Oleogels for the Promotion of Healthy Skin Care Products: Synthesis and Characterization of Allantoin Containing Moringa-based Oleogel


Cite item

Full Text

Abstract

Background:Oleogelation is an efficient and emerging approach for obtaining biocompatible and biodegradable elastic semisolid crystals to be used in various cosmetic and pharmaceutical formulations. Recently, drug incorporation in oil structuring has been a promising strategy under consideration due to the effectiveness of this method. Plant oils have very beneficial characteristics for skin care and wound healing due to the presence of certain antioxidants.

Methods:In this study, the oleogels of Moringa oleifera seed oil with natural polysaccharides, including pectin, chitosan, and xanthan gum, were prepared using the emulsion template method. Moringa oil was selected because it can hydrate and moisturize the skin and has great antioxidant activity. Also, the natural polysaccharides, i.e., pectin and chitosan, exhibited good gelling properties. Allantoin, which is a wound healer and eucalyptus leaf oil with antioxidant potential, was incorporated into the emulsion-based-oleogels to enhance the antioxidant and antimicrobial activity of the oleogels.

Results:Allantoin and eucalyptus-loaded oleogels exhibited good antibacterial activity against E. coli. The FTIR spectra of moringa-based oleogels in the range between 3226-3422 cm-1 indicate the presence of hydrogen bonding in oleogels.

Conclusion:The antioxidant potential of allantoin and eucalyptus-containing oleogel was maximized, and an IC50 value of 0.9719 µM was found. Maximum release of allantoin from oleogel was observed in the first hour.

About the authors

Nazia Yaqoob

Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalababd

Author for correspondence.
Email: info@benthamscience.net

Fazeelat Imtiaz

Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalababd

Email: info@benthamscience.net

Nusrat Shafiq

Synthetic and Natural Products drug discovery Lab., Department of Chemistry, Government College Women University Faisalabad

Author for correspondence.
Email: info@benthamscience.net

Saima Rehman

Department of Chemistry, Government College Women University Faisalabad

Email: info@benthamscience.net

Huma Munir

Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalababd

Email: info@benthamscience.net

Mohammed Bourhia

Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University

Author for correspondence.
Email: info@benthamscience.net

Khalid Almaary

Department of Botany and Microbiology, College of Science,, King Saud University

Email: info@benthamscience.net

Hiba-Allah Nafidi

Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University

Email: info@benthamscience.net

References

  1. Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol. Biosci., 2014, 14(6), 772-792. doi: 10.1002/mabi.201300561 PMID: 24678050
  2. Ribeiro, A.; Estanqueiro, M.; Oliveira, M.; Lobo, S.J. Main benefits and applicability of plant extracts in skin care products. Cosmetics, 2015, 2(2), 48-65. doi: 10.3390/cosmetics2020048
  3. Morganti, P. Beauty mask: Market and environment. J. Clin. Cosmet. Dermatol, 2019, 3, 1-10.
  4. Moshood, T.D. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem, 2022, 5, 100273. doi: 10.1016/j.crgsc.2022.100273
  5. Pavlou, P.; Siamidi, A.; Varvaresou, A.; Vlachou, M. Skin care formulations and lipid carriers as skin moisturizing agents. Cosmetics, 2021, 8(3), 89. doi: 10.3390/cosmetics8030089
  6. Pehlivanoğlu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1330-1341. doi: 10.1080/10408398.2016.1256866 PMID: 27830932
  7. Silva, T.J.; Arellano, B.D.; Ribeiro, A.P.B. Oleogel‐based emulsions: Concepts, structuring agents, and applications in food. J. Food Sci., 2021, 86(7), 2785-2801. doi: 10.1111/1750-3841.15788 PMID: 34160057
  8. Chen, Z.; Shi, Z.; Meng, Z. Development and characterization of antioxidant-fortified oleogels by encapsulating hydrophilic tea polyphenols. Food Chem., 2023, 414, 135664. doi: 10.1016/j.foodchem.2023.135664 PMID: 36821915
  9. Kartik, A.; Akhil, D.; Lakshmi, D.; Gopinath, P.K.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A critical review on production of biopolymers from algae biomass and their applications. Bioresour. Technol., 2021, 329, 124868. doi: 10.1016/j.biortech.2021.124868 PMID: 33707076
  10. Anwar, F.; Ashraf, M.; Bhanger, M.I. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc., 2005, 82(1), 45-51. doi: 10.1007/s11746-005-1041-1
  11. Prajapati, C.; Ankola, M.; Upadhyay, T.K.; Sharangi, A.B.; Alabdallah, N.M.; Al-Saeed, F.A.; Muzammil, K.; Saeed, M. Moringa oleifera: Miracle plant with a plethora of medicinal, therapeutic, and economic importance. Horticulturae, 2022, 8(6), 492. doi: 10.3390/horticulturae8060492
  12. Almeida, T.; Moreira, P.; Sousa, F.J.; Pereira, C.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Bioactive bacterial nanocellulose membranes enriched with Eucalyptus globulus labill. Leaves aqueous extract for anti-aging skin care applications. Materials, 2022, 15(5), 1982. doi: 10.3390/ma15051982 PMID: 35269213
  13. Peng, W.; Li, D.; Dai, K.; Wang, Y.; Song, P.; Li, H.; Tang, P.; Zhang, Z.; Li, Z.; Zhou, Y.; Zhou, C. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int. J. Biol. Macromol., 2022, 208, 400-408. doi: 10.1016/j.ijbiomac.2022.03.002 PMID: 35248609
  14. Ahmed, S.; Ikram, S. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci., 2016, 10(1), 27-37. doi: 10.1016/j.als.2016.04.001
  15. Noreen, A.; Nazli, Z.H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol., 2017, 101, 254-272. doi: 10.1016/j.ijbiomac.2017.03.029 PMID: 28300586
  16. Agrawal, P.; Soni, S.; Mittal, G.; Bhatnagar, A. Role of polymeric biomaterials as wound healing agents. Int. J. Low. Extrem. Wounds, 2014, 13(3), 180-190. doi: 10.1177/1534734614544523 PMID: 25056991
  17. Robinson, W. Stimulation of healing in non-healing wounds: By allantoin occurring in maggot secretions and of wide biological distribution. JBJS, 1935, 17(2), 267-271.
  18. Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G., Jr; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final report of the safety assessment of allantoin and its related complexes. Int. J. Toxicol., 2010, 29(S3), 84S-97S. doi: 10.1177/1091581810362805 PMID: 20448269
  19. Tavernier, I.; Patel, A.R.; Van der Meeren, P.; Dewettinck, K. Emulsion-templated liquid oil structuring with soy protein and soy protein: K-carrageenan complexes. Food Hydrocoll., 2017, 65, 107-120. doi: 10.1016/j.foodhyd.2016.11.008
  20. Yılmaz, E.; Öğütcü, M. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J. Am. Oil Chem. Soc., 2014, 91(6), 1007-1017. doi: 10.1007/s11746-014-2434-1
  21. Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chem., 2018, 246, 137-149. doi: 10.1016/j.foodchem.2017.10.154 PMID: 29291832
  22. Sintang, B.M.D.; Rimaux, T.; Van de Walle, D.; Dewettinck, K.; Patel, A.R. Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Technol., 2017, 119(3), 1500517. doi: 10.1002/ejlt.201500517
  23. Valgas, C.; Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol., 2007, 38(2), 369-380. doi: 10.1590/S1517-83822007000200034
  24. Mushore, J.; Matuvhunye, M. Antibacterial properties of Mangifera indica on Staphylococcus aureus. Afr. J. Clin. Exp. Microbiol., 2013, 14(2), 62-74. doi: 10.4314/ajcem.v14i2.4
  25. Arshad, U.; Ahmed, S.; Shafiq, N.; Ahmad, Z.; Hassan, A.; Akhtar, N.; Parveen, S.; Mehmood, T. Structure-based designing, solvent less synthesis of 1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives: A combined in vitro and in silico screening approach. Molecules, 2021, 26(15), 4424. doi: 10.3390/molecules26154424 PMID: 34361577
  26. Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods, 2020, 9(9), 1291. doi: 10.3390/foods9091291 PMID: 32937933
  27. Inayatullah, S.; Irum, R.; Chaudhary, F.M.; Mirza, B. Biological evaluation of some selected plant species of Pakistan. Pharm. Biol., 2007, 45(5), 397-403. doi: 10.1080/13880200701215182
  28. Qureshi, D.; Nadikoppula, A.; Mohanty, B.; Anis, A.; Cerqueira, M.; Varshney, M.; Pal, K. Effect of carboxylated carbon nanotubes on physicochemical and drug release properties of oleogels. Colloids Surf. A Physicochem. Eng. Asp., 2021, 610, 125695. doi: 10.1016/j.colsurfa.2020.125695
  29. Blake, A.I.; Co, E.D.; Marangoni, A.G. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc., 2014, 91(6), 885-903. doi: 10.1007/s11746-014-2435-0
  30. Satnami, P.; Karthikeyan, B.; Ganesh, P. Antimicrobial activity of essential oils against certain bacterial species. Inter. J. Advanced. Res., 2016, 2, 300-303.
  31. Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem., 2000, 68(3), 327-332. doi: 10.1016/S0308-8146(99)00191-0
  32. Sugumar, S.; Mukherjee, A.; Chandrasekaran, N. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int. J. Nanomedicine, 2015, 10(S1), 67-75. PMID: 26491308
  33. Alam, M.J.; Ahmad, S. FTIR, FT-Raman, UV–Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 961-978. doi: 10.1016/j.saa.2014.09.119 PMID: 25459622
  34. Sakthiguru, N.; Sithique, M.A. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int. J. Biol. Macromol., 2020, 152, 873-883. doi: 10.1016/j.ijbiomac.2020.02.289 PMID: 32112839
  35. Sun, H.; Xu, J.; Lu, X.; Xu, Y.; Regenstein, J.M.; Zhang, Y.; Wang, F. Development and characterization of monoglyceride oleogels prepared with crude and refined walnut oil. Lebensm. Wiss. Technol., 2022, 154, 112769. doi: 10.1016/j.lwt.2021.112769
  36. Fan, Y.; Yang, J.; Duan, A.; Li, X. Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package. Int. J. Biol. Macromol., 2021, 181, 1003-1009. doi: 10.1016/j.ijbiomac.2021.04.111 PMID: 33892026
  37. Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll., 2020, 105, 105855. doi: 10.1016/j.foodhyd.2020.105855
  38. Menezes, J.E.S.A.; Santos, H.S.; Ferreira, M.K.A.; Magalhães, F.E.A.; da Silva, D.S.; Bandeira, P.N.; Saraiva, G.D.; Pessoa, O.D.L.; Ricardo, N.M.P.S.; Cruz, B.G.; Teixeira, A.M.R. Preparation, structural and spectroscopic characterization of chitosan membranes containing allantoin. J. Mol. Struct., 2020, 1199, 126968. doi: 10.1016/j.molstruc.2019.126968
  39. Moş, I. Antibiotic sensitivity of the Escherichia coli strains isolated from infected skin wounds. Farmacia, 2010, 58(5), 637-644.
  40. Adak, T.; Barik, N.; Patil, N.B.; Govindharaj, G-P-P.; Gadratagi, B.G.; Annamalai, M.; Mukherjee, A.K.; Rath, P.C. Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Ind. Crops Prod., 2020, 143, 111849. doi: 10.1016/j.indcrop.2019.111849
  41. Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol., 2011, 49(9), 893-899. doi: 10.3109/13880209.2011.553625 PMID: 21591991
  42. Nokoorani, Y.D.; Shamloo, A.; Bahadoran, M.; Moravvej, H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Sci. Rep., 2021, 11(1), 16164. doi: 10.1038/s41598-021-95763-4 PMID: 34373593
  43. Selamoglu, Z.; Dusgun, C.; Akgul, H.; Gulhan, M.F. In-vitro antioxidant activities of the ethanolic extracts of some contained-allantoin plants. Iran. J. Pharm. Res., 2017, 16, 92-98. PMID: 29844780
  44. Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. Lebensm. Wiss. Technol., 2012, 48(2), 237-241. doi: 10.1016/j.lwt.2012.03.019
  45. Duan, S.; Zhao, M.; Wu, B.; Wang, S.; Yang, Y.; Xu, Y.; Wang, L. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits. Int. J. Biol. Macromol., 2020, 155, 1114-1122. doi: 10.1016/j.ijbiomac.2019.11.078 PMID: 31715234
  46. Siramon, P.; Ohtani, Y. Antioxidative and antiradical activities of Eucalyptus camaldulensis leaf oils from Thailand. J. Wood Sci., 2007, 53(6), 498-504. doi: 10.1007/s10086-007-0887-7
  47. Woo, K.Y.; Sibbald, R.G. The improvement of wound-associated pain and healing trajectory with a comprehensive foot and leg ulcer care model. J. Wound Ostomy Continence Nurs., 2009, 36(2), 184-191. doi: 10.1097/01.WON.0000347660.87346.ed PMID: 19287267
  48. Ciszek, A. Variability of skin PH after the use of different collagen gels. J. Cosmet. Dermatol., 2017, 16(4), 531-536. doi: 10.1111/jocd.12303 PMID: 28155260
  49. Yaşayan, G.; Karaca, G.; Akgüner, Z.P.; Öztürk, B.A. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. Int. J. Polym. Mater., 2021, 70(9), 623-635. doi: 10.1080/00914037.2020.1740993

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers