Icariin Attenuates Human Renal Tubular Epithelial Cell Senescence by Targeting PAK2 via miR-23b-3p


Цитировать

Полный текст

Аннотация

Background:Renal tubular epithelial cells (RTECs) senescence is crucial in kidney diseases. Icariin is shown to have protective effects against renal fibrosis, acute kidney injury, and proteinuria. We aimed to explore the role of icariin in protecting RTECs from senescence and the underlying mechanism involved.

Methods:An in vitro model of RTEC senescence was established by incubating HK-2 cells with urine exosomes from patients with diabetic kidney disease. Stimulated cells were treated with icariin at various doses to evaluate the compound's therapeutic effects. After RNA transfection, cell cycle arrest and senescence, flow cytometry, and SA-β-Gal staining were analyzed. At the same time, quantitative real-time PCR examined microRNA expression. Biochemical assays.

Results:Urine exosomes induced senescence and cell cycle arrest in the G1 stage in HK-2 cells, which were inhibited by icariin. Urine exosome stimulation up-regulated miR-23b-3p expression, which in turn suppressed PAK2 expression. Significantly, the induced and inhibited miR- 23b-3p expressions weakened and augmented the resistance of cells against urine exosome stimulation, respectively, while PAK2 overexpression provided additional protection. Icariin suppressed miR-23b-3p expression, and miR-23b-3p induction blocked the effects of icariin and promoted RTEC senescence.

Conclusion:miR-23b-3p and PAK2 form a signaling axis that regulates RTEC senescence upon urine exosome stimulation. Icariin can increase the resistance of RTECs against senescence via miR-23b-3p/PAK2. Our findings shed light on the mechanism of the clinical effects of icariin on renal diseases, which can be exploited to develop effective drugs targeting RTEC senescence in the future.

conclusion:miR-23b-3p and PAK2 form a signaling axis that regulates RTEC senescence upon urine exosome stimulation. Icariin can increase the resistance of RTECs against senescence via miR-23b-3p/PAK2. Our findings shed light on the mechanism of the clinical effects of icariin on renal diseases, which can be exploited for the development of effective drugs targeting RTEC senescence in the future.

Об авторах

Suqin Zhang

Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital

Автор, ответственный за переписку.
Email: info@benthamscience.net

Yanbin Li

Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital

Email: info@benthamscience.net

Qiuyue Wang

Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital

Email: info@benthamscience.net

Список литературы

  1. Chen, B.H.; Lu, X.Q.; Liang, X.H.; Wang, P. Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci. Rep., 2023, 13(1), 16210. doi: 10.1038/s41598-023-43411-4 PMID: 37758806
  2. Wang, D.; Yin, L.; Chen, R.; Tan, W.; Liang, L.; Xiang, J.; Zhang, H.; Zhou, X.; Deng, H.; Guo, B.; Wang, Y. Senescent renal tubular epithelial cells activate fibroblasts by secreting Shh to promote the progression of diabetic kidney disease. Front. Med., 2023, 9, 1018298. doi: 10.3389/fmed.2022.1018298 PMID: 36760880
  3. Shen, S.; Ji, C.; Wei, K. Cellular senescence and regulated cell death of tubular epithelial cells in diabetic kidney disease. Front. Endocrinol., 2022, 13, 924299. doi: 10.3389/fendo.2022.924299 PMID: 35837297
  4. Jia, C.; Ke-Hong, C.; Fei, X.; Huan-Zi, D.; Jie, Y.; Li-Ming, W.; Xiao-Yue, W.; Jian-Guo, Z.; Ya-Ni, H. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int., 2020, 98(3), 645-662. doi: 10.1016/j.kint.2020.03.026 PMID: 32739204
  5. Tang, Y.; Jacobi, A.; Vater, C.; Zou, L.; Zou, X.; Stiehler, M. Icariin promotes angiogenic differentiation and prevents oxidative stress-induced autophagy in endothelial progenitor cells. Stem Cells, 2015, 33(6), 1863-1877. doi: 10.1002/stem.2005 PMID: 25787271
  6. Li, H.; Zhang, X.; Zhu, X.; Qi, X.; Lin, K.; Cheng, L. The effects of icariin on enhancing motor recovery through attenuating pro-inflammatory factors and oxidative stress via mitochondrial apoptotic pathway in the mice model of spinal cord injury. Front. Physiol., 2018, 9, 1617. doi: 10.3389/fphys.2018.01617 PMID: 30505282
  7. Fang, J.; Zhang, Y. Icariin, an anti-atherosclerotic drug from chinese medicinal herb horny goat weed. Front. Pharmacol., 2017, 8, 734. doi: 10.3389/fphar.2017.00734 PMID: 29075193
  8. Tan, H.L.; Chan, K.G.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Lee, L.H.; Goh, B.H. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives. Front. Pharmacol., 2016, 7, 191. doi: 10.3389/fphar.2016.00191 PMID: 27445824
  9. Yang, A.; Yu, C.; Lu, Q.; Li, H.; Li, Z.; He, C. Mechanism of action of icariin in bone marrow mesenchymal stem cells. Stem Cells Int., 2019, 2019, 1-12. doi: 10.1155/2019/5747298 PMID: 31089330
  10. Chen, M.; Hao, J.; Yang, Q.; Li, G. Effects of icariin on reproductive functions in male rats. Molecules, 2014, 19(7), 9502-9514. doi: 10.3390/molecules19079502 PMID: 24995929
  11. Jia, G.; Zhang, Y.; Li, W.; Dai, H. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti-neuroinflammatory and anti-apoptotic properties. Mol. Med. Rep., 2019, 20(4), 3433-3439. doi: 10.3892/mmr.2019.10537 PMID: 31432160
  12. Zhang, W.; Yuan, W.; Xu, N.; Li, J.; Chang, W. Icariin improves acute kidney injury and proteinuria in a rat model of pregnancy-induced hypertension. Mol. Med. Rep., 2017, 16(5), 7398-7404. doi: 10.3892/mmr.2017.7513 PMID: 28944832
  13. Chen, H.A.; Chen, C.M.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. Phytomedicine, 2019, 59, 152917. doi: 10.1016/j.phymed.2019.152917 PMID: 30978648
  14. Xie, C.; Liu, L.; Wang, Z.; Xie, H.; Feng, Y.; Suo, J.; Wang, M.; Shang, W.; Feng, G. Icariin improves sepsis-induced mortality and acute kidney injury. Pharmacology, 2018, 102(3-4), 196-205. doi: 10.1159/000487955 PMID: 30099451
  15. Zhang, Y.; Li, M.; Han, X. Icariin affects cell cycle progression and proliferation of human retinal pigment epithelial cells via enhancing expression of H19. PeerJ, 2020, 8, e8830. doi: 10.7717/peerj.8830 PMID: 32219038
  16. Sonoda, H.; Lee, B.R.; Park, K.H.; Nihalani, D.; Yoon, J.H.; Ikeda, M.; Kwon, S.H. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci. Rep., 2019, 9(1), 4692. doi: 10.1038/s41598-019-40747-8 PMID: 30886169
  17. Street, J.M.; Koritzinsky, E.H.; Glispie, D.M.; Star, R.A.; Yuen, P.S.T. Urine exosomes. Adv. Clin. Chem., 2017, 78, 103-122. doi: 10.1016/bs.acc.2016.07.003 PMID: 28057185
  18. Chen, W.; Ruan, Y.; Zhao, S.; Ning, J.; Rao, T.; Yu, W.; Zhou, X.; Liu, C.; Qi, Y.; Cheng, F. MicroRNA-205 inhibits the apoptosis of renal tubular epithelial cells via the PTEN/Akt pathway in renal ischemia-reperfusion injury. Am. J. Transl. Res., 2019, 11(12), 7364-7375. PMID: 31934284
  19. Zheng, G.H.; Wen, X.; Wang, Y.J.; Han, X.R.; Shan, Q.; Li, W.; Zhao, T.; Wu, D.M.; Lu, J.; Zheng, Y.L. Retracted: MicroRNA‐381‐induced down‐regulation of CXCR4 promotes the proliferation of renal tubular epithelial cells in rat models of renal ischemia reperfusion injury. J. Cell. Biochem., 2018, 119(4), 3149-3161. doi: 10.1002/jcb.26466 PMID: 29073721
  20. Lv, L.L.; Feng, Y.; Wu, M.; Wang, B.; Li, Z.L.; Zhong, X.; Wu, W.J.; Chen, J.; Ni, H.F.; Tang, T.T.; Tang, R.N.; Lan, H.Y.; Liu, B.C. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ., 2020, 27(1), 210-226. doi: 10.1038/s41418-019-0349-y PMID: 31097789
  21. Zhou, W.; Xu, J.; Wang, C.; Shi, D.; Yan, Q. miR‐23b‐3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J. Cell. Biochem., 2019, 120(12), 19635-19646. doi: 10.1002/jcb.29270 PMID: 31338869
  22. Zaman, M.S.; Thamminana, S.; Shahryari, V.; Chiyomaru, T.; Deng, G.; Saini, S.; Majid, S.; Fukuhara, S.; Chang, I.; Arora, S.; Hirata, H.; Ueno, K.; Singh, K.; Tanaka, Y.; Dahiya, R. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One, 2012, 7(11), e50203. doi: 10.1371/journal.pone.0050203 PMID: 23189187
  23. Urbanelli, L.; Buratta, S.; Sagini, K.; Tancini, B.; Emiliani, C. Extracellular vesicles as new players in cellular senescence. Int. J. Mol. Sci., 2016, 17(9), 1408. doi: 10.3390/ijms17091408 PMID: 27571072
  24. Tu, G.; Zhang, Y.; Ma, J.; Hou, J.; Hao, G.; Su, Y.; Luo, J.; Sheng, L.; Luo, Z. Extracellular vesicles derived from CD4+ T cells carry DGKK to promote sepsis-induced lung injury by regulating oxidative stress and inflammation. Cell. Mol. Biol. Lett., 2023, 28(1), 24. doi: 10.1186/s11658-023-00435-y PMID: 36959535
  25. Lu, Y.; Liu, D.; Feng, Q.; Liu, Z. Diabetic nephropathy: Perspective on extracellular vesicles. Front. Immunol., 2020, 11, 943. doi: 10.3389/fimmu.2020.00943 PMID: 32582146
  26. Ryan, M.J.; Johnson, G.; Kirk, J.; Fuerstenberg, S.M.; Zager, R.A.; Torok-Storb, B. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int., 1994, 45(1), 48-57. doi: 10.1038/ki.1994.6 PMID: 8127021
  27. Debacq-Chainiaux, F.; Erusalimsky, J.D.; Campisi, J.; Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc., 2009, 4(12), 1798-1806. doi: 10.1038/nprot.2009.191 PMID: 20010931
  28. Röck, K.; Tigges, J.; Sass, S.; Schütze, A.; Florea, A.M.; Fender, A.C.; Theis, F.J.; Krutmann, J.; Boege, F.; Fritsche, E.; Reifenberger, G.; Fischer, J.W. miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: Possible implication for skin aging. J. Invest. Dermatol., 2015, 135(2), 369-377. doi: 10.1038/jid.2014.422 PMID: 25264594
  29. Mensà, E.; Guescini, M.; Giuliani, A.; Bacalini, M.G.; Ramini, D.; Corleone, G.; Ferracin, M.; Fulgenzi, G.; Graciotti, L.; Prattichizzo, F.; Sorci, L.; Battistelli, M.; Monsurrò, V.; Bonfigli, A.R.; Cardelli, M.; Recchioni, R.; Marcheselli, F.; Latini, S.; Maggio, S.; Fanelli, M.; Amatori, S.; Storci, G.; Ceriello, A.; Stocchi, V.; De Luca, M.; Magnani, L.; Rippo, M.R.; Procopio, A.D.; Sala, C.; Budimir, I.; Bassi, C.; Negrini, M.; Garagnani, P.; Franceschi, C.; Sabbatinelli, J.; Bonafè, M.; Olivieri, F.; Olivieri, F. Small extracellular vesicles deliver miR‐21 and miR‐217 as pro‐senescence effectors to endothelial cells. J. Extracell. Vesicles, 2020, 9(1), 1725285. doi: 10.1080/20013078.2020.1725285 PMID: 32158519
  30. Markopoulos, G.S.; Roupakia, E.; Tokamani, M.; Vartholomatos, G.; Tzavaras, T.; Hatziapostolou, M.; Fackelmayer, F.O.; Sandaltzopoulos, R.; Polytarchou, C.; Kolettas, E. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp. Gerontol., 2017, 96, 110-122. doi: 10.1016/j.exger.2017.06.017 PMID: 28658612
  31. Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131. doi: 10.1093/nar/gkz757 PMID: 31504780
  32. Lee, J.S.; Mo, Y.; Gan, H.; Burgess, R.J.; Baker, D.J.; van Deursen, J.M.; Zhang, Z. Pak2 kinase promotes cellular senescence and organismal aging. Proc. Natl. Acad. Sci., 2019, 116(27), 13311-13319. doi: 10.1073/pnas.1903847116 PMID: 31209047
  33. Yang, W.S.; Chang, J.W.; Han, N.J.; Lee, S.K.; Park, S.K. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-β1 up-regulation in proximal tubular epithelial cells. Exp. Cell Res., 2012, 318(15), 1867-1876. doi: 10.1016/j.yexcr.2012.05.016 PMID: 22659134
  34. López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217. doi: 10.1016/j.cell.2013.05.039 PMID: 23746838
  35. Docherty, M.H.; O’Sullivan, E.D.; Bonventre, J.V.; Ferenbach, D.A. Cellular senescence in the kidney. J. Am. Soc. Nephrol., 2019, 30(5), 726-736. doi: 10.1681/ASN.2018121251 PMID: 31000567
  36. Lian, F.; Zhao, C.; Qu, J.; Lian, Y.; Cui, Y.; Shan, L.; Yan, J. Icariin attenuates titanium particle‐induced inhibition of osteogenic differentiation and matrix mineralization via miR‐21‐5p. Cell Biol. Int., 2018, 42(8), 931-939. doi: 10.1002/cbin.10957 PMID: 29500883
  37. Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov., 2016, 6(4), 353-367. doi: 10.1158/2159-8290.CD-15-0894 PMID: 26658964
  38. Au Yeung, C.L.; Tsang, T.Y.; Yau, P.L.; Kwok, T.T. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene, 2011, 30(21), 2401-2410. doi: 10.1038/onc.2010.613 PMID: 21242962
  39. Zhang, Y.; Chen, D.; Zhang, G.; Wu, X.; Zhou, L.; Lin, Y.; Ding, J.; An, F.; Zhan, Q. MicroRNA 23b 3p promotes pancreatic cancer cell tumorigenesis and metastasis via the JAK/PI3K and Akt/NF κB signaling pathways. Oncol. Lett., 2020, 20(5), 1. doi: 10.3892/ol.2020.12021 PMID: 32934728
  40. Zhu, R.; Li, X.; Ma, Y. miR-23b-3p suppressing PGC1α promotes proliferation through reprogramming metabolism in osteosarcoma. Cell Death Dis., 2019, 10(6), 381. doi: 10.1038/s41419-019-1614-1 PMID: 31097683
  41. Zhang, H.; Hao, Y.; Yang, J.; Zhou, Y.; Li, J.; Yin, S.; Sun, C.; Ma, M.; Huang, Y.; Xi, J.J. Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat. Commun., 2011, 2(1), 554. doi: 10.1038/ncomms1555 PMID: 22109528
  42. Li, W.; Liu, Z.; Chen, L.; Zhou, L.; Yao, Y. MicroRNA-23b is an independent prognostic marker and suppresses ovarian cancer progression by targeting runt-related transcription factor-2. FEBS Lett., 2014, 588(9), 1608-1615. doi: 10.1016/j.febslet.2014.02.055 PMID: 24613919
  43. Chiyomaru, T.; Seki, N.; Inoguchi, S.; Ishihara, T.; Mataki, H.; Matsushita, R.; Goto, Y.; Nishikawa, R.; Tatarano, S.; Itesako, T.; Nakagawa, M.; Enokida, H. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int. J. Oncol., 2015, 46(2), 487-496. doi: 10.3892/ijo.2014.2752 PMID: 25405368
  44. Binder, P.; Wang, S.; Radu, M.; Zin, M.; Collins, L.; Khan, S.; Li, Y.; Sekeres, K.; Humphreys, N.; Swanton, E.; Reid, A.; Pu, F.; Oceandy, D.; Guan, K.; Hille, S.S.; Frey, N.; Müller, O.J.; Cartwright, E.J.; Chernoff, J.; Wang, X.; Liu, W. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ. Res., 2019, 124(5), 696-711. doi: 10.1161/CIRCRESAHA.118.312829 PMID: 30620686
  45. Wang, Y.; Zeng, C.; Li, J.; Zhou, Z.; Ju, X.; Xia, S.; Li, Y.; Liu, A.; Teng, H.; Zhang, K.; Shi, L.; Bi, C.; Xie, W.; He, X.; Jia, Z.; Jiang, Y.; Cai, T.; Wu, J.; Xia, K.; Sun, Z.S.; Sun, Z.S. PAK2 haploinsufficiency results in synaptic cytoskeleton impairment and autism-related behavior. Cell Rep., 2018, 24(8), 2029-2041. doi: 10.1016/j.celrep.2018.07.061 PMID: 30134165
  46. Phee, H.; Au-Yeung, B.B.; Pryshchep, O.; O’Hagan, K.L.; Fairbairn, S.G.; Radu, M.; Kosoff, R.; Mollenauer, M.; Cheng, D.; Chernoff, J.; Weiss, A. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. eLife, 2014, 3, e02270. doi: 10.7554/eLife.02270 PMID: 24843022
  47. Gupta, A.; Ajith, A.; Singh, S.; Panday, R.K.; Samaiya, A.; Shukla, S. PAK2–c-Myc–PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis., 2018, 9(8), 825. doi: 10.1038/s41419-018-0887-0 PMID: 30068946
  48. Ran, M.; Weng, B.; Cao, R.; Li, Z.; Peng, F.; Luo, H.; Gao, H.; Chen, B. miR‐26a inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the PAK2 gene. Reprod. Domest. Anim., 2018, 53(6), 1375-1385. doi: 10.1111/rda.13254 PMID: 30024056
  49. Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659. doi: 10.1038/ncb1596 PMID: 17486113

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024