Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues
- 作者: Jawich K.1, Hadakie R.1, Jamal S.1, Habeeb R.2, Al Fahoum S.1, Ferlin A.3, De Toni L.4
-
隶属关系:
- Department of Biochemistry and Microbiology, Faculty of Pharmacy,, Damascus University
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University
- Department of Medicine, Unit of Andrology and Reproductive Medicine,, University of Padova
- Department of Medicine, Unit of Andrology and Reproductive Medicine,, University of Padova, Padova,
- 期: 卷 25, 编号 3 (2024)
- 页面: 215-225
- 栏目: Life Sciences
- URL: https://gynecology.orscience.ru/1389-2037/article/view/645577
- DOI: https://doi.org/10.2174/0113892037268414231017074054
- ID: 645577
如何引用文章
全文:
详细
Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named "osteokines", possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.
作者简介
Kenda Jawich
Department of Biochemistry and Microbiology, Faculty of Pharmacy,, Damascus University
Email: info@benthamscience.net
Rana Hadakie
Department of Biochemistry and Microbiology, Faculty of Pharmacy,, Damascus University
Email: info@benthamscience.net
Souhaib Jamal
Department of Biochemistry and Microbiology, Faculty of Pharmacy,, Damascus University
Email: info@benthamscience.net
Rana Habeeb
Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University
Email: info@benthamscience.net
Sahar Al Fahoum
Department of Biochemistry and Microbiology, Faculty of Pharmacy,, Damascus University
Email: info@benthamscience.net
Alberto Ferlin
Department of Medicine, Unit of Andrology and Reproductive Medicine,, University of Padova
Email: info@benthamscience.net
Luca De Toni
Department of Medicine, Unit of Andrology and Reproductive Medicine,, University of Padova, Padova,
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Alcorta-Sevillano, N.; Macías, I.; Rodríguez, C.I.; Infante, A. Crucial role of lamin A/C in the migration and differentiation of MSCs in bone. Cells, 2020, 9(6), 1330. doi: 10.3390/cells9061330 PMID: 32466483
- Zhang, R.; Li, B.; Li, H. Extracellular-matrix mechanics regulate the ocular physiological and pathological activities. J. Ophthalmol., 2023, 2023, 1-11. doi: 10.1155/2023/7626920 PMID: 37521908
- Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys., 2014, 561, 3-12. doi: 10.1016/j.abb.2014.05.003 PMID: 24832390
- Hsu, Y.H.; Kiel, D.P. Clinical review: Genome-wide association studies of skeletal phenotypes: What we have learned and where we are headed. J. Clin. Endocrinol. Metab., 2012, 97(10), E1958-E1977. doi: 10.1210/jc.2012-1890 PMID: 22965941
- Dallas, S.L.; Prideaux, M.; Bonewald, L.F. The osteocyte: An endocrine cell and more. Endocr. Rev., 2013, 34(5), 658-690. doi: 10.1210/er.2012-1026 PMID: 23612223
- Boyce, B.; Yao, Z.; Xing, L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr., 2009, 19(3), 171-180. doi: 10.1615/CritRevEukarGeneExpr.v19.i3.10 PMID: 19883363
- Väänänen, K. Mechanism of osteoclast mediated bone resorptionrationale for the design of new therapeutics. Adv. Drug Deliv. Rev., 2005, 57(7), 959-971. doi: 10.1016/j.addr.2004.12.018 PMID: 15876398
- Florencio-Silva, R.; Sasso, G.R.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed. Res. Int., 2015, 2015, 1-17. doi: 10.1155/2015/421746 PMID: 26247020
- Carvalho, M.S.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Bone matrix non-collagenous proteins in tissue engineering: Creating new bone by mimicking the extracellular matrix. Polymers (Basel), 2021, 13(7), 1095. doi: 10.3390/polym13071095 PMID: 33808184
- Lin, X.; Patil, S.; Gao, Y. G.; Qian, A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol., 2020, 11 doi: 10.3389/fphar.2020.00757
- Mansour, A.; Mezour, M.A.; Badran, Z.; Tamimi, F. Extracellular matrices for bone regeneration: A literature review. Tissue Eng. Part A, 2017, 23(23-24), 1436-1451. doi: 10.1089/ten.tea.2017.0026 PMID: 28562183
- Sroga, G.E.; Karim, L.; Colón, W.; Vashishth, D. Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol. Cell. Proteomics, 2011, 10(9), M110.006718. doi: 10.1074/mcp.M110.006718 PMID: 21606484
- Paiva, K.B.S.; Granjeiro, J.M. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog. Mol. Biol. Transl. Sci., 2017, 148(9), 203-303. doi: 10.1016/bs.pmbts.2017.05.001
- Karsenty, G.; Oury, F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol. Cell. Endocrinol., 2014, 382(1), 521-526. doi: 10.1016/j.mce.2013.10.008 PMID: 24145129
- Pin, F.; Bonewald, L.F.; Bonetto, A. Role of myokines and osteokines in cancer cachexia. Exp. Biol. Med. (Maywood), 2021, 246(19), 2118-2127. doi: 10.1177/15353702211009213 PMID: 33899538
- Zaidi, M.; Kim, S.M.; Mathew, M.; Korkmaz, F.; Sultana, F.; Miyashita, S.; Gumerova, A.A.; Frolinger, T.; Moldavski, O.; Barak, O.; Pallapati, A.; Rojekar, S.; Caminis, J.; Ginzburg, Y.; Ryu, V.; Davies, T.F.; Lizneva, D.; Rosen, C.J.; Yuen, T. Bone circuitry and interorgan skeletal crosstalk. eLife, 2023, 12, e83142. doi: 10.7554/eLife.83142 PMID: 36656634
- Termine, J.D. Non-collagen proteins in bone. Ciba Found. Symp., 1988, 136, 178-202. doi: 10.1002/9780470513637.ch12 PMID: 3068009
- Retting, K.N.; Lyons, K.M. BMPs in Development. Handbook of Cell Signaling, 2nd ed.; Bradshaw, R.A.; Dennis, E.A., Eds.; Academic Press: San Diego, 2010, pp. 1905-1912.
- Kirby, D.J.; Young, M.F. Isolation, production, and analysis of small leucine-rich proteoglycans in bone. Methods Cell Biol., 2018, 143, 281-296. doi: 10.1016/bs.mcb.2017.08.016
- Moorehead, C.; Prudnikova, K.; Marcolongo, M. The regulatory effects of proteoglycans on collagen fibrillogenesis and morphology investigated using biomimetic proteoglycans. J. Struct. Biol., 2019, 206(2), 204-215. doi: 10.1016/j.jsb.2019.03.005 PMID: 30885681
- Kadler, K.E.; Hill, A.; Canty-Laird, E.G. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol., 2008, 20(5), 495-501. doi: 10.1016/j.ceb.2008.06.008 PMID: 18640274
- Corsi, A.; Xu, T.; Chen, X-D.; Boyde, A.; Liang, J.; Mankani, M.; Sommer, B.; Iozzo, R.V.; Eichstetter, I.; Robey, P.G.; Bianco, P.; Young, M.F. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res., 2002, 17(7), 1180-1189. doi: 10.1359/jbmr.2002.17.7.1180 PMID: 12102052
- Danziger, J. Vitamin K-dependent proteins, warfarin, and vascular calcification. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1504-1510. doi: 10.2215/CJN.00770208 PMID: 18495950
- Berkner, K.L.; Runge, K.W. Vitamin K-dependent protein activation: Normal gamma-glutamyl carboxylation and disruption in disease. Int. J. Mol. Sci., 2022, 23(10), 5759. doi: 10.3390/ijms23105759 PMID: 35628569
- Laizé, V.; Martel, P.; Viegas, C.S.B.; Price, P.A.; Cancela, M.L. Evolution of matrix and bone γ-carboxyglutamic acid proteins in vertebrates. J. Biol. Chem., 2005, 280(29), 26659-26668. doi: 10.1074/jbc.M500257200 PMID: 15849363
- Hauschka, P.V.; Lian, J.B.; Cole, D.E.; Gundberg, C.M. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiol. Rev., 1989, 69(3), 990-1047. doi: 10.1152/physrev.1989.69.3.990 PMID: 2664828
- Grzesik, W.J.; Robey, P.G. Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res., 1994, 9(4), 487-496. doi: 10.1002/jbmr.5650090408 PMID: 7518179
- Robey, P.G. Bone Matrix Proteoglycans and Glycoproteins. Principles of Bone Biology, 2nd ed.; Academic Press: Cambridge, Massachusetts, 2002, pp. 225-237. doi: 10.1016/B978-012098652-1/50116-5
- Ru, D.W.; Yan, Y.F.; Li, B.; Xie, Q.; Tang, R.; Shen, X.; Yu, G.; Du, J.R.; Wang, E.S. Tetranectin knock-out mice exhibit features of kyphosis and osteoporosis. Fudan Univ. J. Med. Sci., 2016, 43(2) doi: 10.3969/j.issn.1672-8467.2016.02.006
- Bellahcène, A.; Castronovo, V.; Ogbureke, K.U.E.; Fisher, L.W.; Fedarko, N.S. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): Multifunctional proteins in cancer. Nat. Rev. Cancer, 2008, 8(3), 212-226. doi: 10.1038/nrc2345 PMID: 18292776
- Harris, S.E.; Gluhak-Heinrich, J.; Harris, M.A.; Yang, W.; Bonewald, L.F.; Riha, D.; Rowe, P.S.; Robling, A.G.; Turner, C.H.; Feng, J.Q.; McKee, M.D.; Nicollela, D. DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: Theoretical role in controlling mineral quality in the perilacunar matrix. J. Musculoskelet. Neuronal Interact., 2007, 7(4), 313-315. PMID: 18094489
- Bragdon, B.; Moseychuk, O.; Saldanha, S.; King, D.; Julian, J.; Nohe, A. Bone morphogenetic proteins: A critical review. Cell. Signal., 2011, 23(4), 609-620. doi: 10.1016/j.cellsig.2010.10.003 PMID: 20959140
- Katagiri, T.; Watabe, T. Bone morphogenetic proteins. Cold Spring Harb. Perspect. Biol., 2016, 8(6), a021899. doi: 10.1101/cshperspect.a021899 PMID: 27252362
- Hyzy, S.L.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner. J. Cell. Biochem., 2012, 113(10), 3236-3245. doi: 10.1002/jcb.24201 PMID: 22628200
- Lombardi, G.; Perego, S.; Luzi, L.; Banfi, G. A four-season molecule: Osteocalcin. Updates in its physiological roles. Endocrine, 2015, 48(2), 394-404. doi: 10.1007/s12020-014-0401-0 PMID: 25158976
- De Toni, L.; Jawich, K.; De Rocco, P.M.; Di Nisio, A.; Foresta, C. Osteocalcin: A protein hormone connecting metabolism, bone and testis function. Protein Pept. Lett., 2020, 27(12), 1268-1275. doi: 10.2174/0929866527666200505220459 PMID: 32370705
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; Zhang, Z.; Kim, J.K.; Mauvais-Jarvis, F.; Ducy, P.; Karsenty, G. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130(3), 456-469. doi: 10.1016/j.cell.2007.05.047 PMID: 17693256
- Komori, T. What is the function of osteocalcin? J Oral Biosci., 2020, 62(3), 223-227. doi: 10.1016/j.job.2020.05.004
- Wei, J.; Hanna, T.; Suda, N.; Karsenty, G.; Ducy, P. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes, 2014, 63(3), 1021-1031. doi: 10.2337/db13-0887 PMID: 24009262
- Ferron, M.; Wei, J.; Yoshizawa, T.; Del Fattore, A.; DePinho, R.A.; Teti, A.; Ducy, P.; Karsenty, G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell, 2010, 142(2), 296-308. doi: 10.1016/j.cell.2010.06.003 PMID: 20655470
- De Toni, L.; Di Nisio, A.; Rocca, M.S.; De Rocco Ponce, M.; Ferlin, A.; Foresta, C. Osteocalcin, a bone-derived hormone with important andrological implications. Andrology, 2017, 5(4), 664-670. doi: 10.1111/andr.12359 PMID: 28395130
- Pi, M.; Quarles, L.D. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology, 2012, 153(5), 2062-2069. doi: 10.1210/en.2011-2117 PMID: 22374969
- Karsenty, G. Update on the Biology of Osteocalcin. Endocr. Pract., 2017, 23(10), 1270-1274. doi: 10.4158/EP171966.RA PMID: 28704102
- Hinoi, E. Pivotal role of skeletal tissues in the regulation mechanisms for physiological functions mediated by multiple organ networks. Yakugaku Zasshi, 2012, 132(6), 721-725. doi: 10.1248/yakushi.132.721 PMID: 22687731
- Ferron, M.; McKee, M.D.; Levine, R.L.; Ducy, P.; Karsenty, G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone, 2012, 50(2), 568-575. doi: 10.1016/j.bone.2011.04.017 PMID: 21550430
- Karsenty, G.; Mera, P. Molecular bases of the crosstalk between bone and muscle. Bone, 2018, 115, 43-49. doi: 10.1016/j.bone.2017.04.006 PMID: 28428077
- Jawich, K.; Rocca, M.S.; Al Fahoum, S.; Alhalabi, M.; Di Nisio, A.; Foresta, C.; Ferlin, A.; De Toni, L. RS 2247911 polymorphism of GPRC6A gene and serum undercarboxylated-osteocalcin are associated with testis function. J. Endocrinol. Invest., 2022, 45(9), 1673-1682. doi: 10.1007/s40618-022-01803-9 PMID: 35482214
- Oury, F.; Sumara, G.; Sumara, O.; Ferron, M.; Chang, H.; Smith, C.E.; Hermo, L.; Suarez, S.; Roth, B.L.; Ducy, P.; Karsenty, G. Endocrine regulation of male fertility by the skeleton. Cell, 2011, 144(5), 796-809. doi: 10.1016/j.cell.2011.02.004 PMID: 21333348
- Pi, M.; Kapoor, K.; Ye, R.; Hwang, D.J.; Miller, D.D.; Smith, J.C.; Baudry, J.; Quarles, L.D. Computationally identified novel agonists for GPRC6A. PLoS One, 2018, 13(4), e0195980. doi: 10.1371/journal.pone.0195980 PMID: 29684031
- Pi, M.; Kapoor, K.; Ye, R.; Smith, J.C.; Baudry, J.; Quarles, L.D. GPCR6A is a molecular target for the natural products gallate and EGCG in green tea. Mol. Nutr. Food Res., 2018, 62(8), 1700770. doi: 10.1002/mnfr.201700770 PMID: 29468843
- Oury, F.; Khrimian, L.; Denny, C.A.; Gardin, A.; Chamouni, A.; Goeden, N.; Huang, Y.; Lee, H.; Srinivas, P.; Gao, X.B.; Suyama, S.; Langer, T.; Mann, J.J.; Horvath, T.L.; Bonnin, A.; Karsenty, G. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell, 2013, 155(1), 228-241. doi: 10.1016/j.cell.2013.08.042 PMID: 24074871
- Shan, C.; Ghosh, A.; Guo, X.; Wang, S.; Hou, Y.; Li, S.; Liu, J. Roles for osteocalcin in brain signalling: Implications in cognition- and motor-related disorders. Mol. Brain, 2019, 12(1), 23. doi: 10.1186/s13041-019-0444-5 PMID: 30909971
- Khrimian, L.; Obri, A.; Ramos-Brossier, M.; Rousseaud, A.; Moriceau, S.; Nicot, A.S.; Mera, P.; Kosmidis, S.; Karnavas, T.; Saudou, F.; Gao, X.B.; Oury, F.; Kandel, E.; Karsenty, G. Gpr158 mediates osteocalcins regulation of cognition. J. Exp. Med., 2017, 214(10), 2859-2873. doi: 10.1084/jem.20171320 PMID: 28851741
- Price, P.A.; Fraser, J.D.; Metz-Virca, G. Molecular cloning of matrix Gla protein: Implications for substrate recognition by the vitamin K-dependent gamma-carboxylase. Proc. Natl. Acad. Sci. USA, 1987, 84(23), 8335-8339. doi: 10.1073/pnas.84.23.8335 PMID: 3317405
- Schurgers, L.J.; Spronk, H.M.H.; Skepper, J.N.; Hackeng, T.M.; Shanahan, C.M.; Vermeer, C.; Weissberg, P.L.; Proudfoot, D. Post-translational modifications regulate matrix Gla protein function: Importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost., 2007, 5(12), 2503-2511. doi: 10.1111/j.1538-7836.2007.02758.x PMID: 17848178
- Zhang, J.; Ma, Z.; Yan, K.; Wang, Y.; Yang, Y.; Wu, X. Matrix gla protein promotes the bone formation by up-regulating Wnt/β-catenin signaling pathway. Front. Endocrinol. (Lausanne), 2019, 10, 891. doi: 10.3389/fendo.2019.00891 PMID: 31920993
- Bjørklund, G.; Svanberg, E.; Dadar, M.; Card, D.J.; Chirumbolo, S.; Harrington, D.J.; Aaseth, J. The role of matrix gla protein (MGP) in vascular calcification. Curr. Med. Chem., 2020, 27(10), 1647-1660. doi: 10.2174/0929867325666180716104159 PMID: 30009696
- Borrás, T.; Smith, M.H.; Buie, L.K. A novel Mgp -cre knock-in mouse reveals an anticalcification/antistiffness candidate gene in the trabecular meshwork and peripapillary scleral region. Invest. Ophthalmol. Vis. Sci., 2015, 56(4), 2203-2214. doi: 10.1167/iovs.15-16460 PMID: 25711639
- Willems, B.A.G.; Vermeer, C.; Reutelingsperger, C.P.M.; Schurgers, L.J. The realm of vitamin K dependent proteins: Shifting from coagulation toward calcification. Mol. Nutr. Food Res., 2014, 58(8), 1620-1635. doi: 10.1002/mnfr.201300743 PMID: 24668744
- Yao, Y.; Nowak, S.; Yochelis, A.; Garfinkel, A.; Boström, K.I. Matrix GLA protein, an inhibitory morphogen in pulmonary vascular development. J. Biol. Chem., 2007, 282(41), 30131-30142. doi: 10.1074/jbc.M704297200 PMID: 17670744
- Barrett, H.; OKeeffe, M.; Kavanagh, E.; Walsh, M.; OConnor, E. Is matrix gla protein associated with vascular calcification? A systematic review. Nutrients, 2018, 10(4), 415. doi: 10.3390/nu10040415 PMID: 29584693
- Merle, B.; Garnero, P. The multiple facets of periostin in bone metabolism. Osteoporos. Int., 2012, 23(4), 1199-1212. doi: 10.1007/s00198-011-1892-7 PMID: 22310955
- Kudo, A. Periostin in bone biology. Adv. Exp. Med. Biol., 2019, 1132, 43-47. doi: 10.1007/978-981-13-6657-4_5
- Maruhashi, T.; Kii, I.; Saito, M.; Kudo, A. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J. Biol. Chem., 2010, 285(17), 13294-13303. doi: 10.1074/jbc.M109.088864 PMID: 20181949
- Wang, Z.; An, J.; Zhu, D.; Chen, H.; Lin, A.; Kang, J.; Liu, W.; Kang, X. Periostin: An emerging activator of multiple signaling pathways. J. Cell Commun. Signal., 2022, 16(4), 515-530. doi: 10.1007/s12079-022-00674-2 PMID: 35412260
- Yue, H.; Li, W.; Chen, R.; Wang, J.; Lu, X.; Li, J. Stromal POSTN induced by TGF-β1 facilitates the migration and invasion of ovarian cancer. Gynecol. Oncol., 2021, 160(2), 530-538. doi: 10.1016/j.ygyno.2020.11.026 PMID: 33317907
- Ma, H.; Wang, J.; Zhao, X.; Wu, T.; Huang, Z.; Chen, D.; Liu, Y.; Ouyang, G. Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell Rep., 2020, 30(3), 793-806.e6. doi: 10.1016/j.celrep.2019.12.075 PMID: 31968254
- Rosset, E.M.; Bradshaw, A.D. SPARC/osteonectin in mineralized tissue. Matrix Biol., 2016, 52-54, 78-87. doi: 10.1016/j.matbio.2016.02.001 PMID: 26851678
- Rossi, M.K.; Gnanamony, M.; Gondi, C.S. The SPARC of life: Analysis of the role of osteonectin/SPARC in pancreatic cancer. Int. J. Oncol., 2016, 48(5), 1765-1771. doi: 10.3892/ijo.2016.3417 PMID: 26983777
- Mansergh, F.C.; Wells, T.; Elford, C.; Evans, S.L.; Perry, M.J.; Evans, M.J.; Evans, B.A.J. Osteopenia in Sparc (osteonectin)-deficient mice: Characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiol. Genomics, 2007, 32(1), 64-73. doi: 10.1152/physiolgenomics.00151.2007 PMID: 17878319
- Guweidhi, A.; Kleeff, J.; Adwan, H.; Giese, N.A.; Wente, M.N.; Giese, T.; Büchler, M.W.; Berger, M.R.; Friess, H. Osteonectin influences growth and invasion of pancreatic cancer cells. Ann. Surg., 2005, 242(2), 224-234. doi: 10.1097/01.sla.0000171866.45848.68 PMID: 16041213
- Bradshaw, A.D.; Sage, E.H. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J. Clin. Invest., 2001, 107(9), 1049-1054. doi: 10.1172/JCI12939 PMID: 11342565
- Hu, J.; Ma, Y.; Ma, J.; Chen, S.; Zhang, X.; Guo, S.; Huang, Z.; Yue, T.; Yang, Y.; Ning, Y.; Zhu, J.; Wang, P.; Wang, X.; Chen, G.; Liu, Y. Macrophage-derived SPARC Attenuates M2-mediated Pro-tumour Phenotypes. J. Cancer, 2020, 11(10), 2981-2992. doi: 10.7150/jca.39651 PMID: 32226513
- Lund, S.A.; Giachelli, C.M.; Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal., 2009, 3(3-4), 311-322. doi: 10.1007/s12079-009-0068-0 PMID: 19798593
- Wolak, T. Osteopontin A multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis, 2014, 236(2), 327-337. doi: 10.1016/j.atherosclerosis.2014.07.004 PMID: 25128758
- ORegan, A.; Berman, J.S. Osteopontin: A key cytokine in cell-mediated and granulomatous inflammation. Int. J. Exp. Pathol., 2000, 81(6), 373-390. doi: 10.1046/j.1365-2613.2000.00163.x PMID: 11298186
- Scatena, M.; Liaw, L.; Giachelli, C.M. Osteopontin. Arterioscler. Thromb. Vasc. Biol., 2007, 27(11), 2302-2309. doi: 10.1161/ATVBAHA.107.144824 PMID: 17717292
- Addison, W.N.; Azari, F.; Sørensen, E.S.; Kaartinen, M.T.; McKee, M.D. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J. Biol. Chem., 2007, 282(21), 15872-15883. doi: 10.1074/jbc.M701116200 PMID: 17383965
- Udagawa, N.; Takahashi, N.; Yasuda, H.; Mizuno, A.; Itoh, K.; Ueno, Y.; Shinki, T.; Gillespie, M.T.; Martin, T.J.; Higashio, K.; Suda, T. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology, 2000, 141(9), 3478-3484. doi: 10.1210/endo.141.9.7634 PMID: 10965921
- Singh, A.; Gill, G.; Kaur, H.; Amhmed, M.; Jakhu, H. Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog. Orthod., 2018, 19(1), 18. doi: 10.1186/s40510-018-0216-2 PMID: 29938297
- Gunes, M.; Temizkan, S.; Apaydin, T.; Ilgin, C.; Haklar, G.; Gogas Yavuz, D. Serum osteoprotegerin levels, endothelial function and carotid intima-media thickness in type 2 diabetic patients. J. Diabetes Complications, 2021, 35(12), 108073. doi: 10.1016/j.jdiacomp.2021.108073 PMID: 34635402
- Cook, A.C.; Tuck, A.B.; McCarthy, S.; Turner, J.G.; Irby, R.B.; Bloom, G.C.; Yeatman, T.J.; Chambers, A.F. Osteopontin induces multiple changes in gene expression that reflect the six "hallmarks of cancer" in a model of breast cancer progression. Mol. Carcinog., 2005, 43(4), 225-236. doi: 10.1002/mc.20105 PMID: 15864800
- Shevde, L.A.; Samant, R.S. Role of osteopontin in the pathophysiology of cancer. Matrix Biol., 2014, 37, 131-141. doi: 10.1016/j.matbio.2014.03.001 PMID: 24657887
- Robertson, B.W.; Bonsal, L.; Chellaiah, M.A. Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Mol. Cancer, 2010, 9(1), 260. doi: 10.1186/1476-4598-9-260 PMID: 20868520
- Kurisetty, V.V.; Johnston, P.G.; Johnston, N.; Erwin, P.; Crowe, P.; Fernig, D.G.; Campbell, F.C.; Anderson, I.P.; Rudland, P.S.; El-Tanani, M.K. RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene, 2008, 27(57), 7139-7149. doi: 10.1038/onc.2008.325 PMID: 18794800
- Martinez, C.; Churchman, M.; Freeman, T.; Ilyas, M. Osteopontin provides early proliferative drive and may be dependent upon aberrant c-myc signalling in murine intestinal tumours. Exp. Mol. Pathol., 2010, 88(2), 272-277. doi: 10.1016/j.yexmp.2009.12.008 PMID: 20053348
- Amilca-Seba, K.; Sabbah, M.; Larsen, A.K.; Denis, J.A. Osteopontin as a regulator of colorectal cancer progression and its clinical applications. Cancers (Basel), 2021, 13(15), 3793. doi: 10.3390/cancers13153793 PMID: 34359694
- Hao, C.; Lane, J.; Jiang, W.G. Osteopontin and cancer: Insights into its role in drug resistance. Biomedicines, 2023, 11(1), 197. doi: 10.3390/biomedicines11010197 PMID: 36672705
- Ouyang, X.; Huang, Y.; Jin, X.; Zhao, W.; Hu, T.; Wu, F.; Huang, J. Osteopontin promotes cancer cell drug resistance, invasion, and lactate production and is associated with poor outcome of patients with advanced non-small-cell lung cancer. OncoTargets Ther., 2018, 11, 5933-5941. doi: 10.2147/OTT.S164007 PMID: 30275702
- Aksoy, A.; Artas, G.; Sevindik, O.G. Predictive value of stathmin-1 and osteopontin expression for taxan resistance in metastatic castrate-resistant prostate cancer. Pak. J. Med. Sci., 2017, 33(3), 560-565. doi: 10.12669/pjms.333.12559 PMID: 28811771
- Lamort, A.S.; Giopanou, I.; Psallidas, I.; Stathopoulos, G.T. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells, 2019, 8(8), 815. doi: 10.3390/cells8080815 PMID: 31382483
- Kahles, F.; Findeisen, H.M.; Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 2014, 3(4), 384-393. doi: 10.1016/j.molmet.2014.03.004 PMID: 24944898
- Rittling, S.R.; Singh, R. Osteopontin in immune-mediated diseases. J. Dent. Res., 2015, 94(12), 1638-1645. doi: 10.1177/0022034515605270 PMID: 26341976
- Santamaría, M.H.; Corral, R.S. Osteopontin-dependent regulation of Th1 and Th17 cytokine responses in Trypanosoma cruzi-infected C57BL/6 mice. Cytokine, 2013, 61(2), 491-498. doi: 10.1016/j.cyto.2012.10.027 PMID: 23199812
- Hirano, Y.; Aziz, M.; Yang, W.L.; Wang, Z.; Zhou, M.; Ochani, M.; Khader, A.; Wang, P. Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Crit. Care, 2015, 19(1), 53. doi: 10.1186/s13054-015-0782-3 PMID: 25887405
- Wesson, J.A.; Johnson, R.J.; Mazzali, M.; Beshensky, A.M.; Stietz, S.; Giachelli, C.; Liaw, L.; Alpers, C.E.; Couser, W.G.; Kleinman, J.G.; Hughes, J. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J. Am. Soc. Nephrol., 2003, 14(1), 139-147. doi: 10.1097/01.ASN.0000040593.93815.9D PMID: 12506146
- Özkalaycı, F.; Gülmez, Ö.; Uğur-Altun, B.; Pandi-Perumal, S.R.; Altun, A. The role of osteoprotegerin as a cardioprotective versus reactive inflammatory marker: The chicken or the egg paradox. Balkan Med. J., 2018, 35(3), 225-232. doi: 10.4274/balkanmedj.2018.0579 PMID: 29687784
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; Shimamoto, G.; DeRose, M.; Elliott, R.; Colombero, A.; Tan, H.L.; Trail, G.; Sullivan, J.; Davy, E.; Bucay, N.; Renshaw-Gegg, L.; Hughes, T.M.; Hill, D.; Pattison, W.; Campbell, P.; Sander, S.; Van, G.; Tarpley, J.; Derby, P.; Lee, R.; Boyle, W.J. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2), 309-319. doi: 10.1016/S0092-8674(00)80209-3 PMID: 9108485
- Boyce, B.F.; Xing, L. The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep., 2007, 5(3), 98-104. doi: 10.1007/s11914-007-0024-y PMID: 17925190
- Aubin, J.E.; Bonnelye, E. Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos. Int., 2000, 11(11), 905-913. doi: 10.1007/s001980070028 PMID: 11193242
- Bucay, N.; Sarosi, I.; Dunstan, C.R.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; Boyle, W.J.; Simonet, W.S. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev., 1998, 12(9), 1260-1268. doi: 10.1101/gad.12.9.1260 PMID: 9573043
- Saidenberg-Kermanach, N.; Cohen-Solal, M.; Bessis, N.; De Vernejoul, M.C.; Boissier, M.C. Role for osteoprotegerin in rheumatoid inflammation. Joint Bone Spine, 2004, 71(1), 9-13. doi: 10.1016/S1297-319X(03)00131-3 PMID: 14769514
- Akiyama, T.; Shinzawa, M.; Akiyama, N. RANKL-RANK interaction in immune regulatory systems. World J. Orthop., 2012, 3(9), 142-150. doi: 10.5312/wjo.v3.i9.142 PMID: 23173110
- Chino, T.; Draves, K.E.; Clark, E.A. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J. Leukoc. Biol., 2009, 86(4), 933-940. doi: 10.1189/jlb.0708419 PMID: 19641036
- Di Bartolo, B.A.; Schoppet, M.; Mattar, M.Z.; Rachner, T.D.; Shanahan, C.M.; Kavurma, M.M. Calcium and osteoprotegerin regulate IGF1R expression to inhibit vascular calcification. Cardiovasc. Res., 2011, 91(3), 537-545. doi: 10.1093/cvr/cvr084 PMID: 21447702
- Wang, Y.; Liu, Y.; Huang, Z.; Chen, X.; Zhang, B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov., 2022, 8(1), 252. doi: 10.1038/s41420-022-01042-0 PMID: 35523775
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen., 2020, 40(1), 2. doi: 10.1186/s41232-019-0111-3 PMID: 32047573
- Alsterda, A.; Asha, K.; Powrozek, O.; Repak, M.; Goswami, S.; Dunn, A.M.; Memmel, H.C.; Sharma-Walia, N. Salubrinal exposes anticancer properties in inflammatory breast cancer cells by manipulating the endoplasmic reticulum stress pathway. Front. Oncol., 2021, 11, 654940. doi: 10.3389/fonc.2021.654940 PMID: 34094947
- Holen, I.; Shipman, C.M. Role of osteoprotegerin (OPG) in cancer. Clin. Sci. (Lond.), 2006, 110(3), 279-291. doi: 10.1042/CS20050175 PMID: 16464170
- Kallioniemi, A. Bone morphogenetic protein 4a fascinating regulator of cancer cell behavior. Cancer Genet., 2012, 205(6), 267-277. doi: 10.1016/j.cancergen.2012.05.009 PMID: 22749032
- Farhadieh, R.D.; Gianoutsos, M.P.; Yu, Y.; Walsh, W.R. The role of bone morphogenetic proteins BMP-2 and BMP-4 and their related postreceptor signaling system (Smads) in distraction osteogenesis of the mandible. J. Craniofac. Surg., 2004, 15(5), 714-718. doi: 10.1097/00001665-200409000-00003 PMID: 15346005
- Choi, S.; Yu, J.; Park, A.; Dubon, M.J.; Do, J.; Kim, Y.; Nam, D.; Noh, J.; Park, K.S. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci. Rep., 2019, 9(1), 11724. doi: 10.1038/s41598-019-48190-5 PMID: 31409851
- Deng, G.; Chen, Y.; Guo, C.; Yin, L.; Han, Y.; Li, Y.; Fu, Y.; Cai, C.; Shen, H.; Zeng, S. BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via Id1. J. Cell Sci., 2020, 133(11), jcs.237222. doi: 10.1242/jcs.237222 PMID: 32376787
- Westhrin, M.; Holien, T.; Zahoor, M.; Moen, S.H.; Buene, G.; Størdal, B.; Hella, H.; Yuan, H.; de Bruijn, J.D.; Martens, A.; Groen, R.W.J.; Bosch, F.; Smith, U.; Sponaas, A.M.; Sundan, A.; Standal, T. Bone morphogenetic protein 4 gene therapy in mice inhibits myeloma tumor growth, but has a negative impact on bone. JBMR Plus, 2020, 4(1), e10247. doi: 10.1002/jbm4.10247 PMID: 31956851
- Chiu, C.Y.; Kuo, K.K.; Kuo, T.L.; Lee, K.T.; Cheng, K.H. The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol. Cancer Res., 2012, 10(3), 415-427. doi: 10.1158/1541-7786.MCR-11-0293 PMID: 22241220
- Cao, Y.; Tan, Q.; Li, J.; Wang, J. Bone morphogenetic proteins 2, 6, and 9 differentially regulate the osteogenic differentiation of immortalized preodontoblasts. Braz. J. Med. Biol. Res., 2020, 53(9), e9750. doi: 10.1590/1414-431x20209750 PMID: 32756815
- Simic, P.; Culej, J.B.; Orlic, I.; Grgurevic, L.; Draca, N.; Spaventi, R.; Vukicevic, S. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J. Biol. Chem., 2006, 281(35), 25509-25521. doi: 10.1074/jbc.M513276200 PMID: 16798745
- Dichmann, D.S.; Miller, C.P.; Jensen, J.; Scott Heller, R.; Serup, P. Expression and misexpression of members of the FGF and TGFβ families of growth factors in the developing mouse pancreas. Dev. Dyn., 2003, 226(4), 663-674. doi: 10.1002/dvdy.10270 PMID: 12666204
- Pauk, M.; Bordukalo-Niksic, T.; Brkljacic, J.; Paralkar, V.M.; Brault, A.L.; Dumic-Cule, I.; Borovecki, F.; Grgurevic, L.; Vukicevic, S. A novel role of bone morphogenetic protein 6 (BMP6) in glucose homeostasis. Acta Diabetol., 2019, 56(3), 365-371. doi: 10.1007/s00592-018-1265-1 PMID: 30539233
- Singla, D.K.; Singla, R.; Wang, J. BMP-7 treatment increases M2 macrophage differentiation and reduces inflammation and plaque formation in Apo E-/- mice. PLoS One, 2016, 11(1), e0147897. doi: 10.1371/journal.pone.0147897 PMID: 26824441
- Wang, G.; Han, J.; Wang, S.; Li, P. Expression and purification of recombinant human bone morphogenetic protein-7 in Escherichia coli. Prep. Biochem. Biotechnol., 2014, 44(1), 16-25. doi: 10.1080/10826068.2013.782043 PMID: 24117149
- Narasimhulu, C.A.; Singla, D.K. BMP-7 attenuates sarcopenia and adverse muscle remodeling in diabetic mice via alleviation of lipids, inflammation, HMGB1, and pyroptosis. Antioxidants, 2023, 12(2), 331. doi: 10.3390/antiox12020331 PMID: 36829889
- Davies, M.R.; Lund, R.J.; Hruska, K.A. BMP-7 is an efficacious treatment of vascular calcification in a murine model of atherosclerosis and chronic renal failure. J. Am. Soc. Nephrol., 2003, 14(6), 1559-1567. doi: 10.1097/01.ASN.0000068404.57780.DD PMID: 12761256
- Dorai, H.; Sampath, T.K. Bone morphogenetic protein-7 modulates genes that maintain the vascular smooth muscle cell phenotype in culture. J. Bone Joint Surg. Am., 2001, 83(Pt 1)(Suppl. 1), S1-, 70-S1-78. doi: 10.2106/00004623-200100001-00010 PMID: 11263669
补充文件
