The Use of Lipid-based Nanocarriers to Improve Ovarian Cancer Treatment: An Overview of Recent Developments


Цитировать

Полный текст

Аннотация

:Ovarian cancer poses a formidable health challenge for women globally, necessitating innovative therapeutic approaches. This review provides a succinct summary of the current research status on lipid-based nanocarriers in the context of ovarian cancer treatment. Lipid-based nanocarriers, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), offer a promising solution for delivering anticancer drugs with enhanced therapeutic effectiveness and reduced adverse effects. Their versatility in transporting both hydrophobic and hydrophilic medications makes them well-suited for a diverse range of anticancer drugs. Active targeting techniques like ligand-conjugation and surface modifications have been used to reduce off-target effects and achieve tumour-specific medication delivery. The study explores formulation techniques and adjustments meant to enhance drug stability and encapsulation in these nanocarriers. Encouraging results from clinical trials and preclinical investigations underscore the promise of lipid-based nanocarriers in ovarian cancer treatment, providing optimism for improved patient outcomes. Notwithstanding these advancements, challenges related to clearance, long-term stability, and scalable manufacturing persist. Successfully translating lipidbased nanocarriers into clinical practice requires addressing these hurdles. To sum up, lipidbased nanocarriers are a viable strategy to improve the effectiveness of therapy for ovarian cancer. With their more focused medication administration and lower systemic toxicity, they may completely change the way ovarian cancer is treated and increase patient survival rates. Lipidbased nanocarriers need to be further researched and developed to become a therapeutically viable treatment for ovarian cancer.

Об авторах

Junaid Tantray

Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University

Email: info@benthamscience.net

Akhilesh Patel

Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University

Email: info@benthamscience.net

Bhupendra Prajapati

Department of Pharmaceutics and Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Sourabh Kosey

Department of Pharmacy Practice, ISF College of Pharmacy

Email: info@benthamscience.net

Sankha Bhattacharya

School of Pharmacy & Technology, Management, SVKM’S NMIMS Deemed-to-be University

Email: info@benthamscience.net

Список литературы

  1. Höhn, A.K.; Brambs, C.E.; Hiller, G.G.R.; May, D.; Schmoeckel, E.; Horn, L.C. 2020 WHO classification of female genital tumors. Geburtshilfe Frauenheilkd., 2021, 81(10), 1145-1153. doi: 10.1055/a-1545-4279 PMID: 34629493
  2. Žilovič, D.; Čiurlienė, R.; Sabaliauskaitė, R.; Jarmalaitė, S. Future screening prospects for ovarian cancer. Cancers, 2021, 13(15), 3840. doi: 10.3390/cancers13153840 PMID: 34359740
  3. Scully, R.E. Pathology of ovarian cancer precursors. J. Cell. Biochem., 1995, 59(S23), 208-218. doi: 10.1002/jcb.240590928 PMID: 8747398
  4. Seidman, J.D.; Kurman, R.J. Ovarian serous borderline tumors: A critical review of the literature with emphasis on prognostic indicators. Hum. Pathol., 2000, 31(5), 539-557. doi: 10.1053/hp.2000.8048 PMID: 10836293
  5. Ebell, M.H.; Culp, M.B.; Radke, T.J. A systematic review of symptoms for the diagnosis of ovarian cancer. Am. J. Prev. Med., 2016, 50(3), 384-394. doi: 10.1016/j.amepre.2015.09.023 PMID: 26541098
  6. Modugno, F. Edwards, RP Ovarian cancer: Prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report. Int. J. Gynecol. Cancer, 2012, 22.
  7. Mancari, R.; Cutillo, G.; Bruno, V.; Vincenzoni, C.; Mancini, E.; Baiocco, E.; Bruni, S.; Vocaturo, G.; Chiofalo, B.; Vizza, E. Development of new medical treatment for epithelial ovarian cancer recurrence. Gland Surg., 2020, 9(4), 1149-1163. doi: 10.21037/gs-20-413 PMID: 32953630
  8. Ha, K.Y.; Kim, Y.H.; Ahn, J.H.; Park, H.Y. Factors affecting survival in patients undergoing palliative spine surgery for metastatic lung and hepatocellular cancer: Dose the type of surgery influence the surgical results for metastatic spine disease? Clin. Orthop. Surg., 2015, 7(3), 344-350. doi: 10.4055/cios.2015.7.3.344 PMID: 26330957
  9. Feghaly, I; Kourie, H; Moubarak, M; Chouery, E; Mehawej, C; Jalkh, N Genetic profile of borderline ovarian tumors in the Lebanese population by whole‐exome sequencing. Int. J. Gynecol. Obstet., 2023, 14805. doi: 10.1002/ijgo.14805
  10. Chan, J.K.; Urban, R.; Cheung, M.K.; Osann, K.; Husain, A.; Teng, N.N.; Kapp, D.S.; Berek, J.S.; Leiserowitz, G.S.; Leiserowitz, G.S. Ovarian cancer in younger vs older women: A population-based analysis. Br. J. Cancer, 2006, 95(10), 1314-1320. doi: 10.1038/sj.bjc.6603457 PMID: 17088903
  11. Mohammadian, M.; Ghafari, M.; Khosravi, B.; Salehiniya, H.; Aryaie, M.; Bakeshei, F.A.; Mohammadian-Hafshejani, A. Variations in the incidence and mortality of ovarian cancer and their relationship with the human development index in European Countries in 2012. Biomed. Res. Ther., 2017, 4(8), 1541-1557. doi: 10.15419/bmrat.v4i08.228
  12. Du, L.; Wang, Y.; Sun, X.; Li, H.; Geng, X.; Ge, M.; Zhu, Y. Thyroid cancer: Trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China. BMC Cancer, 2018, 18(1), 291. doi: 10.1186/s12885-018-4081-7 PMID: 29544469
  13. Poole, E.M.; Merritt, M.A.; Jordan, S.J.; Yang, H.P.; Hankinson, S.E.; Park, Y.; Rosner, B.; Webb, P.M.; Cramer, D.W.; Wentzensen, N.; Terry, K.L.; Tworoger, S.S. Hormonal and reproductive risk factors for epithelial ovarian cancer by tumor aggressiveness. Cancer Epidemiol. Biomarkers Prev., 2013, 22(3), 429-437. doi: 10.1158/1055-9965.EPI-12-1183-T PMID: 23307531
  14. Ries, L.A.G. Ovarian cancer: Survival and treatment differences by age. Cancer, 1993, 71(S2), 524-529. doi: 10.1002/cncr.2820710206 PMID: 8420672
  15. Ørskov, M.; Iachina, M.; Guldberg, R.; Mogensen, O.; Mertz Nørgård, B. Predictors of mortality within 1 year after primary ovarian cancer surgery: A nationwide cohort study. BMJ Open, 2016, 6(4), e010123. PMID: 27103625
  16. Tung, K.H.; Goodman, M.T.; Wu, A.H.; McDuffie, K.; Wilkens, L.R.; Kolonel, L.N.; Nomura, A.M.; Terada, K.Y.; Carney, M.E.; Sobin, L.H. Reproductive factors and epithelial ovarian cancer risk by histologic type: A multiethnic case-control study. Am. J. Epidemiol., 2003, 158(7), 629-638. doi: 10.1093/aje/kwg177 PMID: 14507598
  17. Mori, M.; Harabuchi, I.; Miyake, H.; Casagrande, J.T.; Henderson, B.; Ross, R.K. Reproductive, genetic, and dietary risk factors for ovarian cancer. Am. J. Epidemiol., 1988, 128(4), 771-777. doi: 10.1093/oxfordjournals.aje.a115030 PMID: 3421242
  18. Kim, S.J.; Rosen, B.; Fan, I.; Ivanova, A.; McLaughlin, J.R.; Risch, H.; Narod, S.A.; Kotsopoulos, J. Epidemiologic factors that predict long-term survival following a diagnosis of epithelial ovarian cancer. Br. J. Cancer, 2017, 116(7), 964-971. doi: 10.1038/bjc.2017.35 PMID: 28208158
  19. Salazar-Martinez, E.; Lazcano-Ponce, E.C.; Gonzalez Lira-Lira, G.; Escudero-De los Rios, P.; Salmeron-Castro, J.; Hernandez-Avila, M. Reproductive factors of ovarian and endometrial cancer risk in a high fertility population in Mexico. Cancer Res., 1999, 59(15), 3658-3662. PMID: 10446978
  20. Fathalla, M.F. Incessant ovulation-a factor in ovarian neoplasia? Lancet, 1971, 298(7716), 163. doi: 10.1016/S0140-6736(71)92335-X PMID: 4104488
  21. Moorman, P.G.; Schildkraut, J.M.; Calingaert, B.; Halabi, S.; Vine, M.F.; Berchuck, A. Ovulation and ovarian cancer: A comparison of two methods for calculating lifetime ovulatory cycles (United States). Cancer Causes Control, 2002, 13(9), 807-811. doi: 10.1023/A:1020678100977 PMID: 12462545
  22. Fujita, M.; Tase, T.; Kakugawa, Y.; Hoshi, S.; Nishino, Y.; Nagase, S.; Ito, K.; Niikura, H.; Yaegashi, N.; Minami, Y. Smoking, earlier menarche and low parity as independent risk factors for gynecologic cancers in Japanese: A case-control study. Tohoku J. Exp. Med., 2008, 216(4), 297-307. doi: 10.1620/tjem.216.297 PMID: 19060444
  23. Jordan, S.J.; Webb, P.M.; Green, A.C. Height, age at menarche, and risk of epithelial ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2005, 14(8), 2045-2048. doi: 10.1158/1055-9965.EPI-05-0085 PMID: 16103459
  24. Titus-Ernstoff, L.; Perez, K.; Cramer, D.W.; Harlow, B.L.; Baron, J.A.; Greenberg, E.R. Menstrual and reproductive factors in relation to ovarian cancer risk. Br. J. Cancer, 2001, 84(5), 714-721. doi: 10.1054/bjoc.2000.1596 PMID: 11237375
  25. Hankinson, S.E.; Colditz, G.A.; Hunter, D.J.; Willett, W.C.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. A prospective study of reproductive factors and risk of epithelial ovarian cancer. Cancer, 1995, 76(2), 284-290. doi: 10.1002/1097-0142(19950715)76:23.0.CO;2-5 PMID: 8625104
  26. Kvåle, G.; Heuch, I.; Nilssen, S.; Beral, V. Reproductive factors and risk of ovarian cancer: A prospective study. Int. J. Cancer, 1988, 42(2), 246-251. doi: 10.1002/ijc.2910420217 PMID: 3403067
  27. Adami, H-O.; Lambe, M.; Persson, I.; Ekbom, A.; Adami, H.O.; Hsieh, C.C.; Trichopoulos, D.; Ekbom, A.; Lambe, M.; Leon, D.; Janson, P.O. Parity, age at first childbirth, and risk of ovarian cancer. Lancet, 1994, 344(8932), 1250-1254. doi: 10.1016/S0140-6736(94)90749-8 PMID: 7967985
  28. Jordan, S.J.; Green, A.C.; Nagle, C.M.; Olsen, C.M.; Whiteman, D.C.; Webb, P.M. Beyond parity: Association of ovarian cancer with length of gestation and offspring characteristics. Am. J. Epidemiol., 2009, 170(5), 607-614. doi: 10.1093/aje/kwp185 PMID: 19638480
  29. Sköld, C.; Bjørge, T.; Ekbom, A.; Engeland, A.; Gissler, M.; Grotmol, T.; Madanat-Harjuoja, L.; Gulbech Ording, A.; Stephansson, O.; Trabert, B.; Tretli, S.; Troisi, R.; Sørensen, H.T.; Glimelius, I. Preterm delivery is associated with an increased risk of epithelial ovarian cancer among parous women. Int. J. Cancer, 2018, 143(8), 1858-1867. doi: 10.1002/ijc.31581 PMID: 29737528
  30. Calderon-Margalit, R.; Friedlander, Y.; Yanetz, R.; Deutsch, L.; Perrin, M.C.; Kleinhaus, K.; Tiram, E.; Harlap, S.; Paltiel, O. Preeclampsia and subsequent risk of cancer: Update from the Jerusalem Perinatal Study. Am. J. Obstet. Gynecol., 2009, 200(1), 63.e1-63.e5. doi: 10.1016/j.ajog.2008.06.057 PMID: 18822400
  31. Rossing, M.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Weiss, N.S. Risk of epithelial ovarian cancer in relation to benign ovarian conditions and ovarian surgery. Cancer Causes Control, 2008, 19(10), 1357-1364. doi: 10.1007/s10552-008-9207-9 PMID: 18704718
  32. Caserta, R.; Nesti, E.; Caserta, L.; Guerriero, V.; Di Francesco, D.; Panariello, S. Small ovarian cysts in postmenopause: Assessment of their malignant potential with vaginal ultrasonography and tumor marker Ca125 titration. Minerva Ginecol., 2001, 53(1), 120-124. PMID: 11526706
  33. Crayford, T.J.B.; Campbell, S.; Bourne, T.H.; Rawson, H.J.; Collins, W.P. Benign ovarian cysts and ovarian cancer: A cohort study with implications for screening. Lancet, 2000, 355(9209), 1060-1063. doi: 10.1016/S0140-6736(00)02038-9 PMID: 10744092
  34. Rossing, M.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Weiss, N.S. Menopausal hormone therapy and risk of epithelial ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2007, 16(12), 2548-2556. doi: 10.1158/1055-9965.EPI-07-0550 PMID: 18086757
  35. Hempling, R.; Wong, C.; Stevenpiver, M.; Natarajan, N.; Mettlin, C. Hormone replacement therapy as a risk factor for epithelial ovarian cancer: Results of a case-control study. Obstet. Gynecol., 1997, 89(6), 1012-1016. doi: 10.1016/S0029-7844(97)00118-X PMID: 9170483
  36. Glud, E.; Kjaer, S.K.; Thomsen, B.L.; Høgdall, C.; Christensen, L.; Høgdall, E.; Bock, J.E.; Blaakaer, J. Hormone therapy and the impact of estrogen intake on the risk of ovarian cancer. Arch. Intern. Med., 2004, 164(20), 2253-2259. doi: 10.1001/archinte.164.20.2253 PMID: 15534163
  37. Lacey, J.V., Jr; Mink, P.J.; Lubin, J.H.; Sherman, M.E.; Troisi, R.; Hartge, P.; Schatzkin, A.; Schairer, C. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA, 2002, 288(3), 334-341. doi: 10.1001/jama.288.3.334 PMID: 12117398
  38. Wernli, K.J.; Newcomb, P.A.; Hampton, J.M.; Trentham-Dietz, A.; Egan, K.M. Hormone therapy and ovarian cancer: Incidence and survival. Cancer Causes Control, 2008, 19(6), 605-613. doi: 10.1007/s10552-008-9125-x PMID: 18264784
  39. Mørch, L.S.; Løkkegaard, E.; Andreasen, A.H.; Krüger-Kjaer, S.; Lidegaard, O. Hormone therapy and ovarian cancer. JAMA, 2009, 302(3), 298-305. doi: 10.1001/jama.2009.1052 PMID: 19602689
  40. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30. doi: 10.3322/caac.21442 PMID: 29313949
  41. Kazerouni, N.; Greene, M.H.; Lacey, J.V., Jr; Mink, P.J.; Schairer, C. Family history of breast cancer as a risk factor for ovarian cancer in a prospective study. Cancer, 2006, 107(5), 1075-1083. doi: 10.1002/cncr.22082 PMID: 16881078
  42. Walsh, T.; Casadei, S.; Lee, M.K.; Pennil, C.C.; Nord, A.S.; Thornton, A.M.; Roeb, W.; Agnew, K.J.; Stray, S.M.; Wickramanayake, A.; Norquist, B.; Pennington, K.P.; Garcia, R.L.; King, M.C.; Swisher, E.M. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci., 2011, 108(44), 18032-18037. doi: 10.1073/pnas.1115052108 PMID: 22006311
  43. Toss, A; Tomasello, C; Razzaboni, E; Contu, G; Grandi, G; Cagnacci A Hereditary ovarian cancer: Not only BRCA 1 and 2 genes. BioMed Res. Int., 2015, 2015.
  44. Andrews, L.; Mutch, D.G. Hereditary ovarian cancer and risk reduction. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 31-48. doi: 10.1016/j.bpobgyn.2016.10.017 PMID: 28254144
  45. Kotsopoulos, J.; Gronwald, J.; Karlan, B.; Rosen, B.; Huzarski, T.; Moller, P.; Lynch, H.T.; Singer, C.F.; Senter, L.; Neuhausen, S.L.; Tung, N.; Eisen, A.; Foulkes, W.D.; Ainsworth, P.; Sun, P.; Lubinski, J.; Narod, S.A. Age-specific ovarian cancer risks among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol., 2018, 150(1), 85-91. doi: 10.1016/j.ygyno.2018.05.011 PMID: 29793803
  46. Metcalfe, K.A.; Lynch, H.T.; Ghadirian, P.; Tung, N.; Olivotto, I.A.; Foulkes, W.D.; Warner, E.; Olopade, O.; Eisen, A.; Weber, B.; McLennan, J.; Sun, P.; Narod, S.A. The risk of ovarian cancer after breast cancer in BRCA1 and BRCA2 carriers. Gynecol. Oncol., 2005, 96(1), 222-226. doi: 10.1016/j.ygyno.2004.09.039 PMID: 15589605
  47. Kauff, N.D.; Satagopan, J.M.; Robson, M.E.; Scheuer, L.; Hensley, M.; Hudis, C.A.; Ellis, N.A.; Boyd, J.; Borgen, P.I.; Barakat, R.R.; Norton, L.; Castiel, M.; Nafa, K.; Offit, K. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med., 2002, 346(21), 1609-1615. doi: 10.1056/NEJMoa020119 PMID: 12023992
  48. Falconer, H.; Yin, L.; Grönberg, H.; Altman, D. Ovarian cancer risk after salpingectomy: A nationwide population-based study. J. Natl. Cancer Inst., 2015, 107(2), dju410. doi: 10.1093/jnci/dju410 PMID: 25628372
  49. Goodman, M.T.; Wu, A.H.; Tung, K-H.; McDuffie, K.; Kolonel, L.N.; Nomura, A.M.Y.; Terada, K.; Wilkens, L.R.; Murphy, S.; Hankin, J.H. Association of dairy products, lactose, and calcium with the risk of ovarian cancer. Am. J. Epidemiol., 2002, 156(2), 148-157. doi: 10.1093/aje/kwf022 PMID: 12117706
  50. Pan, S.Y.; Ugnat, A.M.; Mao, Y.; Wen, S.W.; Johnson, K.C. A case-control study of diet and the risk of ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2004, 13(9), 1521-1527. doi: 10.1158/1055-9965.1521.13.9 PMID: 15342455
  51. McCann, S.E.; Freudenheim, J.L.; Graham, S.; Marshall, J.R. Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups. J. Nutr., 2003, 133(6), 1937-1942. doi: 10.1093/jn/133.6.1937 PMID: 12771342
  52. Ong, J.S.; Cuellar-Partida, G.; Lu, Y.; Fasching, P.A.; Hein, A.; Burghaus, S.; Beckmann, M.W.; Lambrechts, D.; Van Nieuwenhuysen, E.; Vergote, I.; Vanderstichele, A.; Anne Doherty, J.; Anne Rossing, M.; Chang-Claude, J.; Eilber, U.; Rudolph, A.; Wang-Gohrke, S.; Goodman, M.T.; Bogdanova, N.; Dörk, T.; Dürst, M.; Hillemanns, P.; Runnebaum, I.B.; Antonenkova, N.; Butzow, R.; Leminen, A.; Nevanlinna, H.; Pelttari, L.M.; Edwards, R.P.; Kelley, J.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Cannioto, R.; Høgdall, E.; Høgdall, C.K.; Jensen, A.; Giles, G.G.; Bruinsma, F.; Kjaer, S.K.; Hildebrandt, M.A.T.; Liang, D.; Lu, K.H.; Wu, X.; Bisogna, M.; Dao, F.; Levine, D.A.; Cramer, D.W.; Terry, K.L.; Tworoger, S.S.; Stampfer, M.; Missmer, S.; Bjorge, L.; Salvesen, H.B.; Kopperud, R.K.; Bischof, K.; Aben, K.K.H.; Kiemeney, L.A.; Massuger, L.F.A.G.; Brooks-Wilson, A.; Olson, S.H.; McGuire, V.; Rothstein, J.H.; Sieh, W.; Whittemore, A.S.; Cook, L.S.; Le, N.D.; Gilks, C.B.; Gronwald, J.; Jakubowska, A.; Lubiński, J.; Kluz, T.; Song, H.; Tyrer, J.P.; Wentzensen, N.; Brinton, L.; Trabert, B.; Lissowska, J.; McLaughlin, J.R.; Narod, S.A.; Phelan, C.; Anton-Culver, H.; Ziogas, A.; Eccles, D.; Campbell, I.; Gayther, S.A.; Gentry-Maharaj, A.; Menon, U.; Ramus, S.J.; Wu, A.H.; Dansonka-Mieszkowska, A.; Kupryjanczyk, J.; Timorek, A.; Szafron, L.; Cunningham, J.M.; Fridley, B.L.; Winham, S.J.; Bandera, E.V.; Poole, E.M.; Morgan, T.K.; Risch, H.A.; Goode, E.L.; Schildkraut, J.M.; Pearce, C.L.; Berchuck, A.; Pharoah, P.D.P.; Chenevix-Trench, G.; Gharahkhani, P.; Neale, R.E.; Webb, P.M.; MacGregor, S. Association of vitamin D levels and risk of ovarian cancer: A Mendelian randomization study. Int. J. Epidemiol., 2016, 45(5), 1619-1630. doi: 10.1093/ije/dyw207 PMID: 27594614
  53. Maheshwari, A.; Kumar, N.; Mahantshetty, U. Gynecological cancers: A summary of published Indian data. South Asian J. Cancer, 2016, 5(3), 112-120. doi: 10.4103/2278-330X.187575 PMID: 27606294
  54. Committee on the State of the Science in Ovarian Cancer ResearchOvarian Cancers: Evolving Paradigms in Research and Care; National Academies Press, 2016.
  55. Vergote, I.; Amant, F.; Kristensen, G.; Ehlen, T.; Reed, N.S.; Casado, A. A Primary surgery or neoadjuvant chemotherapy followed by interval debulking surgery in advanced ovarian cancer. Europ. J. Cancer, 2011, 47(S3), S88-92. doi: 10.1016/S0959-8049(11)70152-6
  56. Bristow, R.E.; Chi, D.S. Platinum-based neoadjuvant chemotherapy and interval surgical cytoreduction for advanced ovarian cancer: A meta-analysis. Gynecol. Oncol., 2006, 103(3), 1070-1076. doi: 10.1016/j.ygyno.2006.06.025 PMID: 16875720
  57. Griffiths, C.T.; Fuller, A.F. Intensive surgical and chemotherapeutic management of advanced ovarian cancer. Surg. Clin. North Am., 1978, 58(1), 131-142. doi: 10.1016/S0039-6109(16)41440-4 PMID: 417410
  58. Chi, D.S.; Eisenhauer, E.L.; Lang, J.; Huh, J.; Haddad, L.; Abu-Rustum, N.R.; Sonoda, Y.; Levine, D.A.; Hensley, M.; Barakat, R.R. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol. Oncol., 2006, 103(2), 559-564. doi: 10.1016/j.ygyno.2006.03.051 PMID: 16714056
  59. Zivanovic, O.; Eisenhauer, E.L.; Zhou, Q.; Iasonos, A.; Sabbatini, P.; Sonoda, Y.; Abu-Rustum, N.R.; Barakat, R.R.; Chi, D.S. The impact of bulky upper abdominal disease cephalad to the greater omentum on surgical outcome for stage IIIC epithelial ovarian, fallopian tube, and primary peritoneal cancer. Gynecol. Oncol., 2008, 108(2), 287-292. doi: 10.1016/j.ygyno.2007.10.001 PMID: 17996927
  60. Wright, A.A.; Bohlke, K.; Armstrong, D.K.; Bookman, M.A.; Cliby, W.A.; Coleman, R.L.; Dizon, D.S.; Kash, J.J.; Meyer, L.A.; Moore, K.N.; Olawaiye, A.B.; Oldham, J.; Salani, R.; Sparacio, D.; Tew, W.P.; Vergote, I.; Edelson, M.I. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of gynecologic oncology and american society of clinical oncology clinical practice guideline. Gynecol. Oncol., 2016, 143(1), 3-15. doi: 10.1016/j.ygyno.2016.05.022 PMID: 27650684
  61. Fagotti, A.; Ferrandina, M.G.; Vizzielli, G.; Pasciuto, T.; Fanfani, F.; Gallotta, V. Randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer (SCORPION-NCT01461850). Int. J. Gynecol. Cancer, 2020, 30(11), 1657-1664.
  62. Fracasso, P.M.; Blessing, J.A.; Molpus, K.L.; Adler, L.M.; Sorosky, J.I.; Rose, P.G. Phase II study of oxaliplatin as second-line chemotherapy in endometrial carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol., 2006, 103(2), 523-526. doi: 10.1016/j.ygyno.2006.03.043 PMID: 16712905
  63. Chung, M.T.; Lai, H.C.; Sytwu, H.K.; Yan, M.D.; Shih, Y.L.; Chang, C.C.; Yu, M.H.; Liu, H.S.; Chu, D.W.; Lin, Y.W. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol. Oncol., 2009, 112(3), 646-653. doi: 10.1016/j.ygyno.2008.10.026 PMID: 19095296
  64. Chang, S.J.; Bristow, R.E.; Chi, D.S.; Cliby, W.A. Role of aggressive surgical cytoreduction in advanced ovarian cancer. J. Gynecol. Oncol., 2015, 26(4), 336-342. doi: 10.3802/jgo.2015.26.4.336 PMID: 26197773
  65. Bristow, R.E.; Puri, I.; Chi, D.S. Cytoreductive surgery for recurrent ovarian cancer: A meta-analysis. Gynecol. Oncol., 2009, 112(1), 265-274. doi: 10.1016/j.ygyno.2008.08.033 PMID: 18937969
  66. Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer Meta-analysis Collaboration. Neoadjuvant chemotherapy for locally advanced cervical cancer: A systematic review and meta-analysis of individual patient data from 21 randomised trials. Europ. J. Cancer, 2003, 39(17), 2470-2486.
  67. Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J., 1982, 1(7), 841-845. doi: 10.1002/j.1460-2075.1982.tb01257.x PMID: 6329708
  68. Gabrielsson, S.; Tuvesson, H.; Wiklund Gustin, L.; Jormfeldt, H. Positioning Psychiatric and Mental Health Nursing as a Transformative Force in Health Care. Issues Ment. Health Nurs., 2020, 41(11), 976-984. doi: 10.1080/01612840.2020.1756009 PMID: 32584618
  69. Schnetz, E.; Fartasch, M. Microdialysis for the evaluation of penetration through the human skin barrier - a promising tool for future research? Eur. J. Pharm. Sci., 2001, 12(3), 165-174. doi: 10.1016/S0928-0987(00)00155-X PMID: 11113635
  70. Riviere, J.E.; Heit, M.C. Electrically-assisted transdermal drug delivery. Pharm. Res., 1997, 14(6), 687-697. doi: 10.1023/A:1012129801406 PMID: 9210183
  71. Abramson, H.A.; Gorin, M.H. Skin Reactions. IX. The electrophoretic demonstration of the patent pores of the living human skin; its relation to the charge of the skin. J. Phys. Chem., 1940, 44(9), 1094-1102. doi: 10.1021/j150405a008
  72. Grimnes, S. Pathways of ionic flow through human skin in vivo. Acta Derm. Venereol., 1984, 64(2), 93-98. doi: 10.2340/00015555649398 PMID: 6203315
  73. Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov., 2004, 3(2), 115-124. doi: 10.1038/nrd1304 PMID: 15040576
  74. Badwe, R.A.; Gregory, W.M.; Chaudary, M.A.; Richards, M.A.; Bentley, A.E.; Rubens, R.D.; Fentiman, I.S. Timing of surgery during menstrual cycle and survival of premenopausal women with operable breast cancer. Lancet, 1991, 337(8752), 1261-1264. doi: 10.1016/0140-6736(91)92927-T PMID: 1674070
  75. Lübbe, A.S.; Alexiou, C.; Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res., 2001, 95(2), 200-206. doi: 10.1006/jsre.2000.6030 PMID: 11162046
  76. Wang, A.Z.; Gu, F.; Zhang, L.; Chan, J.M.; Radovic-Moreno, A.; Shaikh, M.R.; Farokhzad, O.C. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther., 2008, 8(8), 1063-1070. doi: 10.1517/14712598.8.8.1063 PMID: 18613759
  77. Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769. doi: 10.1038/sj.clpt.6100400 PMID: 17957183
  78. Alaouie, A.M.; Sofou, S. Liposomes with triggered content release for cancer therapy. J. Biomed. Nanotechnol., 2008, 4(3), 234-244. doi: 10.1166/jbn.2008.335
  79. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204. doi: 10.1016/j.jconrel.2007.12.017 PMID: 18261822
  80. Tomalia, D.A.; Reyna, L.A.; Svenson, S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging; Portland Press Ltd., 2007. doi: 10.1042/BST0350061
  81. Majoros, I.; Williams, C.; Baker, J., Jr Current dendrimer applications in cancer diagnosis and therapy. Curr. Top. Med. Chem., 2008, 8(14), 1165-1179. doi: 10.2174/156802608785849049 PMID: 18855703
  82. Liao, J.Y. Construction of nanogold hollow balls with dendritic surface as immobilized affinity support for protein adsorption. Colloids Surf. B Biointerfaces, 2007, 57(1), 75-80. doi: 10.1016/j.colsurfb.2007.01.006 PMID: 17303394
  83. Bakri, S.J.; Pulido, J.S.; Mukherjee, P.; Marler, R.J.; Mukhopadhyay, D. Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina, 2008, 28(1), 147-149. doi: 10.1097/IAE.0b013e3180dc9360 PMID: 18185152
  84. Tiwari, S.B.; Amiji, M.M. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J. Nanosci. Nanotechnol., 2006, 6(9), 3215-3221. doi: 10.1166/jnn.2006.440 PMID: 17048539
  85. Leamon, C.P.; Low, P.S. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov. Today, 2001, 6(1), 44-51. doi: 10.1016/S1359-6446(00)01594-4 PMID: 11165172
  86. Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782. doi: 10.1038/nrd2614 PMID: 18758474
  87. Fenske, D.B.; Cullis, P.R. Liposomal nanomedicines. Expert Opin. Drug Deliv., 2008, 5(1), 25-44. doi: 10.1517/17425247.5.1.25 PMID: 18095927
  88. Fenske, D.B.; Chonn, A.; Cullis, P.R. Liposomal nanomedicines: An emerging field. Toxicol. Pathol., 2008, 36(1), 21-29. doi: 10.1177/0192623307310960 PMID: 18337218
  89. Ko, Y.T.; Kale, A.; Hartner, W.C.; Papahadjopoulos-Sternberg, B.; Torchilin, V.P. Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J. Control. Release, 2009, 133(2), 132-138. doi: 10.1016/j.jconrel.2008.09.079
  90. Xu, L.; Pirollo, K.F.; Tang, W.H.; Rait, A.; Chang, E.H. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther., 1999, 10(18), 2941-2952. doi: 10.1089/10430349950016357 PMID: 10609655
  91. Yu, W.; Pirollo, K.F.; Rait, A.; Yu, B.; Xiang, L.M.; Huang, W.Q.; Zhou, Q.; Ertem, G.; Chang, E.H. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther., 2004, 11(19), 1434-1440. doi: 10.1038/sj.gt.3302304 PMID: 15229629
  92. Stover, T.C.; Kim, Y.S.; Lowe, T.L.; Kester, M. Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials, 2008, 29(3), 359-369. doi: 10.1016/j.biomaterials.2007.09.037 PMID: 17964645
  93. Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822. doi: 10.1126/science.1095833 PMID: 15031496
  94. Allen, T.M. Liposomes. Opportunities in drug delivery. Drugs, 1997, 54, 8-14. doi: 10.2165/00003495-199700544-00004 PMID: 9361956
  95. Staddon, A.P.; Kilcoyne, S.; Latham, J.N.; Henry, D.H. Tolerability of pegylated liposomal doxorubicin 20 mg/m 2 every 2 weeks in the management of solid or hematologic malignancies. J. Clin. Oncol., 2006, 24(18_suppl), 18500. doi: 10.1200/jco.2006.24.18_suppl.18500
  96. Batist, G.; Barton, J.; Chaikin, P.; Swenson, C.; Welles, L. Myocet (liposome-encapsulated doxorubicin citrate): A new approach in breast cancer therapy. Expert Opin. Pharmacother., 2002, 3(12), 1739-1751. doi: 10.1517/14656566.3.12.1739 PMID: 12472371
  97. Palumbo, R.; Sottotetti, F.; Trifirò, G.; Piazza, E.; Ferzi, A.; Gambaro, A.; Spinapolice, E.G.; Pozzi, E.; Tagliaferri, B.; Teragni, C.; Bernardo, A. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) as second-line chemotherapy in HER2-negative, taxane-pretreated metastatic breast cancer patients: Prospective evaluation of activity, safety, and quality of life. Drug Des. Devel. Ther., 2015, 9, 2189-2199. doi: 10.2147/DDDT.S79563 PMID: 25931813
  98. Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7(5), 467-480. doi: 10.1016/j.nantod.2012.08.005
  99. Cragg, G.M.; Newman, D.J. Natural products as sources of anticancer agents: Current approaches and perspectives. In: Natural Products as Source of Molecules with Therapeutic Potential; Springer, 2018; pp. 309-331.
  100. Passero, F.C., Jr; Grapsa, D.; Syrigos, K.N.; Saif, M.W. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev. Anticancer Ther., 2016, 16(7), 697-703. doi: 10.1080/14737140.2016.1192471 PMID: 27219482
  101. Tardi, P.; Boman, N.; Cullis, P. Liposomal doxorubicin. J. Drug Target., 1996, 4(3), 129-140. doi: 10.3109/10611869609015970 PMID: 8959485
  102. Rana, D.; Salave, S.; Patel, R.; Khunt, D.; Misra, M.; Prajapati, B.; Patel, G.; Patel, J. Solid lipid nanoparticles in tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases; Springer, 2023. doi: 10.1007/978-3-031-14100-3_6
  103. Bhattacharya, S.; Sharma, S. Prajapati, BG Development of D-α-Tocopherol polyethylene glycol 1000 succinate fabricated nanostructural lipid carrier of sorafenib tosylate for metastatic colorectal targeting application: Stability, physical characterization, cytotoxicity, and apoptotic studies against SW48 cells PTEN. Front. Oncol., 2022, 12, 990841. doi: 10.3389/fonc.2022.990841
  104. Tarahomi, M.; Firouzi Amandi, A.; Eslami, M.; Yazdani, Y.; Salek Farrokhi, A.; Ghorbani, F.; Taherian, M.; Yousefi, B. Niosomes nanoparticles as a novel approach in drug delivery enhances anticancer properties of chrysin in human ovarian carcinoma cells (SKOV3): An in vitro study. Med. Oncol., 2023, 40(3), 87. doi: 10.1007/s12032-023-01952-8 PMID: 36723692
  105. Rajendra, P.K.M.; Nidamanuri, B.S.S.; Swaroop, A.K.; Krishnamurali, J.S.; Balan, A.P.; Selvaraj, J.; Raman, R.; Shivakumar, H.N.; Reddy, M.V.; Jawahar, N. Fabrication and in vitro evaluation of silk fibroin-folic acid decorated paclitaxel and hydroxyurea nanostructured lipid carriers for targeting ovarian cancer cells: A double sword approach. J. Drug Deliv. Sci. Technol., 2023, 81, 104270. doi: 10.1016/j.jddst.2023.104270
  106. Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent trends in nanocarrier-based targeted chemotherapy: Selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J. Nanomater., 2020, 2020, 1-14. doi: 10.1155/2020/9184284
  107. Yu, H.; Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem., 2012, 60(21), 5373-5379. doi: 10.1021/jf300609p PMID: 22506728
  108. Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.; Wang, C.; Zhang, W.Q.; Zhang, X.; Zhang, Q. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release, 2016, 222, 56-66. doi: 10.1016/j.jconrel.2015.12.006 PMID: 26682502
  109. Ruckmani, K.; Sivakumar, M.; Ganeshkumar, P.A. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 2006, 6(9), 2991-2995. doi: 10.1166/jnn.2006.457 PMID: 17048509
  110. Aldawsari, H.M.; Singh, S. Rapid microwave-assisted cisplatin-loaded solid lipid nanoparticles: Synthesis, characterization and anticancer study. Nanomaterials, 2020, 10(3), 510. doi: 10.3390/nano10030510
  111. Zhang, P.; Chen, L.; Zhang, Z.; Lin, L.; Li, Y. Pharmacokinetics in rats and efficacy in murine ovarian cancer model for solid lipid nanoparticles loading docetaxel. J. Nanosci. Nanotechnol., 2010, 10(11), 7541-7544. doi: 10.1166/jnn.2010.2819 PMID: 21137978
  112. Alyautdin, R.N.; Petrov, V.E.; Langer, K.; Berthold, A.; Kharkevich, D.A.; Kreuter, J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res., 1997, 14(3), 325-328. doi: 10.1023/A:1012098005098 PMID: 9098875
  113. Li, R.; Zhang, Q.; Wang, X.; Chen, X.; He, Y.; Yang, W.; Yang, X. A targeting drug delivery system for ovarian carcinoma: Transferrin modified lipid coated paclitaxel-loaded nanoparticles. Drug Res., 2014, 64(10), 541-547. doi: 10.1055/s-0033-1363957 PMID: 24443309
  114. Zhai, J.; Luwor, R.B.; Ahmed, N.; Escalona, R.; Tan, F.H.; Fong, C.; Ratcliffe, J.; Scoble, J.A.; Drummond, C.J.; Tran, N. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl. Mater. Interfaces, 2018, 10(30), 25174-25185. doi: 10.1021/acsami.8b08125 PMID: 29963859
  115. Kim, J.E.; Park, Y.J. Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int. J. Nanomedicine, 2017, 12, 645-658. doi: 10.2147/IJN.S124158 PMID: 28176896
  116. Cho, E.J.; Holback, H.; Liu, K.C.; Abouelmagd, S.A.; Park, J.; Yeo, Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol. Pharm., 2013, 10(6), 2093-2110. doi: 10.1021/mp300697h PMID: 23461379
  117. Jung, K.W.; Won, Y.J.; Kong, H.J.; Oh, C.M.; Lee, D.H.; Lee, J.S. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2011. Cancer Res. Treat., 2014, 46(2), 109-123. doi: 10.4143/crt.2014.46.2.109 PMID: 24851102
  118. Miller, T.; Rachel, R.; Besheer, A.; Uezguen, S.; Weigandt, M.; Goepferich, A. Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm. Res., 2012, 29(2), 448-459. doi: 10.1007/s11095-011-0555-x PMID: 21879388
  119. Li, C.; Liu, Y.; Wang, C.; Du, Y.; Wang, X.; Shen, X. Use of mitoxantrone hydrochloride liposome. C.A. Patent 3202019A1, 2021.
  120. Li, C.; Liu, Y.; Wang, C.; Du, Y.; Wang, X.; Shen, X. Use of mitoxantrone hydrochloride liposome. W.O. Patent 2022/127760A1, 2021.
  121. Li, C.; Liu, Y.; Wang, C.; Du, Y.; Wang, X.; Shen, X. Use of mitoxantrone hydrochloride liposome. A.U. Patent 2021/399438A1, 2021.
  122. Cao, W.E.I.; Wang, S.; Li, Y.; Xie, Y.; Yang, Q. Preparation method therefor and application thereof. U.S. Patent 2015/0328234A1, 2013.
  123. Lirong, T.; Dongsheng, Y.; Mingzhi, Y.; Liyan, W.U.; Yuanbao, J.I.N.; Yanzhen, W. Pegylated liposome of folate-targeted anticancer drug and preparation method. C.N. Patent 102579353A, 2012.
  124. Chang Esther, H.; Kim, S.; Antonina, R. Targeted liposomes. J.P. Patent 2014062084A, 2013.
  125. Xiaoju, Z.; Jiong, W.; Xianming, H.U. Glycyrrhetinic acid solid lipid nanoparticles and preparation method for same. CN Patent 102512369A, 2011.
  126. Lin, W.; He, C.; Liu, D. Nanoscale carriers for the delivery or codelivery of chemotherapeutics, nucleic acids and photosensitizers. U.S. Patent 10517822B2, 2014.
  127. Ayres Sandra, L.; Xu, Q.; Meadows Kristy, L. Antibodyconjugated nanoparticles and medical uses thereof. W.O. Patent 2018/022292A1, 2017.
  128. Cullis, P.; Bally, M.; Ciufolini, M.; Mauer, N.; Jigaltsev, I. Modified drugs for use in liposomal nanoparticles. U.S. Patent 8568772B2, 2013.
  129. Lowery, C. Composition comprising liposome-entrapped doxorubicin and methods of administration. U.S. Patent 2011/0159080A1, 2009.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024