Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects


Citar

Texto integral

Resumo

Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPR-- Cas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.

Sobre autores

Kuldeep Singh

Department of Pharmacology, Rajiv Academy for Pharmacy

Autor responsável pela correspondência
Email: info@benthamscience.net

Bharat Bhushan

Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University

Email: info@benthamscience.net

Sunil Kumar

Department of Pharmacology, P.K. University

Email: info@benthamscience.net

Supriya Singh

Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology Lucknow

Email: info@benthamscience.net

Romulo Macadangdang

Department of Nursing, College of Allied Health,, National University

Email: info@benthamscience.net

Ekta Pandey

Department of Chemistry, Bundelkhand Institute of Engineering and Technology

Email: info@benthamscience.net

Ajit Varma

Department of Pharmaceutics, Rama University

Email: info@benthamscience.net

Shivendra Kumar

Department of Pharmacology, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Bibliografia

  1. Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Nat Rev Nephrol 2023; 19(1): 9-22. doi: 10.1038/s41581-022-00636-2 PMID: 36280707
  2. Wang X, Ma C, Labrada R, et al. Recent advances in lentiviral vectors for gene therapy. Sci China Life Sci 2021; 64(11): 1842-57. doi: 10.1007/s11427-021-1952-5 PMID: 34708326
  3. Temin HM. Mixed infection with two types of Rous sarcoma virus. Virology 1961; 13(2): 158-63. doi: 10.1016/0042-6822(61)90049-6 PMID: 13775833
  4. Sambrook J, Westphal H, Srinivasan PR, Dulbecco R. The integrated state of viral DNA in SV40-transformed cells. Proc Natl Acad Sci USA 1968; 60(4): 1288-95. doi: 10.1073/pnas.60.4.1288 PMID: 4299943
  5. Tatum EL. Molecular biology, nucleic acids, and the future of medicine. Perspect Biol Med 1966; 10(1): 19-32. doi: 10.1353/pbm.1966.0027 PMID: 6002665
  6. Mercola KE, Bar-Eli M, Stang HD, Slamon DJ, Cline MJ. Insertion of new genetic information into bone marrow cells of mice: Comparison of two selectable genes. Ann N Y Acad Sci 1982; 397(1): 272-80. doi: 10.1111/j.1749-6632.1982.tb43434.x PMID: 6297353
  7. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096. doi: 10.1126/science.1258096 PMID: 25430774
  8. Kang L, Jin S, Wang J, et al. AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355: 458-73. doi: 10.1016/j.jconrel.2023.01.067 PMID: 36736907
  9. Morange M. What history tells us XXXVII. CRISPR-Cas: The discovery of an immune system in prokaryotes. J Biosci 2015; 40(2): 221-3. doi: 10.1007/s12038-015-9532-6 PMID: 25963251
  10. Varshavsky A. Discovering the RNA double helix and hybridization. Cell 2006; 127(7): 1295-7. doi: 10.1016/j.cell.2006.12.008 PMID: 17190591
  11. Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol 1996; 16(12): 6820-8. doi: 10.1128/MCB.16.12.6820 PMID: 8943337
  12. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 2017; 46(1): 505-29. doi: 10.1146/annurev-biophys-062215-010822 PMID: 28375731
  13. Bandyopadhyay A, Kancharla N, Javalkote VS, Dasgupta S, Brutnell TP. CRISPR-Cas12a (Cpf1): A versatile tool in the plant genome editing tool box for agricultural advancement. Front Plant Sci 2020; 11: 584151. doi: 10.3389/fpls.2020.584151 PMID: 33214794
  14. Ali Z, Mahas A, Mahfouz M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci 2018; 23(5): 374-8. doi: 10.1016/j.tplants.2018.03.003 PMID: 29605099
  15. Sun N, Zhao H. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol Bioeng 2013; 110(7): 1811-21. doi: 10.1002/bit.24890 PMID: 23508559
  16. Cathomen T, Keith Joung J. Zinc-finger nucleases: The next generation emerges. Mol Ther 2008; 16(7): 1200-7. doi: 10.1038/mt.2008.114
  17. Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: Advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19(12): 839-59. doi: 10.1038/s41573-020-0084-6 PMID: 33077937
  18. Scholefield J, Harrison PT. Prime editing – An update on the field. Gene Ther 2021; 28(7-8): 396-401. doi: 10.1038/s41434-021-00263-9 PMID: 34031549
  19. Saeed S, Usman B, Shim SH, et al. CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement. Plant Sci 2022; 324: 111435. doi: 10.1016/j.plantsci.2022.111435 PMID: 36031021
  20. Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021; 23(1): 11-22. doi: 10.1038/s41556-020-00620-7 PMID: 33420494
  21. Lienert F, Lohmueller JJ, Garg A, Silver PA. Synthetic biology in mammalian cells: Next generation research tools and therapeutics. Nat Rev Mol Cell Biol 2014; 15(2): 95-107. doi: 10.1038/nrm3738 PMID: 24434884
  22. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169(12): 5429-33. doi: 10.1128/jb.169.12.5429-5433.1987 PMID: 3316184
  23. Jansen R, Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43(6): 1565-75. doi: 10.1046/j.1365-2958.2002.02839.x PMID: 11952905
  24. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60(2): 174-82. doi: 10.1007/s00239-004-0046-3 PMID: 15791728
  25. Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71. doi: 10.1038/nature09523 PMID: 21048762
  26. Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 2011; 9(6): 467-77. doi: 10.1038/nrmicro2577 PMID: 21552286
  27. Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 2010; 64(1): 475-93. doi: 10.1146/annurev.micro.112408.134123 PMID: 20528693
  28. Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011; 45(1): 273-97. doi: 10.1146/annurev-genet-110410-132430 PMID: 22060043
  29. Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321(5891): 960-4. doi: 10.1126/science.1159689 PMID: 18703739
  30. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322(5909): 1843-5. doi: 10.1126/science.1165771 PMID: 19095942
  31. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011; 39(21): 9275-82. doi: 10.1093/nar/gkr606 PMID: 21813460
  32. Magadán AH, Dupuis MÈ, Villion M, Moineau S. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One 2012; 7(7): e40913. doi: 10.1371/journal.pone.0040913 PMID: 22911717
  33. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86. doi: 10.1073/pnas.1208507109 PMID: 22949671
  34. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21. doi: 10.1126/science.1225829 PMID: 22745249
  35. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23. doi: 10.1126/science.1231143 PMID: 23287718
  36. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57. doi: 10.1080/10717544.2018.1474964 PMID: 29801422
  37. Zhang Y, Heidrich N, Ampattu BJ, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 2013; 50(4): 488-503. doi: 10.1016/j.molcel.2013.05.001 PMID: 23706818
  38. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31(3): 230-2. doi: 10.1038/nbt.2507 PMID: 23360966
  39. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013; 31(3): 227-9. doi: 10.1038/nbt.2501 PMID: 23360964
  40. Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 2013; 23(5): 720-3. doi: 10.1038/cr.2013.46 PMID: 23545779
  41. Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153(4): 910-8. doi: 10.1016/j.cell.2013.04.025 PMID: 23643243
  42. Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154(6): 1380-9. doi: 10.1016/j.cell.2013.08.021 PMID: 23992846
  43. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173-83. doi: 10.1016/j.cell.2013.02.022 PMID: 23452860
  44. Doudna JA, Charpentier E. Genome editing. The new front genome eng CRISPR-Cas. Science 2014; 346(6213): 1258096.
  45. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78. doi: 10.1016/j.cell.2014.05.010 PMID: 24906146
  46. Kim YG, Shi Y, Berg JM, Chandrasegaran S. Site-specific cleavage of DNA–RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 1997; 203(1): 43-9. doi: 10.1016/S0378-1119(97)00489-7 PMID: 9426005
  47. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156-60. doi: 10.1073/pnas.93.3.1156 PMID: 8577732
  48. Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001; 21(1): 289-97. doi: 10.1128/MCB.21.1.289-297.2001 PMID: 11113203
  49. Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002; 161(3): 1169-75. doi: 10.1093/genetics/161.3.1169 PMID: 12136019
  50. Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science 2003; 300(5620): 764. doi: 10.1126/science.1079512 PMID: 12730594
  51. Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009; 325(5939): 433. doi: 10.1126/science.1172447 PMID: 19628861
  52. Tong C, Li P, Wu NL, Yan Y, Ying QL. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 2010; 467(7312): 211-3. doi: 10.1038/nature09368 PMID: 20703227
  53. Carbery ID, Ji D, Harrington A, et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics 2010; 186(2): 451-9. doi: 10.1534/genetics.110.117002 PMID: 20628038
  54. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9): 636-46. doi: 10.1038/nrg2842 PMID: 20717154
  55. Gao H, Wu X, Chai J, Han Z. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res 2012; 22(12): 1716-20. doi: 10.1038/cr.2012.156 PMID: 23147789
  56. Szurek B, Rossier O, Hause G, Bonas U. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 2002; 46(1): 13-23. doi: 10.1046/j.1365-2958.2002.03139.x PMID: 12366827
  57. Yuan M, Ke Y, Huang R, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 2016; 5: e19605. doi: 10.7554/eLife.19605 PMID: 27472897
  58. Zhu W, Yang B, Chittoor JM, Johnson LB, White FF. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact 1998; 11(8): 824-32. doi: 10.1094/MPMI.1998.11.8.824 PMID: 9675896
  59. Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326(5959): 1509-12. doi: 10.1126/science.1178811 PMID: 19933107
  60. Yang J, Zhang Y, Yuan P, et al. Complete decoding of TAL effectors for DNA recognition. Cell Res 2014; 24(5): 628-31. doi: 10.1038/cr.2014.19 PMID: 24513857
  61. Miller JC, Zhang L, Xia DF, et al. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 2015; 12(5): 465-71. doi: 10.1038/nmeth.3330 PMID: 25799440
  62. Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335(6069): 720-3. doi: 10.1126/science.1215670 PMID: 22223738
  63. Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012; 335(6069): 716-9. doi: 10.1126/science.1216211 PMID: 22223736
  64. Lamb BM, Mercer AC, Barbas CF III. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 2013; 41(21): 9779-85. doi: 10.1093/nar/gkt754 PMID: 23980031
  65. Streubel J, Blücher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol 2012; 30(7): 593-5. doi: 10.1038/nbt.2304 PMID: 22781676
  66. Richter A, Streubel J, Blücher C, et al. A TAL effector repeat architecture for frameshift binding. Nat Commun 2014; 5(1): 3447. doi: 10.1038/ncomms4447 PMID: 24614980
  67. Yang LH, Briggs AW, Chew WL, Mali P, Guell M, Aach J, et al. Engineering and optimising deaminase fusions for genome editing (vol 7, 13330, 2016). Nat Commun 2017; 8: 16169. doi: 10.1038/ncomms16169 PMID: 28991237
  68. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 2017; 35(4): 371-6. doi: 10.1038/nbt.3803 PMID: 28191901
  69. Li Z, Abraham BJ, Berezovskaya A, et al. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 2017; 31(10): 2057-64. doi: 10.1038/leu.2017.75 PMID: 28260788
  70. Yang L, Briggs AW, Chew WL, et al. Engineering and optimising deaminase fusions for genome editing. Nat Commun 2016; 7(1): 13330. doi: 10.1038/ncomms13330 PMID: 27804970
  71. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551(7681): 464-71. advance online publication doi: 10.1038/nature24644 PMID: 29160308
  72. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57. doi: 10.1038/s41586-019-1711-4 PMID: 31634902
  73. Benne R, Van Den Burg J, Brakenhoff JPJ, Sloof P, Van Boom JH, Tromp MC. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 1986; 46(6): 819-26. doi: 10.1016/0092-8674(86)90063-2 PMID: 3019552
  74. Grosjean H, Benne R. Modification and editing of RNA. Washington, DC: ASM Press 1998; pp. XI-XIII. doi: 10.1128/9781555818296
  75. Lane BG. Historical perspectives on RNA nucleoside modifications. In: Modification and editing of RNA. Washington, DC: ASM Press 1998; pp. 1-20.
  76. Ylä-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 2012; 20(10): 1831-2. doi: 10.1038/mt.2012.194 PMID: 23023051
  77. Gaudet D, Méthot J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol 2012; 23(4): 310-20. doi: 10.1097/MOL.0b013e3283555a7e PMID: 22691709
  78. Stroes ES, Nierman MC, Meulenberg JJ, et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 2008; 28(12): 2303-4. doi: 10.1161/ATVBAHA.108.175620 PMID: 18802015
  79. Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the glybera example from bench to bedside. Front Immunol 2014; 5: 82. a doi: 10.3389/fimmu.2014.00082 PMID: 24624131
  80. Malina A, Mills JR, Cencic R, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 2013; 27(23): 2602-14. doi: 10.1101/gad.227132.113 PMID: 24298059
  81. Chen C, Liu Y, Rappaport AR, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 2014; 25(5): 652-65. doi: 10.1016/j.ccr.2014.03.016 PMID: 24794707
  82. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514(7522): 380-4. doi: 10.1038/nature13589 PMID: 25119044
  83. Yahata T, Mizoguchi M, Kimura A, et al. Programmed cell death ligand 1 D isruption by clustered regularly interspaced short palindromic repeats /Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Sci 2019; 110(4): 1279-92. doi: 10.1111/cas.13958 PMID: 30702189
  84. Deng H, Tan S, Gao X, et al. Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B 2020; 10(2): 358-73. doi: 10.1016/j.apsb.2019.07.004 PMID: 32082979
  85. Su S, Zou Z, Chen F, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. OncoImmunology 2017; 6(1): e1249558. doi: 10.1080/2162402X.2016.1249558 PMID: 28197365
  86. Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015; 37(4): 764-82. doi: 10.1016/j.clinthera.2015.02.018 PMID: 25823918
  87. Choi BD, Yu X, Castano AP, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 2019; 7(1): 304. doi: 10.1186/s40425-019-0806-7 PMID: 31727131
  88. Gao SP, Kiliti AJ, Zhang K, et al. AKT1 E17K inhibits cancer cell migration by abrogating β-catenin signaling. Mol Cancer Res 2021; 19(4): 573-84. doi: 10.1158/1541-7786.MCR-20-0623 PMID: 33303690
  89. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ Sci B 2020; 21(5): 343-60. doi: 10.1631/jzus.B2000083 PMID: 32425000
  90. Kumar P, Malik YS, Ganesh B, et al. CRISPR-Cas system: An approach with potentials for COVID-19 diagnosis and therapeutics. Front Cell Infect Microbiol 2020; 10: 576875. doi: 10.3389/fcimb.2020.576875 PMID: 33251158
  91. Chertow DS. Next-generation diagnostics with CRISPR. Science 2018; 360(6387): 381-2. doi: 10.1126/science.aat4982 PMID: 29700254
  92. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-42. doi: 10.1126/science.aam9321 PMID: 28408723
  93. Wang X, Zhong M, Liu Y, et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci Bull 2020; 65(17): 1436-9. b doi: 10.1016/j.scib.2020.04.041 PMID: 32373393
  94. Kanitchinda S, Srisala J, Suebsing R, Prachumwat A, Chaijarasphong T. CRISPR-Cas fluorescent cleavage assay coupled with recombinase polymerase amplification for sensitive and specific detection of Enterocytozoon hepatopenaei. Biotechnol Rep 2020; 27: e00485. doi: 10.1016/j.btre.2020.e00485 PMID: 32577410
  95. Li Z, Wei J, Di D, et al. Rapid and accurate detection of African swine fever virus by DNA endonuclease-targeted CRISPR trans reporter assay. Acta Biochim Biophys Sin 2020; 52(12): 1413-9. doi: 10.1093/abbs/gmaa135 PMID: 33201182
  96. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat Protoc 2019; 14(10): 2986-3012. doi: 10.1038/s41596-019-0210-2 PMID: 31548639
  97. Mustafa MI, Makhawi AM. Sherlock and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol 2021; 59(3): e00745-20. doi: 10.1128/JCM.00745-20 PMID: 33148705
  98. Brandsma E, Verhagen HJMP, van de Laar TJW, Claas ECJ, Cornelissen M, van den Akker E. Rapid, sensitive, and specific severe acute respiratory syndrome coronavirus 2 detection: A multicenter comparison between standard quantitative reverse-transcriptase polymerase chain reaction and CRISPR-based DETECTR. J Infect Dis 2021; 223(2): 206-13. doi: 10.1093/infdis/jiaa641 PMID: 33535237
  99. Wang M, Zhang R, Li J. CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosens Bioelectron 2020; 165: 112430. doi: 10.1016/j.bios.2020.112430 PMID: 32729545
  100. Ding X, Yin K, Li Z, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun 2020; 11(1): 4711. doi: 10.1038/s41467-020-18575-6 PMID: 32948757
  101. Javalkote VS, Kancharla N, Bhadra B, et al. CRISPR-based assays for rapid detection of SARS-CoV-2. Methods 2022; 203: 594-603. doi: 10.1016/j.ymeth.2020.10.003 PMID: 33045362
  102. Ali Z, Aman R, Mahas A, et al. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res 2020; 288: 198129. doi: 10.1016/j.virusres.2020.198129 PMID: 32822689
  103. Quan J, Langelier C, Kuchta A, et al. FLASH: A next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res 2019; 47(14): e83. doi: 10.1093/nar/gkz418 PMID: 31114866
  104. Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018; 360(6387): 444-8. doi: 10.1126/science.aas8836 PMID: 29700266
  105. Ai JW, Zhou X, Xu T, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect 2019; 8(1): 1361-9. doi: 10.1080/22221751.2019.1664939 PMID: 31522608
  106. Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 – An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3(1): 8. doi: 10.1038/s41698-019-0080-7 PMID: 30911676
  107. Xu L, Wang J, Liu Y, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 2019; 381(13): 1240-7. doi: 10.1056/NEJMoa1817426 PMID: 31509667
  108. Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020; 367(6481): eaba7365. doi: 10.1126/science.aba7365 PMID: 32029687
  109. Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med 2020; 26(5): 732-40. doi: 10.1038/s41591-020-0840-5 PMID: 32341578
  110. Cyranoski D, Ledford H. Genome-edited baby claim provokes international outcry. Nature 2018; 563(7733): 607-8. doi: 10.1038/d41586-018-07545-0 PMID: 30482929
  111. Savulescu J, Singer P. An ethical pathway for gene editing. Bioethics 2019; 33(2): 221-2. doi: 10.1111/bioe.12570 PMID: 30695116
  112. Nuffield Council on Bioethics Genome editing and human reproduction: social and ethical issues. Nuffield Council on Bioethics 2018.
  113. Gyngell C, Bowman-Smart H, Savulescu J. Moral reasons to edit the human genome: picking up from the Nuffield report. J Med Ethics 2019; 45(8): 514-23. doi: 10.1136/medethics-2018-105084 PMID: 30679191
  114. Cavaliere G. The ethics of human genome editing. WHO expert advisory committee on developing global standards for governance and oversight of human genome editing 2019. Available from: https://www.who.int/ethics/topics/human-genome-editing/WHO-Commissioned-Ethics-paper-March19. pdf accessed Jan 25 2021.
  115. Mahajan R. Onasemnogene abeparvovec for spinal muscular atrophy: The costlier drug ever. Int J Appl Basic Med Res 2019; 9(3): 127-8. doi: 10.4103/ijabmr.IJABMR_190_19 PMID: 31392173
  116. Seimetz D, Heller K, Richter J. Approval of first CAR-Ts: Have we solved all hurdles for ATMPs? Cell Med 2019; 11 doi: 10.1177/2155179018822781 PMID: 32634192
  117. Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene neparvovec and gene therapy for Leber’s congenital amaurosis: review of evidence to date. Appl Clin Genet 2020; 13: 179-208. doi: 10.2147/TACG.S230720 PMID: 33268999
  118. Gruber K. Europe gives gene therapy the green light. Lancet 2012; 380(9855): e10. doi: 10.1016/S0140-6736(12)61992-8 PMID: 23166921
  119. Zhang WW, Li L, Li D, et al. The first approved gene therapy product for cancer Ad-p53 (gendicine): 12 years in the clinic. Hum Gene Ther 2018; 29(2): 160-79. doi: 10.1089/hum.2017.218 PMID: 29338444
  120. Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 2018; 18(2): 171-6. doi: 10.2174/1568009618666171129221503 PMID: 29189159
  121. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N Engl J Med 2021; 384(3): 252-60. doi: 10.1056/NEJMoa2031054 PMID: 33283989
  122. Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385(6): 493-502. doi: 10.1056/NEJMoa2107454 PMID: 34215024
  123. Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: From 1998 to 2019. Biotechnol Adv 2020; 40: 107502. doi: 10.1016/j.biotechadv.2019.107502 PMID: 31887345
  124. Shahryari A, Saghaeian Jazi M, Mohammadi S, et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet 2019; 10: 868. doi: 10.3389/fgene.2019.00868 PMID: 31608113
  125. Zhang X, Chen L, Zhu B, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat Cell Biol 2020; 22(6): 740-50. doi: 10.1038/s41556-020-0518-8 PMID: 32393889
  126. Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 2018; 36(9): 843-6. doi: 10.1038/nbt.4172 PMID: 29813047
  127. Zhao D, Li J, Li S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 2021; 39(1): 35-40. doi: 10.1038/s41587-020-0592-2 PMID: 32690970
  128. Ousterout DG, Perez-Pinera P, Thakore PI, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 2013; 21(9): 1718-26. doi: 10.1038/mt.2013.111 PMID: 23732986
  129. Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 2013; 21(6): 1151-9. doi: 10.1038/mt.2013.56 PMID: 23546300
  130. Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014; 510(7504): 235-40. doi: 10.1038/nature13420 PMID: 24870228
  131. Crane AM, Kramer P, Bui JH, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 2015; 4(4): 569-77. doi: 10.1016/j.stemcr.2015.02.005 PMID: 25772471
  132. Corvol H, Thompson KE, Tabary O, le Rouzic P, Guillot L. Translating the genetics of cystic fibrosis to personalized medicine. Transl Res 2016; 168: 40-9. doi: 10.1016/j.trsl.2015.04.008 PMID: 25940043
  133. Hoegger MJ, Fischer AJ, McMenimen JD, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 2014; 345(6198): 818-22. doi: 10.1126/science.1255825 PMID: 25124441
  134. Sallenave JM. Phagocytic and signaling innate immune receptors: Are they dysregulated in cystic fibrosis in the fight against Pseudomonas aeruginosa? Int J Biochem Cell Biol 2014; 52: 103-7. doi: 10.1016/j.biocel.2014.01.013 PMID: 24508137
  135. Wong AP, Bear CE, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 2012; 30(9): 876-82. doi: 10.1038/nbt.2328 PMID: 22922672
  136. Nishitani C, Hirai N, Komori S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 2016; 6(1): 31481. doi: 10.1038/srep31481 PMID: 27530958
  137. Wang Z, Wang S, Li D, et al. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J 2018; 16(8): 1424-33. doi: 10.1111/pbi.12884 PMID: 29331077
  138. Breitler JC, Dechamp E, Campa C, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell Tissue Organ Cult 2018; 134(3): 383-94. doi: 10.1007/s11240-018-1429-2
  139. Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 2017; 8: 1780. doi: 10.3389/fpls.2017.01780 PMID: 29093724
  140. Osakabe Y, Liang Z, Ren C, et al. CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 2018; 13(12): 2844-63. doi: 10.1038/s41596-018-0067-9 PMID: 30390050
  141. van Regenmortel MH, Mahy BW. Desk encyclopedia of plant and fungal virology. San Diego: Elsevier 2009.
  142. Ali Z, Ali S, Tashkandi M, Zaidi SSA, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: Differential interference and evasion. Sci Rep 2016; 6(1): 26912. doi: 10.1038/srep26912 PMID: 27225592
  143. Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 2018; 13(10): e1525996. doi: 10.1080/15592324.2018.1525996 PMID: 30289378
  144. Ishii T. Germline genome-editing research and its socioethical implications Trends Mol Med 2015; 21(8): 473-81. doi: 10.1016/j.molmed.2015.05.006
  145. Janssens AC. Designing babies through gene editing: science or science fction? Genet Med 2016; 18(12): 1186-7. doi: 10.1038/gim.2016.28
  146. Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modifcation. Science 2015; 348(6230): 36-8. doi: 10.1126/science.aab1028
  147. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don’t edit the human germ line. Nature 2015; 519(7544): 410-1. doi: 10.1038/519410a

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024