicines (TCMs), active compounds and genes. Finally, based on enrichment analysis, independent cascade (IC) model, and molecular docking, we explored the mechanisms of HSHS in treating IS.

Results:A directed network with 6,348 nodes and 64,996 edges was constructed. The enrichment analysis suggested that the AGE pathway, glucose metabolic pathway, lipid metabolic pathway, and inflammation pathway played critical roles in the treatment of IS by HSHS. Furthermore, the gene ontologies (GOs) of three monarch drugs in HSHS mainly involved cellular response to chemical stress, blood coagulation, hemostasis, positive regulation of MAPK cascade, and regulation of inflammatory response. Several candidate drug molecules were identified by molecular docking.

Conclusion:This study advocated potential drug development with targets in the AGE signaling pathway, with emphasis on neuroprotective, anti-inflammatory, and anti-apoptotic functions. The molecular docking simulation indicated that the ligand-target combination selection method based on the IC model was effective and reliable.

Об авторах

Bo Cao

Department of Health Informatics and Management, School of Health Humanities, Peking University

Email: info@benthamscience.net

Jiao Jin

School of Statistics, Beijing Normal University

Email: info@benthamscience.net

Zhiyu Tang

Department of Health Informatics and Management, School of Health Humanities, Peking University

Email: info@benthamscience.net

Qiong Luo

School of Nursing, Peking University

Email: info@benthamscience.net

Jinbing An

Department of Health Informatics and Management, School of Health Humanities, Peking University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Wei Pang

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Hossmann, K.A. Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol., 2006, 26(7-8), 1055-1081. doi: 10.1007/s10571-006-9008-1 PMID: 16710759
  2. Pandya, R.S.; Mao, L.; Zhou, H.; Zhou, S.; Zeng, J.; Popp, A.J.; Wang, X. Central nervous system agents for ischemic stroke: Neuroprotection mechanisms. Cent. Nerv. Syst. Agents Med. Chem., 2011, 11(2), 81-97. doi: 10.2174/187152411796011321 PMID: 21521165
  3. Wang, W.; Jiang, B.; Sun, H.; Ru, X.; Sun, D.; Wang, L.; Wang, L.; Jiang, Y.; Li, Y.; Wang, Y.; Chen, Z.; Wu, S.; Zhang, Y.; Wang, D.; Wang, Y.; Feigin, V.L. Prevalence, incidence, and mortality of stroke in China. Circulation, 2017, 135(8), 759-771. doi: 10.1161/CIRCULATIONAHA.116.025250 PMID: 28052979
  4. Beal, C.C. Gender and stroke symptoms: A review of the current literature. Part II: Mechanisms of damage and treatment. J. Neurosci. Nurs., 2010, 42(2), 80-87. doi: 10.1097/JNN.0b013e3181ce5c70 PMID: 20422793
  5. Siesjö, B.K. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg., 1992, 77(3), 337-354. doi: 10.3171/jns.1992.77.3.0337 PMID: 1506880
  6. Titomanlio, L.; Fernández-López, D.; Manganozzi, L.; Moretti, R.; Vexler, Z.S.; Gressens, P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: Lessons from animal models. Pediatr. Neurol., 2015, 52(6), 566-584. doi: 10.1016/j.pediatrneurol.2015.01.016 PMID: 26002050
  7. Zhang, Q.-X.; Lu, Y.; Hsiang, F.; Chang, J.-H.; Yao, X.-Q.; Zhao, H.; Zou, H.-Y.; Wang, L. Houshiheisan and its components promote axon regeneration after ischemic brain injury. Neural Regen. Res., 2018, 13(7), 1195-1203. doi: 10.4103/1673-5374.235031 PMID: 30028327
  8. Kitano, H. Systems biology: A brief overview. Science, 2002, 295(5560), 1662-1664. doi: 10.1126/science.1069492 PMID: 11872829
  9. Capobianco, E. Dynamic networks in systems medicine. Front. Genet., 2012, 3(1), 185-186. PMID: 23049537
  10. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  11. Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res., 2019, 47(D1), D1038-D1043. doi: 10.1093/nar/gky1151 PMID: 30445645
  12. Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 2002, 65(5), 056109. doi: 10.1103/PhysRevE.65.056109 PMID: 12059649
  13. Lu, F.; Zhang, W.; Shao, L.; Jiang, X.; Xu, P.; Jin, H. Scalable influence maximization under independent cascade model. J. Netw. Comput. Appl., 2017, 86(1), 15-23. doi: 10.1016/j.jnca.2016.10.020
  14. Kempe, D.; Kleinberg, J.; Tardos, E. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003, pp. 137-146.
  15. Pinzi, L.; Rastelli, G. Molecular Docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331. doi: 10.3390/ijms20184331 PMID: 31487867
  16. Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364. doi: 10.1093/nar/gkz382 PMID: 31106366
  17. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855. PMID: 31680165
  18. Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res., 2011, 39(Database), D1035-D1041. doi: 10.1093/nar/gkq1126 PMID: 21059682
  19. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From Gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics., 2016, 54(1), 31-35.
  20. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
  21. Qingxu, G.; Yan, Z.; Jiannan, X.; Yunlong, L. Association between the gene polymorphisms of HDAC9 and the risk of Atherosclerosis and Ischemic Stroke. Pathol. Oncol. Res., 2016, 22(1), 103-107. doi: 10.1007/s12253-015-9978-8 PMID: 26347468
  22. Guzik, A.; Bushnell, C. Stroke epidemiology and risk factor management. Continuum, 2017, 23(1), 15-39. doi: 10.1212/CON.0000000000000416 PMID: 28157742
  23. Deb, P.; Sharma, S.; Hassan, K.M. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology, 2010, 17(3), 197-218. doi: 10.1016/j.pathophys.2009.12.001 PMID: 20074922
  24. Kamide, T.; Kitao, Y.; Takeichi, T.; Okada, A.; Mohri, H.; Schmidt, A.M.; Kawano, T.; Munesue, S.; Yamamoto, Y.; Yamamoto, H.; Hamada, J.; Hori, O. RAGE mediates vascular injury and inflammation after global cerebral ischemia. Neurochem. Int., 2012, 60(3), 220-228. doi: 10.1016/j.neuint.2011.12.008 PMID: 22202666
  25. Selvin, E.; Halushka, M.K.; Rawlings, A.M.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. sRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes, 2013, 62(6), 2116-2121. doi: 10.2337/db12-1528 PMID: 23396398
  26. Hsieh, C.F.; Liu, C.K.; Lee, C.T.; Yu, L.E.; Wang, J.Y. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci. Rep., 2019, 9(1), 840. doi: 10.1038/s41598-018-37215-0 PMID: 30696869
  27. Shi, C.S.; Shi, G.Y.; Hsiao, H.M.; Kao, Y.C.; Kuo, K.L.; Ma, C.Y.; Kuo, C.H.; Chang, B.I.; Chang, C.F.; Lin, C.H.; Wong, C.H.; Wu, H.L. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood, 2008, 112(9), 3661-3670. doi: 10.1182/blood-2008-03-142760 PMID: 18711002
  28. Liew, P.X.; Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev., 2019, 99(2), 1223-1248. doi: 10.1152/physrev.00012.2018 PMID: 30758246
  29. Laridan, E.; Martinod, K.; De Meyer, S. Neutrophil extracellular traps in arterial and venous thrombosis. Semin. Thromb. Hemost., 2019, 45(1), 086-093. doi: 10.1055/s-0038-1677040 PMID: 30634198
  30. Chen, P.J.; Wang, Y.L.; Kuo, L.M.; Lin, C.F.; Chen, C.Y.; Tsai, Y.F.; Shen, J.J.; Hwang, T.L. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα. Sci. Rep., 2016, 6(1), 26554-26566. doi: 10.1038/srep26554 PMID: 27212040
  31. Hankey, G.J. Stroke. Lancet, 2017, 389(10069), 641-654. doi: 10.1016/S0140-6736(16)30962-X PMID: 27637676
  32. Wang, Q.C.; Lu, L.; Zhou, H.J. Relationship between the MAPK/ERK pathway and neurocyte apoptosis after cerebral infarction in rats. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5374-5381. PMID: 31298390
  33. Siesjö, B.K. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J. Neurosurg., 1992, 77 (2), 169-184. doi: 10.3171/jns.1992.77.2.0169 PMID: 1625004
  34. Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N. Engl. J. Med., 2018, 379(3), 215-225. doi: 10.1056/NEJMoa1800410 PMID: 29766750
  35. Wang, P.; Miao, C.Y. NAMPT as a Therapeutic target against stroke. Trends Pharmacol. Sci., 2015, 36(12), 891-905. doi: 10.1016/j.tips.2015.08.012 PMID: 26538317
  36. Lakhan, S.E.; Kirchgessner, A.; Hofer, M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med., 2009, 7(1), 97-108. doi: 10.1186/1479-5876-7-97 PMID: 19919699
  37. Zhang, S.R.; Phan, T.G.; Sobey, C.G. Targeting the Immune System for Ischemic Stroke. Trends Pharmacol. Sci., 2021, 42(2), 96-105. doi: 10.1016/j.tips.2020.11.010 PMID: 33341247
  38. Wang, Q.; van Hoecke, M.; Tang, X.N.; Lee, H.; Zheng, Z.; Swanson, R.A.; Yenari, M.A. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiol. Dis., 2009, 36(1), 223-231. doi: 10.1016/j.nbd.2009.07.018 PMID: 19635562
  39. Zhao, M.; Hou, S.; Feng, L.; Shen, P.; Nan, D.; Zhang, Y.; Wang, F.; Ma, D.; Feng, J. Vinpocetine protects against cerebral ischemia-reperfusion injury by targeting astrocytic connexin43 via the PI3K/AKT signaling pathway. Front. Neurosci., 2020, 14(1), 223-237. doi: 10.3389/fnins.2020.00223 PMID: 32300287
  40. Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115(1), 157-188. doi: 10.1016/j.pneurobio.2013.11.006 PMID: 24361499
  41. Inzitari, D.; Poggesi, A. Calcium channel blockers and stroke. Aging Clin. Exp. Res., 2005, 17(4)(Suppl.), 16-30. PMID: 16640170
  42. Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 1000421-1000435. doi: 10.4172/2161-0460.1000421 PMID: 30560011
  43. Liu, N.; Liu, C.; Yang, Y.; Ma, G.; Wei, G.; Liu, S.; Kong, L.; Du, G. Xiao-Xu-Ming decoction prevented hemorrhagic transformation induced by acute hyperglycemia through inhibiting AGE-RAGE-mediated neuroinflammation. Pharmacol. Res., 2021, 169(1), 105650-105663. doi: 10.1016/j.phrs.2021.105650 PMID: 33964468

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024