Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease


Цитировать

Полный текст

Аннотация

Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.

Об авторах

Eduardo Cifuentes-Silva

Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences,, Universidad Andres Bello,

Email: info@benthamscience.net

Claudio Cabello-Verrugio

Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences,, Universidad Andres Bello,

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol., 2009, 15(7), 804-816. doi: 10.3748/wjg.15.804 PMID: 19230041
  2. Chiang, J.Y.L. Bile acids: Regulation of synthesis. J. Lipid Res., 2009, 50(10), 1955-1966. doi: 10.1194/jlr.R900010-JLR200 PMID: 19346330
  3. Pedersen, J.I. Peroxisomal oxidation of the steroid side chain in bile acid formation. Biochimie, 1993, 75(3-4), 159-165. doi: 10.1016/0300-9084(93)90073-2 PMID: 8507677
  4. Orozco-Aguilar, J.; Simon, F.; Cabello-Verrugio, C. Redoxdependent effects in the physiopathological role of bile acids. Oxid. Med. Cell. Longev., 2021, 2021, 1-15. doi: 10.1155/2021/4847941 PMID: 34527174
  5. Zangerolamo, L.; Vettorazzi, J.F.; Rosa, L.R.O.; Carneiro, E.M.; Barbosa, H.C.L. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci., 2021, 272, 119252. doi: 10.1016/j.lfs.2021.119252 PMID: 33636170
  6. Warren, D.B.; Chalmers, D.K.; Hutchison, K.; Dang, W.; Pouton, C.W. Molecular dynamics simulations of spontaneous bile salt aggregation. Colloids Surf. A Physicochem. Eng. Asp., 2006, 280(1-3), 182-193. doi: 10.1016/j.colsurfa.2006.02.009
  7. Hofmann, A.F. Pharmacology of ursodeoxycholic acid, an enterohepatic drug. Scand. J. Gastroenterol., 1994, 29, 1-15. doi: 10.3109/00365529409103618 PMID: 7824870
  8. Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol., 2013, 3(3), 1191-1212. doi: 10.1002/cphy.c120023 PMID: 23897684
  9. Wang, D.Q.H.; Tazuma, S.; Cohen, D.E.; Carey, M.C. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption : Studies in the gallstonesusceptible mouse. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(3), G494-G502. doi: 10.1152/ajpgi.00156.2003 PMID: 12748061
  10. Ding, L.; Yang, L.; Wang, Z.; Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B, 2015, 5(2), 135-144. doi: 10.1016/j.apsb.2015.01.004 PMID: 26579439
  11. Duboc, H.; Taché, Y.; Hofmann, A. F. The bile acid TGR5 membrane receptor: From basic research to clinical application Digestive and Liver Dis., 2014, 46(4), 302-312.
  12. Wolkoff, A.W.; Cohen, D.E. I. Hepatocyte transport of bile acids. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(2), G175-G179. doi: 10.1152/ajpgi.00409.2002 PMID: 12529265
  13. Ridlon, J.M.; Bajaj, J.S. The human gut sterolbiome : Bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm. Sin. B, 2015, 5(2), 99-105. doi: 10.1016/j.apsb.2015.01.006 PMID: 26579434
  14. Li, T.; Chiang, J.Y.L. Nuclear receptors in bile acid metabolism. Drug Metab. Rev., 2013, 45(1), 145-155. doi: 10.3109/03602532.2012.740048 PMID: 23330546
  15. Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem., 2003, 72(1), 137-174. doi: 10.1146/annurev.biochem.72.121801.161712 PMID: 12543708
  16. Zhang, M.; Chiang, J.Y.L. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of heaptocyte nuclear factor 4alpha in mediating bile acid repression. J. Biol. Chem., 2001, 276(45), 41690-41699. doi: 10.1074/jbc.M105117200 PMID: 11535594
  17. McGlone, E.R.; Bloom, S.R. Bile acids and the metabolic syndrome. Ann. Clin. Biochem., 2019, 56(3), 326-337. doi: 10.1177/0004563218817798 PMID: 30453753
  18. Lee, J.W.; Cowley, E.S.; Wolf, P.G.; Doden, H.L.; Murai, T.; Caicedo, K.Y.O.; Ly, L.K.; Sun, F.; Takei, H.; Nittono, H.; Daniel, S.L.; Cann, I.; Gaskins, H.R.; Anantharaman, K.; Alves, J.M.P.; Ridlon, J.M. Formation of secondary allobile acids by novel enzymes from gut firmicutes. Gut Microb., 2022, 14(1), 2132903. doi: 10.1080/19490976.2022.2132903 PMID: 36343662
  19. Lepercq, P.; Gérard, P.; Béguet, F.; Raibaud, P.; Grill, J.P.; Relano, P.; Cayuela, C.; Juste, C. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by clostridium baratii isolated from human feces. FEMS Microbiol. Lett., 2004, 235(1), 65-72. doi: 10.1111/j.1574-6968.2004.tb09568.x PMID: 15158263
  20. Jia, E.; Liu, Z.; Pan, M.; Lu, J.; Ge, Q. Regulation of bile acid metabolismrelated signaling pathways by gut microbiota in diseases. J. Zhejiang Univ. Sci. B, 2019, 20(10), 781-792. doi: 10.1631/jzus.B1900073 PMID: 31489798
  21. Cariello, M.; Piccinin, E.; Garcia-Irigoyen, O.; Sabbà, C.; Moschetta, A. Nuclear receptor FXR, bile acids and liver damage : Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1308-1318. doi: 10.1016/j.bbadis.2017.09.019 PMID: 28965883
  22. Bishop-Bailey, D.; Walsh, D.T.; Warner, T.D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3668-3673. doi: 10.1073/pnas.0400046101 PMID: 14990788
  23. Gui, T.; Gai, Z. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells. Genom. Data, 2015, 6, 31-32. doi: 10.1016/j.gdata.2015.07.026 PMID: 26697325
  24. Shin, D.J.; Wang, L. Bile acid-activated receptors: A review on FXR and other nuclear receptors. Handb. Exp. Pharmacol., 2019, 256, 51-72. doi: 10.1007/164_2019_236 PMID: 31230143
  25. Kim, I.; Ahn, S.H.; Inagaki, T.; Choi, M.; Ito, S.; Guo, G.L.; Kliewer, S.A.; Gonzalez, F.J. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res., 2007, 48(12), 2664-2672. doi: 10.1194/jlr.M700330-JLR200 PMID: 17720959
  26. Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C.L.; McDonald, J.G.; Luo, G.; Jones, S.A.; Goodwin, B.; Richardson, J.A.; Gerard, R.D.; Repa, J.J.; Mangelsdorf, D.J.; Kliewer, S.A. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab., 2005, 2(4), 217-225. doi: 10.1016/j.cmet.2005.09.001 PMID: 16213224
  27. Teng, S.; Piquette-Miller, M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br. J. Pharmacol., 2007, 151(3), 367-376. doi: 10.1038/sj.bjp.0707235 PMID: 17435798
  28. Han, S.; Li, T.; Ellis, E.; Strom, S.; Chiang, J.Y.L. A novel bile acidactivated vitamin D receptor signaling in human hepatocytes. Mol. Endocrinol., 2010, 24(6), 1151-1164. doi: 10.1210/me.2009-0482 PMID: 20371703
  29. Chiang, J.Y.L.; Kimmel, R.; Stroup, D. Regulation of cholesterol 7α-hydroxylase gene ( CYP7A1 ) transcription by the liver orphan receptor (LXRα). Gene, 2001, 262(1-2), 257-265. doi: 10.1016/S0378-1119(00)00518-7 PMID: 11179691
  30. Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; Hinuma, S.; Fujisawa, Y.; Fujino, M. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem., 2003, 278(11), 9435-9440. doi: 10.1074/jbc.M209706200 PMID: 12524422
  31. Tiwari, A.; Maiti, P. TGR5: An emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov. Today, 2009, 14(9-10), 523-530. doi: 10.1016/j.drudis.2009.02.005 PMID: 19429513
  32. Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983. doi: 10.1124/pr.113.008201 PMID: 25073467
  33. Perino, A.; Pols, T.W.H.; Nomura, M.; Stein, S.; Pellicciari, R.; Schoonjans, K. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J. Clin. Invest., 2014, 124(12), 5424-5436. doi: 10.1172/JCI76289 PMID: 25365223
  34. Guo, C.; Chen, W.D.; Wang, Y.D. TGR5, Not only a metabolic regulator. Front. Physiol., 2016, 7, 646. doi: 10.3389/fphys.2016.00646 PMID: 28082913
  35. Wang, Y.D.; Chen, W.D.; Yu, D.; Forman, B.M.; Huang, W. The G-Protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology, 2011, 54(4), 1421-1432. doi: 10.1002/hep.24525 PMID: 21735468
  36. Guo, C.; Qi, H.; Yu, Y.; Zhang, Q.; Su, J.; Yu, D.; Huang, W.; Chen, W.D.; Wang, Y.D. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) inhibits gastric inflammation through antagonizing NF-κB signaling pathway. Front. Pharmacol., 2015, 6, 287. doi: 10.3389/fphar.2015.00287 PMID: 26696888
  37. Kida, T.; Tsubosaka, Y.; Hori, M.; Ozaki, H.; Murata, T. Bile acid receptor TGR5 agonism induces no production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1663-1669. doi: 10.1161/ATVBAHA.113.301565 PMID: 23619297
  38. Abrigo, J.; Campos, F.; Gonzalez, F.; Aguirre, F.; Gonzalez, A.; Huerta-Salgado, C.; Conejeros, S.; Simon, F.; Arrese, M.; Cabrera, D.; Elorza, A.A.; Cabello-Verrugio, C. Sarcopenia induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5. Int. J. Mol. Sci., 2020, 21(21), 7922. doi: 10.3390/ijms21217922 PMID: 33113850
  39. Abrigo, J.; Gonzalez, F.; Aguirre, F.; Tacchi, F.; Gonzalez, A.; Meza, M.P.; Simon, F.; Cabrera, D.; Arrese, M.; Karpen, S.; Cabello-Verrugio, C. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J. Cell. Physiol., 2021, 236(1), 260-272. doi: 10.1002/jcp.29839 PMID: 32506638
  40. Son, S.W.; Song, D.S.; Chang, U.I.; Yang, J.M. Definition of sarcopenia in chronic liver disease. Life, 2021, 11(4), 349. doi: 10.3390/life11040349 PMID: 33923561
  41. Fickert, P.; Stöger, U.; Fuchsbichler, A.; Moustafa, T.; Marschall, H.U.; Weiglein, A.H.; Tsybrovskyy, O.; Jaeschke, H.; Zatloukal, K.; Denk, H.; Trauner, M. A new xenobioticinduced mouse model of sclerosing cholangitis and biliary fibrosis. Am. J. Pathol., 2007, 171(2), 525-536. doi: 10.2353/ajpath.2007.061133 PMID: 17600122
  42. Abrigo, J.; Marín, T.; Aguirre, F.; Tacchi, F.; Vilos, C.; Simon, F.; Arrese, M.; Cabrera, D.; Cabello-Verrugio, C. N-acetyl cysteine attenuates the sarcopenia and muscle apoptosis induced by chronic liver disease. Curr. Mol. Med., 2019, 20(1), 60-71. doi: 10.2174/1566524019666190917124636 PMID: 31530262
  43. Campos, F.; Abrigo, J.; Aguirre, F.; Garcés, B.; Arrese, M.; Karpen, S.; Cabrera, D.; Andía, M.E.; Simon, F.; Cabello-Verrugio, C. Sarcopenia in a mice model of chronic liver disease : Role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch., 2018, 470(10), 1503-1519. doi: 10.1007/s00424-018-2167-3 PMID: 29926227
  44. Tamai, Y.; Eguchi, A.; Shigefuku, R.; Kitamura, H.; Tempaku, M.; Sugimoto, R.; Kobayashi, Y.; Iwasa, M.; Takei, Y.; Nakagawa, H. Association of lithocholic acid with skeletal muscle hypertrophy through TGR5-IGF-1 and skeletal muscle mass in cultured mouse myotubes, chronic liver disease rats and humans. eLife, 2022, 11, e80638. doi: 10.7554/eLife.80638 PMID: 36206032
  45. Hofmann, A.F.; Hagey, L.R. Bile acids : Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 2008, 65(16), 2461-2483. doi: 10.1007/s00018-008-7568-6 PMID: 18488143
  46. Hope, A.A.; Morrison, R.S. What Is the Clinical Course of Advanced Liver Disease and What Symptoms Are Associated With It?Evidence-Based Practice in Palliative Medicine; Goldstein, N.E.; Morrison, R.S., Eds.; W.B. Saunders: Philadelphia, 2013, pp. 300-307. doi: 10.1016/B978-1-4377-3796-7.00053-7
  47. Moon, A. M.; Singal, A. G.; Tapper, E. B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin.gastroenterol. hepatol., 2020, 18(12), 2650-2666.
  48. Santiago, P.; Scheinberg, A.R.; Levy, C. Cholestatic liver diseases: New targets, new therapies. Ther. Adv. Gastroenterol., 2018, 11 doi: 10.1177/1756284818787400 PMID: 30159035
  49. Carey, E.J.; Ali, A.H.; Lindor, K.D. Primary biliary cirrhosis. Lancet, 2015, 386(10003), 1565-1575. doi: 10.1016/S0140-6736(15)00154-3 PMID: 26364546
  50. Karlsen, T.H.; Folseraas, T.; Thorburn, D.; Vesterhus, M. Primary sclerosing cholangitis : A comprehensive review. J. Hepatol., 2017, 67(6), 1298-1323. doi: 10.1016/j.jhep.2017.07.022 PMID: 28802875
  51. Paumgartner, G.; Beuers, U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin. Liver Dis., 2004, 8(1), 67-81, vi. doi: 10.1016/S1089-3261(03)00135-1 PMID: 15062194
  52. Goossens, J.F.; Bailly, C. Ursodeoxycholic acid and cancer : From chemoprevention to chemotherapy. Pharmacol. Ther., 2019, 203, 107396. doi: 10.1016/j.pharmthera.2019.107396 PMID: 31356908
  53. Lazaridis, K.N.; Gores, G.J.; Lindor, K.D. Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J. Hepatol., 2001, 35(1), 134-146. doi: 10.1016/S0168-8278(01)00092-7 PMID: 11495032
  54. Beuers, U. Drug Insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, 3(6), 318-328. doi: 10.1038/ncpgasthep0521 PMID: 16741551
  55. Köck, K.; Brouwer, K.L.R. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther., 2012, 92(5), 599-612. doi: 10.1038/clpt.2012.79 PMID: 22948894
  56. Setchell, K.D.; Rodrigues, C.M.; Clerici, C.; Solinas, A.; Morelli, A.; Gartung, C.; Boyer, J. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology, 1997, 112(1), 226-235. doi: 10.1016/S0016-5085(97)70239-7 PMID: 8978363
  57. Marschall, H.; Wagner, M.; Zollner, G.; Fickert, P.; Diczfalusy, U.; Gumhold, J.; Silbert, D.; Fuchsbichler, A.; Benthin, L.; Grundström, R.; Gustafsson, U.; Sahlin, S.; Einarsson, C.; Trauner, M. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology, 2005, 129(2), 476-485. doi: 10.1016/j.gastro.2005.05.009 PMID: 16083704
  58. Milkiewicz, P.; Roma, M.G.; Elias, E.; Coleman, R. Hepatoprotection with tauroursodeoxycholate and muricholate against taurolithocholate induced cholestasis: involvement of signal transduction pathways. Gut, 2002, 51(1), 113-119. doi: 10.1136/gut.51.1.113 PMID: 12077103
  59. Paumgartner, G.; Beuers, U. Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited. Hepatology, 2002, 36(3), 525-531. doi: 10.1053/jhep.2002.36088 PMID: 12198643
  60. Schoemaker, M.H.; Conde de la Rosa, L.; Buist-Homan, M.; Vrenken, T.E.; Havinga, R.; Poelstra, K.; Haisma, H.J.; Jansen, P.L.M.; Moshage, H. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology, 2004, 39(6), 1563-1573. doi: 10.1002/hep.20246 PMID: 15185297
  61. Amaral, J.D.; Viana, R.J.S.; Ramalho, R.M.; Steer, C.J.; Rodrigues, C.M.P. Bile acids: Regulation of apoptosis by ursodeoxycholic acid. J. Lipid Res., 2009, 50(9), 1721-1734. doi: 10.1194/jlr.R900011-JLR200 PMID: 19417220
  62. Parés, A.; Caballería, L.; Rodés, J.; Bruguera, M.; Rodrigo, L.; García-Plaza, A.; Berenguer, J.; Rodríguez-Martínez, D.; Mercader, J.; Velicia, R. Long-term effects of ursodeoxycholic acid in primary biliary cirrhosis: Results of a double-blind controlled multicentric trial. J. Hepatol., 2000, 32(4), 561-566. doi: 10.1016/S0168-8278(00)80216-0 PMID: 10782903
  63. Van Nieuwkerk, C.M.; Elferink, R.P.; Groen, A.K.; Ottenhoff, R.; Tytgat, G.N.; Dingemans, K.P.; Van Den Bergh Weerman, M.A.; Offerhaus, G.J. Effects of ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Gastroenterology, 1996, 111(1), 165-171. doi: 10.1053/gast.1996.v111.pm8698195 PMID: 8698195
  64. Cazzagon, N.; Floreani, A. Primary biliary cholangitis: Treatment. Curr. Opin. Gastroenterol., 2021, 37(2), 99-104. doi: 10.1097/MOG.0000000000000708 PMID: 33492001
  65. Alpini, G.; Baiocchi, L.; Glaser, S.; Ueno, Y.; Marzioni, M.; Francis, H.; Phinizy, J.L.; Angelico, M.; LeSage, G. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology, 2002, 35(5), 1041-1052. doi: 10.1053/jhep.2002.32712 PMID: 11981754
  66. Beuers, U.; Trauner, M.; Jansen, P.; Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol., 2015, 62(1)(Suppl.), S25-S37. doi: 10.1016/j.jhep.2015.02.023 PMID: 25920087
  67. Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799. doi: 10.1172/JCI1325 PMID: 9637713
  68. Halilbasic, E.; Claudel, T.; Trauner, M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol., 2013, 58(1), 155-168. doi: 10.1016/j.jhep.2012.08.002 PMID: 22885388
  69. Boatright, J.H.; Nickerson, J.M.; Moring, A.G.; Pardue, M.T. Bile acids in treatment of ocular disease. J. Ocul. Biol. Dis. Infor., 2009, 2(3), 149-159. doi: 10.1007/s12177-009-9030-x PMID: 20046852
  70. Palmela, I.; Correia, L.; Silva, R.F.M.; Sasaki, H.; Kim, K.S.; Brites, D.; Brito, M.A. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: An in vitro study. Front. Neurosci., 2015, 9, 80. doi: 10.3389/fnins.2015.00080 PMID: 25821432
  71. Orozco-Aguilar, J.; Tacchi, F.; Aguirre, F.; Valero-Breton, M.; Castro-Sepulveda, M.; Simon, F.; Cabello-Verrugio, C. Ursodeoxycholic acid induces sarcopenia associated with decreased protein synthesis and autophagic flux. Biol. Res., 2023, 56(1), 28. doi: 10.1186/s40659-023-00431-8 PMID: 37237400
  72. Dura, E.; Domingo, J.; Göçeri, E.; Martí-Bonmatí, L. A method for liver segmentation in perfusion MR images using probabilistic atlases and viscous reconstruction. Pattern Anal. Appl., 2018, 21(4), 1083-1095. doi: 10.1007/s10044-017-0666-z
  73. Goceri, E. A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function; Izmir Institute of Technology: Turkey, 2013, pp. 1-136.
  74. Göçeri, E.; Ünlü, M. Z.; Dicle, O. J. T. J. o. E. E.; Sciences, C. A comparative performance evaluation of various approaches for liver segmentation from SPIR images., Turk. J. Electr. Eng. Comp. Sci., 2015, 23(3), 741-768.
  75. Goceri, E.; Unlu, M.Z.; Guzelis, C.; Dicle, O. In an automatic level set based liver segmentation from MRI data sets. 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), 15-18 Oct. 20122012, pp. 192-197.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024