Traditional Chinese Medicine-based Treatment in Cardiovascular Disease: Potential Mechanisms of Action


Citar

Texto integral

Resumo

:Cardiovascular Disease (CVD) is the leading cause of morbidity and death worldwide and has become a global public health problem. Traditional Chinese medicine (TCM) has been used in China to treat CVD and achieved promising results. Therefore, TCM has aroused significant interest among pharmacologists and medical practitioners. Previous research showed that TCM can regulate the occurrence and development of atherosclerosis (AS), ischemic heart disease, heart failure, myocardial injury, and myocardial fibrosis by inhibiting vascular endothelial injury, inflammation, oxidant stress, ischemia-reperfusion injury, and myocardial remodeling. It is well-known that TCM has the characteristics of multi-component, multi-pathway, and multitarget. Here, we systematically review the bioactive components, pharmacological effects, and clinical application of TCM in preventing and treating CVD.

Sobre autores

Lanlan Li

School of Basic Medicine Sciences, Weifang Medical University

Email: info@benthamscience.net

Yutong Ran

School of Basic Medicine Sciences, Weifang Medical University

Email: info@benthamscience.net

Jiao Wen

School of Basic Medicine Sciences, Weifang Medical University

Email: info@benthamscience.net

Yirui Lu

School of Basic Medicine Sciences, Weifang Medical University

Email: info@benthamscience.net

Shunmei Liu

School of Basic Medicine Sciences, Weifang Medical University

Email: info@benthamscience.net

Hong Li

School of Basic Medicine Sciences, Weifang Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Min Cheng

School of Basic Medicine Sciences, Weifang Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Wang, T.; Wu, Z.; Sun, L.; Li, W.; Liu, G.; Tang, Y. A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula tian-ma-gou-teng-yin for treatment of alzheimer’s disease. Front. Pharmacol., 2018, 9, 668. doi: 10.3389/fphar.2018.00668 PMID: 29997503
  2. Xie, R.; Xia, Y.; Chen, Y.; Li, H.; Shang, H. The right extension statement for traditional chinese medicine: Development, recommendations, and explanation. Pharmacol. Res., 2020, 160, 105178.
  3. Man, B.; Hu, C.; Yang, G.; Xiang, J.; Yang, S.; Ma, C. Berberine attenuates diabetic atherosclerosis via enhancing the interplay between KLF16 and PPARα in ApoE−/− mice. Biochem. Biophys. Res. Commun., 2022, 624, 59-67. doi: 10.1016/j.bbrc.2022.07.072 PMID: 35933927
  4. Mannino, F.; Pallio, G.; Altavilla, D.; Squadrito, F.; Vermiglio, G.; Bitto, A.; Irrera, N. Atherosclerosis plaque reduction by lycopene is mediated by increased energy expenditure through ampk and pparα in apoe ko mice fed with a high fat diet. Biomolecules, 2022, 12(7), 973. doi: 10.3390/biom12070973 PMID: 35883529
  5. Liang, P.; Liang, Q.; He, P.; Chen, X.; Xu, Y. Three polymethoxyflavones from the peel of citrus reticulata "chachi" inhibits oxidized low-density lipoprotein-induced macrophage-derived foam cell formation. Front. Cardiovasc. Med., 2022, 924551. doi: 10.3389/fcvm.2022.924551
  6. Wu, Y.; Chen, M.; Chen, Z.; Shu, J.; Zhang, L. Theaflavin-3,3-digallate from black tea inhibits neointima formation through suppression of the pdgfrβ pathway in vascular smooth muscle cells. Front. Pharmacol., 2022, 13, 861319. doi: 10.3389/fphar.2022.861319
  7. Ni, Y.; Zhang, J.; Zhu, W.; Duan, Y.; Bai, H.; Luan, C. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH / ROS / ER stress. J. Cell. Mol. Med., 2022, 26(21), 5414-5425. doi: 10.1111/jcmm.17564 PMID: 36201630
  8. Guo, H.; Zhu, M.; Yu, R.; Li, X.; Zhao, Q. Efficacy of chinese traditional patent medicines for heart failure with preserved ejection fraction: A bayesian network meta-analysis of 64 randomized controlled trials. Front. Cardiovasc. Med., 2023, 10, 1255940. doi: 10.3389/fcvm.2023.1255940
  9. Yang, Q.; Xu, Y.; Shen, L.; Pan, Y.; Huang, J.; Ma, Q.; Yu, C.; Chen, J.; Chen, Y.; Chen, M. Guanxinning tablet attenuates coronary atherosclerosis via regulating the gut microbiota and their metabolites in tibetan minipigs induced by a high-fat diet. J. Immunol. Res., 2022, 2022, 1-23. doi: 10.1155/2022/7128230 PMID: 35935588
  10. Jiang, Q.; Chen, X.; Tian, X.; Zhang, J.; Xue, S.; Jiang, Y.; Liu, T.; Wang, X.; Sun, Q.; Hong, Y.; Li, C.; Guo, D.; Wang, Y.; Wang, Q. Tanshinone I inhibits doxorubicin-induced cardiotoxicity by regulating Nrf2 signaling pathway. Phytomedicine, 2022, 106, 154439. doi: 10.1016/j.phymed.2022.154439 PMID: 36108374
  11. Liu, Y.; Yang, G.; Huo, S.; Wu, J.; Ren, P.; Cao, Y.; Gao, J.; Tong, L.; Min, D. Lutein suppresses ferroptosis of cardiac microvascular endothelial cells via positive regulation of IRF in cardiac hypertrophy. Eur. J. Pharmacol., 2023, 959, 176081. doi: 10.1016/j.ejphar.2023.176081 PMID: 37797674
  12. Jiaying, Z.; Xiangxiang, W.; Xuefeng, L.I.; Yang, Y.; Yinghuan, D.; Yanbin, S.; Ping, X.; Mengru, Z.; Junnan, Z.; Miao, L.I.; Shuwen, Z.; Rui, Z.; Ying, T.; Hao, T.; Feifei, T. Shunxin decoction improves diastolic function in rats with heart failure with preserved ejection fraction induced by abdominal aorta constriction through cyclic guanosine monophosphate-dependent protein kinase signaling pathway. J. Tradit. Chin. Med., 2022, 42(5), 764-772. doi: 10.19852/j.cnki.jtcm.20220519.003 PMID: 36083484
  13. Kotlyarov, S. Genetic and epigenetic regulation of lipoxygenase pathways and reverse cholesterol transport in atherogenesis. Genes, 2022, 13(8), 1474. doi: 10.3390/genes13081474 PMID: 36011386
  14. Yu, W.; Ilyas, I.; Aktar, N.; Xu, S. A review on therapeutical potential of paeonol in atherosclerosis. Front. Pharmacol., 2022, 13, 950337. doi: 10.3389/fphar.2022.950337
  15. Hansson, G.K.; Libby, P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519. doi: 10.1038/nri1882 PMID: 16778830
  16. Yu, B.; Zhao, S.; Huang, X. Oxidized low-density lipoprotein: A double-edged sword on atherosclerosis. Med. Hypotheses, 2007, 69(3), 553-556. doi: 10.1016/j.mehy.2007.01.043 PMID: 17368957
  17. Han, X.; Wang, S.; Yang, X.; Li, T.; Zhao, H.; Zhou, L.; Zhao, L.; Bao, Y.; Meng, X. Analysis of plasma migration components in Patrinia villosa (Thunb.) Juss. effective parts by UPLC–Q‐TOF–MS. Biomed. Chromatogr., 2020, 34(1), e4701. doi: 10.1002/bmc.4701 PMID: 31596954
  18. Zhang, A.; Ma, Z.; Kong, L.; Gao, H.; Sun, H.; Wang, X.; Yu, J.; Han, Y.; Yan, G.; Wang, X. High‐throughput lipidomics analysis to discover lipid biomarkers and profiles as potential targets for evaluating efficacy of Kai‐Xin‐San against APP/PS1 transgenic mice based on UPLC-Q/TOF-MS. Biomed. Chromatogr., 2020, 34(2), e4724. doi: 10.1002/bmc.4724 PMID: 31755117
  19. Simayi, J.; Abulizi, A.; Nuermaimaiti, M.; Khan, N.; Hailati, S.; Han, M.; Talihati, Z.; Abudurousuli, K.; Maihemuti, N.; Nuer, M.; Zhou, W.; Wumaier, A. Uhplc-q-tof-ms/ms and network pharmacology analysis to reveal quality markers of xinjiang cydonia oblonga mill. For antiatherosclerosis. BioMed Res. Int., 2022, 2022, 1-25. doi: 10.1155/2022/4176235 PMID: 35669732
  20. Bi, Y.; Han, X.; Lai, Y.; Fu, Y.; Li, K.; Zhang, W.; Wang, Q.; Jiang, X.; Zhou, Y.; Liang, H.; Fan, H. Systems pharmacological study based on UHPLC-Q-Orbitrap-HRMS, network pharmacology and experimental validation to explore the potential mechanisms of Danggui-Shaoyao-San against atherosclerosis. J. Ethnopharmacol., 2021, 278, 114278. doi: 10.1016/j.jep.2021.114278 PMID: 34087397
  21. Qu, L.; Li, D.; Gao, X.; Li, Y.; Wu, J.; Zou, W. Di’ao xinxuekang capsule, a chinese medicinal product, decreases serum lipids levels in high-fat diet-fed apoe–/–mice by downregulating pcsk9. Front. Pharmacol., 2018, 10, 01170. doi: 10.3389/fphar.2018.01170
  22. Li, X.; Liu, S.; Qu, L.; Chen, Y.; Yuan, C.; Qin, A.; Liang, J.; Huang, Q.; Jiang, M.; Zou, W. Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. J. Ethnopharmacol., 2021, 274, 114018. doi: 10.1016/j.jep.2021.114018 PMID: 33716083
  23. Liang, J.; Li, W.; Liu, H.; Li, X.; Yuan, C.; Zou, W.; Qu, L. Di’ao xinxuekang capsule improves the anti-atherosclerotic effect of atorvastatin by downregulating the srebp2/pcsk9 signalling pathway. Front. Pharmacol., 2022, 13, 857092. doi: 10.3389/fphar.2022.857092 PMID: 35571088
  24. Liang, P.L.; Chen, X.L.; Gong, M.J.; Xu, Y.; Tu, H.S.; Zhang, L.; Liao, B.; Qiu, X.H.; Zhang, J.; Huang, Z.H.; Xu, W. Guang Chen Pi (the pericarp of Citrus reticulata Blanco’s cultivars ‘Chachi’) inhibits macrophage-derived foam cell formation. J. Ethnopharmacol., 2022, 293, 115328. doi: 10.1016/j.jep.2022.115328 PMID: 35489660
  25. Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048. doi: 10.1002/minf.201700048 PMID: 28692140
  26. Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 2019, 20(18), 4574. doi: 10.3390/ijms20184574 PMID: 31540192
  27. Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7. doi: 10.1155/2020/1646905 PMID: 32148533
  28. Sun, T.; Quan, W.; Peng, S.; Yang, D.; Liu, J.; He, C.; Chen, Y.; Hu, B.; Tuo, Q. Network pharmacology-based strategy combined with molecular docking and in vitro validation study to explore the underlying mechanism of huo luo xiao ling dan in treating atherosclerosis. Drug Des. Devel. Ther., 2022, 16, 1621-1645. doi: 10.2147/DDDT.S357483 PMID: 35669282
  29. Cheng, Y.; Xiao, M.; Chen, J.; Wang, D.; Hu, Y.; Zhang, C.; Wang, T.; Fu, C.; Wu, Y.; Zhang, J. Quality assessment and Q-markers discovery of Tongsaimai tablet by integrating serum pharmacochemistry and network pharmacology for anti-atherosclerosis benefit. Chin. Med., 2022, 17(1), 103. doi: 10.1186/s13020-022-00658-9 PMID: 36056398
  30. Pahwa, R.; Jialal, I. Atherosclerosis. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
  31. Yu, G.; Luo, Z.; Zhou, Y.; Zhang, L.; Wu, Y.; Ding, L.; Shi, Y. Uncovering the pharmacological mechanism of Carthamus tinctorius L. on cardiovascular disease by a systems pharmacology approach. Biomed. Pharmacother., 2019, 117, 109094. doi: 10.1016/j.biopha.2019.109094 PMID: 31203131
  32. Wang, X.; Sharma, A.; Liu, Y.; Wang, X.; Kainth, R.; Kumari, D. Evaluation of flavonoid-rich fraction of portulaca grandiflora aerial part extract in atherogenic diet-induced atherosclerosis. Comb. Chem. High Throughput Screen., 2023. doi: 10.2174/0113862073267025230925062407
  33. Fu, X.; Sun, Z.; Long, Q.; Tan, W.; Ding, H. Glycosides from buyang huanwu decoction inhibit atherosclerotic inflammation via jak/stat signaling pathway. Phytomedicine, 2022, 105, 154385.
  34. Li, Y.; Yang, J.M.; Cui, W.H.; Wang, J.K.; Chen, X.; Zhang, C.; Zhu, L.Z.; Luo, T. Prediction of active ingredients and mechanism of Siwei Jianbu decoction in the treatment of atherosclerosis by network pharmacology. Eur. Rev. Med. Pharmaco., 2022, 26(15), 5436-5446. doi: 10.26355/eurrev_202208_29412 PMID: 35993639
  35. Gyöngyösi, M.; Winkler, J.; Ramos, I.; Do, Q.T.; Firat, H.; McDonald, K.; González, A.; Thum, T.; Díez, J.; Jaisser, F.; Pizard, A.; Zannad, F. Myocardial fibrosis: Biomedical research from bench to bedside. Eur. J. Heart Fail., 2017, 19(2), 177-191. doi: 10.1002/ejhf.696 PMID: 28157267
  36. Wang, T.; Jiang, X.; Ruan, Y.; Zhuang, J.; Yin, Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered, 2022, 13(5), 13767-13783. doi: 10.1080/21655979.2022.2084253 PMID: 35726821
  37. Han, J.; Hou, J.; Liu, Y.; Liu, P.; Zhao, T.; Wang, X. Using network pharmacology to explore the mechanism of panax notoginseng in the treatment of myocardial fibrosis. J. Diabetes Res., 2022, 2022, 1-13. doi: 10.1155/2022/8895950 PMID: 35372585
  38. Shi, L.; Du, X.; Zuo, B.; Hu, J.; Cao, W. Qige huxin formula attenuates isoprenaline-induced cardiac fibrosis in mice via modulating gut microbiota and protecting intestinal integrity. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11. doi: 10.1155/2022/2894659 PMID: 35911163
  39. Wang, Y.; Zhao, X.; Gao, X.; Nie, X.; Yang, Y.; Fan, X. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants. Anal. Chim. Acta, 2011, 702(1), 87-94. doi: 10.1016/j.aca.2011.06.020 PMID: 21819864
  40. Anwaier, G.; Xie, T.; Pan, C.; Li, A.; Yan, L. Qishenyiqi pill ameliorates cardiac fibrosis after pressure overload-induced cardiac hypertrophy by regulating fhl2 and the macrophage rp s19/tgf-β1 signaling pathway. Front. Pharmacol., 2022, 13, 918335. doi: 10.3389/fphar.2022.918335
  41. Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res., 2021, 117(6), 1450-1488. doi: 10.1093/cvr/cvaa324 PMID: 33135058
  42. López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches. Nat. Rev. Cardiol., 2021, 18(7), 479-498. doi: 10.1038/s41569-020-00504-1 PMID: 33568808
  43. Wahab, S.; Alsayari, A. Potential pharmacological applications of nigella seeds with a focus on nigella sativa and its constituents against chronic inflammatory diseases: Progress and future opportunities. Plants, 2023, 12(22), 3829. doi: 10.3390/plants12223829 PMID: 38005726
  44. Liu, L.; Yao, L.; Wang, S.; Chen, Z.; Han, T.; Ma, P.; Jiang, L.; Yuan, C.; Li, J.; Ke, D.; Li, C.; Yamahara, J.; Li, Y.; Wang, J. 6‐gingerol improves ectopic lipid accumulation, mitochondrial dysfunction, and insulin resistance in skeletal muscle of ageing rats: Dual stimulation of the ampk/pgc‐1α signaling pathway via plasma adiponectin and muscular adipor1. Mol. Nutr. Food Res., 2019, 63(6), 1800649. doi: 10.1002/mnfr.201800649 PMID: 30575271
  45. Nicoll, R.; Henein, M.Y. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? Int. J. Cardiol., 2009, 131(3), 408-409. doi: 10.1016/j.ijcard.2007.07.107 PMID: 18037515
  46. Han, X.; Zhang, Y.; Liang, Y.; Zhang, J.; Li, M.; Zhao, Z.; Zhang, X.; Xue, Y.; Zhang, Y.; Xiao, J.; Chu, L. 6‐Gingerol, an active pungent component of ginger, inhibits L‐type Ca 2+ current, contractility, and Ca 2+ transients in isolated rat ventricular myocytes. Food Sci. Nutr., 2019, 7(4), 1344-1352. doi: 10.1002/fsn3.968 PMID: 31024707
  47. Han, X.; Liu, P.; Liu, M.; Wei, Z.; Fan, S.; Wang, X.; Sun, S.; Chu, L. 6‐gingerol ameliorates iso‐induced myocardial fibrosis by reducing oxidative stress, inflammation, and apoptosis through inhibition of tlr4/mapks/nf‐κb pathway. Mol. Nutr. Food Res., 2020, 64(13), 2000003. doi: 10.1002/mnfr.202000003 PMID: 32438504
  48. Zhang, Y.; Wang, D.; Wu, K.; Shao, X.; Diao, H.; Wang, Z.; Sun, M.; Huang, X.; Li, Y.; Tang, X.; Yan, M.; Guo, J. The traditional chinese medicine formula ftz protects against cardiac fibrosis by suppressing the tgfβ1-smad2/3 pathway. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11. doi: 10.1155/2022/5642307 PMID: 35497919
  49. Lei, W.; Chen, C.; Zhou, F.; Ma, Y.; Li, Y.; Zhang, H. Tanshinol alleviates ischemia-induced myocardial fibrosis via targeting ERK2 and disturbing the intermolecular autophosphorylation of ERK2Thr188. Biomed. Pharmacother., 2023, 168, 115729. doi: 10.1016/j.biopha.2023.115729 PMID: 37862964
  50. Chen, Q.; Xu, Q.; Zhu, H.; Wang, J.; Sun, N.; Bian, H.; Li, Y.; Lin, C. Salvianolic acid B promotes angiogenesis and inhibits cardiomyocyte apoptosis by regulating autophagy in myocardial ischemia. Chin. Med., 2023, 18(1), 155. doi: 10.1186/s13020-023-00859-w PMID: 38017536
  51. Luo, H.; Fu, L.; Wang, X.; Yini, Xu.; Ling, Tao.; Shen, X. Salvianolic acid B ameliorates myocardial fibrosis in diabetic cardiomyopathy by deubiquitinating Smad7. Chin. Med., 2023, 18(1), 161. doi: 10.1186/s13020-023-00868-9 PMID: 38072948
  52. Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; Maestrini, V.; Mancone, M.; Chilian, W.M.; Fedele, F. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int. J. Mol. Sci., 2020, 21(21), 8118. doi: 10.3390/ijms21218118 PMID: 33143256
  53. Fan, Q.; Tao, R.; Zhang, H.; Xie, H.; Lu, L.; Wang, T.; Su, M.; Hu, J.; Zhang, Q.; Chen, Q.; Iwakura, Y.; Shen, W.; Zhang, R.; Yan, X. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation, 2019, 139(5), 663-678. doi: 10.1161/CIRCULATIONAHA.118.036044 PMID: 30586706
  54. Turer, A.T.; Hill, J.A. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am. J. Cardiol., 2010, 106(3), 360-368. doi: 10.1016/j.amjcard.2010.03.032 PMID: 20643246
  55. Wang, R.; Wang, M.; Zhou, J.; Wu, D.; Ye, J. Saponins in chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury: Possible mechanism and target analysis. Front. Pharmacol., 2021, 11, 570867. doi: 10.3389/fphar.2020.570867
  56. Luan, F.; Rao, Z.; Peng, L.; Lei, Z.; Zeng, J.; Peng, X.; Yang, R.; Liu, R.; Zeng, N. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine, 2022, 100, 154047. doi: 10.1016/j.phymed.2022.154047 PMID: 35320770
  57. Lan, T.; Zeng, Q.; Jiang, W.; Liu, T.; Xu, W.; Yao, P.; Lu, W. Metabolism disorder promotes isoproterenol-induced myocardial injury in mice with high temperature and high humidity and high-fat diet. BMC Cardiovasc. Disord., 2022, 22(1), 133. doi: 10.1186/s12872-022-02583-z PMID: 35350989
  58. Han, Y.; Li, C.; Zhang, P.; Yang, X.; Min, J.; Wu, Q.; Xie, Y.; Jin, D.; Wang, Z.; Shao, F.; Quan, H. Protective effects of 5(S)-5-carboxystrictosidine on myocardial ischemia-reperfusion injury through activation of mitochondrial KATP channels. Eur. J. Pharmacol., 2022, 920, 174811. doi: 10.1016/j.ejphar.2022.174811 PMID: 35182546
  59. Park, E.S.; Kang, D.H.; Yang, M.K.; Kang, J.C.; Jang, Y.C.; Park, J.S.; Kim, S.K.; Shin, H.S. Cordycepin, 3′-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3β/p70S6K signaling pathway and HO-1 expression. Cardiovasc. Toxicol., 2014, 14(1), 1-9. doi: 10.1007/s12012-013-9232-0 PMID: 24178833
  60. Xu, H.; Cheng, J.; He, F. Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway. J. Physiol. Biochem., 2022, 78(2), 401-413. doi: 10.1007/s13105-021-00816-x PMID: 35230668
  61. Imenshahidi, M.; Hosseinzadeh, H. Berberine and barberry (BERBERIS VULGARIS): A clinical review. Phytother. Res., 2019, 33(3), 504-523. doi: 10.1002/ptr.6252 PMID: 30637820
  62. Chen, S.; Chen, Z.; Wang, Y.; Hao, W.; Yuan, Q.; Zhou, H.; Gao, C.; Wang, Y.; Wu, X.; Wang, S. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. J. Adv. Res., 2022, 40, 263-276. doi: 10.1016/j.jare.2021.11.017 PMID: 36100331
  63. Jia, X.; Shao, W.; Tian, S. Berberine alleviates myocardial ischemia–reperfusion injury by inhibiting inflammatory response and oxidative stress: The key function of miR-26b-5p-mediated PTGS2/MAPK signal transduction. Pharm. Biol., 2022, 60(1), 652-663. doi: 10.1080/13880209.2022.2048029 PMID: 35311466
  64. Tong, H.Y.; Dong, Y.; Huang, X.J.; Murtaza, G.; Huang, Y.J.; Sarfaraz Iqbal, M. Anshen buxin liuwei pill, a mongolian medicinal formula, could protect h2o2-induced h9c2 myocardial cell injury by suppressing apoptosis, calcium channel activation, and oxidative stress. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11. doi: 10.1155/2022/5023654 PMID: 35178104
  65. Li, Q.; Li, Z.; Liu, C.; Xu, M.; Li, T.; Wang, Y.; Feng, J.; Yin, X.; Du, X.; Lu, C. Maslinic acid ameliorates myocardial ischemia reperfusion injury-induced oxidative stress via activating nrf2 and inhibiting nf-κb pathways. Am. J. Chin. Med., 2023, 51(4), 929-951. doi: 10.1142/S0192415X2350043X PMID: 36974993
  66. Li, J.; Ma, X.; Yang, J.; Wang, L.; Huang, Y.; Zhu, Y. Lupeol alleviates myocardial ischemia-reperfusion injury in rats by regulating nf-κb and nrf2 pathways. Am. J. Chin. Med., 2022, 50(5), 1269-1280. doi: 10.1142/S0192415X22500525 PMID: 35670060
  67. Chen, X.; Wang, Q.; Shao, M.; Ma, L.; Guo, D.; Wu, Y.; Gao, P.; Wang, X.; Li, W.; Li, C.; Wang, Y. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed. Pharmacother., 2019, 120, 109487. doi: 10.1016/j.biopha.2019.109487 PMID: 31577975
  68. Zhang, Q.; Guo, D.; Wang, Y.; Wang, X.; Wang, Q. Danqi pill protects against heart failure post-acute myocardial infarction via hif-1α/pgc-1α mediated glucose metabolism pathway. Front. Pharmacol., 2020, 11, 00458. doi: 10.3389/fphar.2020.00458
  69. Zhang, X.; Qu, H.; Yang, T.; Liu, Q.; Zhou, H. Astragaloside iv attenuate mi-induced myocardial fibrosis and cardiac remodeling by inhibiting ros/caspase-1/gsdmd signaling pathway. Cell cycle, 2022, 1-14. doi: 10.1080/15384101.2022.2093598
  70. Tan, G.; Liao, W.; Dong, X.; Yang, G.; Zhu, Z.; Li, W.; Chai, Y.; Lou, Z. Metabonomic profiles delineate the effect of traditional Chinese medicine sini decoction on myocardial infarction in rats. PLoS One, 2012, 7(4), e34157. doi: 10.1371/journal.pone.0034157 PMID: 22493681
  71. Liu, J.; Li, Q.; Yin, Y.; Liu, R.; Xu, H.; Bi, K. Ultra-fast LC-ESI-MS/MS method for the simultaneous determination of six highly toxic Aconitum alkaloids from Aconiti kusnezoffii radix in rat plasma and its application to a pharmacokinetic study. J. Sep. Sci., 2014, 37(1-2), 171-178. doi: 10.1002/jssc.201300775 PMID: 24170571
  72. Chen, L.; Yan, L.; Zhang, W. Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. Korean J. Physiol. Pharmacol., 2022, 26(5), 325-333. doi: 10.4196/kjpp.2022.26.5.325 PMID: 36039733
  73. Gu, C.; Li, L.; Huang, Y.; Qian, D.; Liu, W.; Zhang, C.; Luo, Y.; Zhou, Z.; Kong, F.; Zhao, X.; Liu, H.; Gao, P.; Chen, J.; Yin, G. Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy. Oxid. Med. Cell. Longev., 2020, 2020, 1-22. doi: 10.1155/2020/3549704 PMID: 32774670
  74. Chen, P.; Liu, J.; Ruan, H.; Zhang, M.; Wu, P.; Yimei, D.; Han, B. Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Sci. Rep., 2019, 9(1), 18127. doi: 10.1038/s41598-019-54713-x PMID: 31792327
  75. Yan, T.; Li, X.; Nian, T.; Zhang, X.; He, B. Salidroside inhibits ischemia/reperfusion-induced myocardial apoptosis by targeting Mir-378a-3p via the Igf1r/Pi3k/Akt signaling pathway. Transplant. Proc., 2022, 54(7), 1970-1983. doi: 10.1016/j.transproceed.2022.05.017
  76. Yu, Y.W.; Liu, S.; Zhou, Y.Y.; Huang, K.Y.; Wu, B.S.; Lin, Z.H.; Zhu, C.X.; Xue, Y.J.; Ji, K.T. Shexiang Baoxin Pill attenuates myocardial ischemia/reperfusion injury by activating autophagy via modulating the ceRNA-Map3k8 pathway. Phytomedicine, 2022, 104, 154336. doi: 10.1016/j.phymed.2022.154336 PMID: 35849969
  77. Shen, J.; Zhu, Y.; Yu, H.; Fan, Z.; Xiao, F.; Wu, P.; Zhang, Q.; Xiong, X.; Pan, J.; Zhan, R. Buyang Huanwu decoction increases angiopoietin-1 expression and promotes angiogenesis and functional outcome after focal cerebral ischemia. J. Zhejiang Univ. Sci. B, 2014, 15(3), 272-280. doi: 10.1631/jzus.B1300166 PMID: 24599691
  78. Jinglong, T.; Weijuan, G.; Jun, L.; Tao, Q.; Hongbo, Z.; Shasha, L. The molecular and electrophysiological mechanism of Buyanghuanwu Decoction in learning and memory ability of vascular dementia rats. Brain Res. Bull., 2013, 99, 13-18. doi: 10.1016/j.brainresbull.2013.09.002 PMID: 24070657
  79. Zhang, L.; Chen, L.; You, X.; Li, M.; Shi, H.; Sun, W.; Leng, Y.; Xue, Y.; Wang, H. Naoxintong capsule limits myocardial infarct expansion by inhibiting platelet activation through the ERK5 pathway. Phytomedicine, 2022, 98, 153953. doi: 10.1016/j.phymed.2022.153953 PMID: 35092875
  80. Pan-Pan Hao, FJYC; Zhang, YZAY Traditional chinese medication for cardiovascular disease. Nat. Rev. Cardiol., 2015, 12(2), 115-122. doi: 10.1038/nrcardio.2014.177
  81. Zhang, M.; Guo, F.; Li, X.; Xian, M.; Wang, T.; Wu, H.; Wei, J.; Huang, Y.; Cui, X.; Wu, S.; Gong, M.; Yang, H. Yi-Xin-Shu capsule ameliorates cardiac hypertrophy by regulating RB/HDAC1/GATA4 signaling pathway based on proteomic and mass spectrometry image analysis. Phytomedicine, 2022, 103, 154185. doi: 10.1016/j.phymed.2022.154185 PMID: 35679794
  82. Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol., 2016, 188, 234-258. doi: 10.1016/j.jep.2016.05.005 PMID: 27154405
  83. Han, S.Y.; Li, H.X.; Ma, X.; Zhang, K.; Ma, Z.Z.; Jiang, Y.; Tu, P.F. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. J. Ethnopharmacol., 2013, 145(3), 722-727. doi: 10.1016/j.jep.2012.11.036 PMID: 23237935
  84. Xu, Y.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Panax notoginseng for inflammation-related chronic diseases: A review on the modulations of multiple pathways. Am. J. Chin. Med., 2018, 46(5), 971-996. doi: 10.1142/S0192415X18500519 PMID: 29976083
  85. Yang, B.R.; Cheung, K.K.; Zhou, X.; Xie, R.F.; Cheng, P.P.; Wu, S.; Zhou, Z.Y.; Tang, J.Y.; Hoi, P.M.; Wang, Y.H.; Lee, S.M.Y. Amelioration of acute myocardial infarction by saponins from flower buds of Panax notoginseng via pro-angiogenesis and anti-apoptosis. J. Ethnopharmacol., 2016, 181, 50-58. doi: 10.1016/j.jep.2016.01.022 PMID: 26806572
  86. Liu, J.; Wang, Y.; Qiu, L.; Yu, Y.; Wang, C. Saponins of Panax notoginseng: Chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin. Investig. Drugs, 2014, 23(4), 523-539. doi: 10.1517/13543784.2014.892582 PMID: 24555869
  87. Tian, X.; Chen, X.; Jiang, Q.; Sun, Q.; Liu, T.; Hong, Y.; Zhang, Y.; Jiang, Y.; Shao, M.; Yang, R.; Li, C.; Wang, Q.; Wang, Y. Notoginsenoside r1 ameliorates cardiac lipotoxicity through ampk signaling pathway. Front. Pharmacol., 2022, 13, 864326. doi: 10.3389/fphar.2022.864326 PMID: 35370720
  88. Xu, C.; Wang, W.; Wang, B.; Zhang, T.; Cui, X.; Pu, Y.; Li, N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. J. Ethnopharmacol., 2019, 236, 443-465. doi: 10.1016/j.jep.2019.02.035 PMID: 30802611
  89. Li, Y.; Li, X.; Chen, X.; Sun, X. Liu, X Qishen granule (qsg) inhibits monocytes released from the spleen and protect myocardial function via the tlr4-myd88-nf-κb p65 pathway in heart failure mice. Front. Pharmacol., 2022, 13, 850187. doi: 10.3389/fphar.2022.850187
  90. Humeres, C.; Frangogiannis, N.G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl. Sci., 2019, 4(3), 449-467. doi: 10.1016/j.jacbts.2019.02.006 PMID: 31312768
  91. Deng, M.; Chen, H.; Long, J.; Song, J.; Xie, L.; Li, X. Calycosin: A review of its pharmacological effects and application prospects. Expert Rev. Anti Infect. Ther., 2021, 19(7), 911-925. doi: 10.1080/14787210.2021.1863145 PMID: 33346681
  92. Wang, X.; Li, W.; Zhang, Y.; Sun, Q.; Cao, J.; Tan, N.; Yang, S.; Lu, L.; Zhang, Q.; Wei, P.; Ma, X.; Wang, W.; Wang, Y. Calycosin as a novel pi3k activator reduces inflammation and fibrosis in heart failure through akt–ikk/stat3 axis. Front. Pharmacol., 2022, 13, 828061. doi: 10.3389/fphar.2022.828061 PMID: 35264961
  93. Wang, S.H.; Tsai, K.L.; Chou, W.C.; Cheng, H.C.; Huang, Y.T.; Ou, H.C.; Chang, Y.C. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through nrf2/ho-1 signaling pathway. Am. J. Chin. Med., 2022, 50(5), 1281-1298. doi: 10.1142/S0192415X22500537 PMID: 35670059
  94. Zhou, Z.; Zhang, J.; You, L.; Wang, T.; Wang, K.; Wang, L.; Kong, X.; Gao, Y.; Sun, X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front. Endocrinol., 2022, 13, 1000727. doi: 10.3389/fendo.2022.1000727 PMID: 36204095
  95. Wang, Y.; Cui, W.; Yang, C.; Wei, H.; Liu, Q.; Xiong, L.; Li, H.; Lin, Y. Comparison of geqingpi and sihuaqingpi based on ultra‐high‐performance liquid chromatography‐tandem mass spectrometry combined with multivariate statistics, network pharmacology analysis, and molecular docking. J. Sep. Sci., 2022, 45(22), 4079-4098. doi: 10.1002/jssc.202200564 PMID: 36200604
  96. Huang, J.; Chen, R.; Zhou, J.; Zhang, Q.; Xue, C.; Li, Y.; Zheng, L.; Huang, Y.; Wang, Q.; Chen, Y.; Gong, Z. Comparative pharmacokinetic study of the five anti-inflammatory active ingredients of Inula cappa in a normal and an LPS-induced inflammatory cell model. Front. Pharmacol., 2022, 13, 981112. doi: 10.3389/fphar.2022.981112 PMID: 36199688
  97. Wu, E.; Zhang, J.; Chen, W.; Wang, Y.; Yin, H. Comparative pharmacokinetic study of nine bioactive components in osteoarthritis rat plasma using uplc‐ms/ms after single and combined oral administration of epimedii folium and chuanxiong rhizoma extract. Biomed. Chromatogr., 2022, 5518. doi: 10.1002/bmc.5518 PMID: 36201235
  98. Mohammed, S.A.D.; Liu, H.; Baldi, S.; Chen, P.; Lu, F.; Liu, S. Gjd modulates cardiac/vascular inflammation and decreases blood pressure in hypertensive rats. Mediators Inflamm., 2022, 2022, 1-19. doi: 10.1155/2022/7345116 PMID: 36164390

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024