Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders


Cite item

Full Text

Abstract

Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.

About the authors

Pranay Wal

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Namra Aziz

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Author for correspondence.
Email: info@benthamscience.net

Chetan Singh

Department of Pharmacy, Servier India Private Limited,

Email: info@benthamscience.net

Azhar Rasheed

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Lalit Tyagi

Department of Pharmacy, Lloyd Institute of Management and Technology,

Email: info@benthamscience.net

Ankur Agrawal

School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research

Email: info@benthamscience.net

Ankita Wal

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

References

  1. Lopez E, Ballard BD, Jan A. Cardiovascular disease. StatPearls. Treasure Island, FL: StatPearls Publishing 2023. https:// www.ncbi.nlm.nih.gov/books/NBK535419/ Updated 2023 Aug 7 Internet
  2. World health statistics 2023: Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World health organization; 2023. licence. 2023. Available from: https://www.who.int/publications/i/item/9789240074323
  3. Indian Heart Association. Available from: https://indianheartassociation.org/why-indians-why-south-asians/#:~:text=Public%20health%20estimates%20indicate%20that,a%20silent%20epidemic%20among%20Indians
  4. Liew LC, Ho BX, Soh BS. Mending a broken heart: Current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11(1): 138. doi: 10.1186/s13287-020-01648-0 PMID: 32216837
  5. Khakoo AY, Yurgin NR, Eisenberg PR, Fonarow GC. Overcoming barriers to development of novel therapies for cardiovascular disease: Insights from the oncology drug development experience. JACC Basic Transl Sci 2019; 4(2): 269-74. doi: 10.1016/j.jacbts.2019.01.011 PMID: 31061928
  6. Gonçalves GAR, Paiva RMA. Gene therapy: Advances, challenges and perspectives. Einstein 2017; 15(3): 369-75. doi: 10.1590/s1679-45082017rb4024 PMID: 29091160
  7. Hajjar RJ. Potential of gene therapy as a treatment for heart failure. J Clin Invest 2013; 123(1): 53-61. doi: 10.1172/JCI62837 PMID: 23281410
  8. Nóbrega C, Mendonça L, Matos CA. A handbook of gene and cell therapy. Basel, Switzerland: Springer 2020. doi: 10.1007/978-3-030-41333-0
  9. Ahmed A, Saadi H. Gene therapy approaches. Qubahan Academic Journal 2021; 1(1): 52-6. doi: 10.48161/qaj.v1n1a35
  10. Ormond KE, Mortlock DP, Scholes DT, et al. Human germline genome editing. Am J Hum Genet 2017; 101(2): 167-76. doi: 10.1016/j.ajhg.2017.06.012 PMID: 28777929
  11. Wolf DP, Mitalipov PA, Mitalipov SM. Principles of and strategies for germline gene therapy. Nat Med 2019; 25(6): 890-7. doi: 10.1038/s41591-019-0473-8 PMID: 31160821
  12. Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent advances in gene therapy for cardiac tissue regeneration. Int J Mol Sci 2021; 22(17): 9206. doi: 10.3390/ijms22179206
  13. Deng Y, Wang CC, Choy KW, et al. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538(2): 217-27. doi: 10.1016/j.gene.2013.12.019 PMID: 24406620
  14. Sibley CR, Seow Y, Wood MJA. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther 2010; 18(3): 466-76. doi: 10.1038/mt.2009.306 PMID: 20087319
  15. Navarro SA, Carrillo E, Griñán-Lisón C, et al. Cancer suicide gene therapy: A patent review. Expert Opin Ther Pat 2016; 26(9): 1095-104. doi: 10.1080/13543776.2016.1211640 PMID: 27424657
  16. Your Genome. Available from: https://www.yourgenome.org/facts/what-is-gene-therapy/ (Accessed Nov 15, 2023).
  17. Petrich J, Marchese D, Jenkins C, Storey M, Blind J. Gene replacement therapy: A primer for the health-system pharmacist. J Pharm Pract 2020; 33(6): 846-55. doi: 10.1177/0897190019854962 PMID: 31248331
  18. Wang D, Gao G. State-of-the-art human gene therapy: Part II. Gene therapy strategies and clinical applications. Discov Med 2014; 18(98): 151-61. PMID: 25227756
  19. Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front Cardiovasc Med 2021; 8: 760140. doi: 10.3389/fcvm.2021.760140 PMID: 34805315
  20. Musunuru K. Moving toward genome-editing therapies for cardiovascular diseases. J Clin Invest 2022; 132(1): e148555. doi: 10.1172/JCI148555 PMID: 34981785
  21. Khan SH. Genome-editing technologies: Concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 2019; 16: 326-34. doi: 10.1016/j.omtn.2019.02.027 PMID: 30965277
  22. Chadwick AC, Musunuru K. Genome editing for the study of cardiovascular diseases. Curr Cardiol Rep 2017; 19(3): 22. doi: 10.1007/s11886-017-0830-5 PMID: 28220462
  23. Germini D, Tsfasman T, Zakharova VV, Sjakste N, Lipinski M, Vassetzky Y. A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnol 2018; 36(2): 147-59. doi: 10.1016/j.tibtech.2017.10.008 PMID: 29157536
  24. Gaj T, Sirk SJ, Shui S, Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol 2016; 8(12): a023754. doi: 10.1101/cshperspect.a023754 PMID: 27908936
  25. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther 2016; 24(3): 430-46. doi: 10.1038/mt.2016.10 PMID: 26755333
  26. Khalil AM. The genome editing revolution: Review. J Genet Eng Biotechnol 2020; 18(1): 68. doi: 10.1186/s43141-020-00078-y PMID: 33123803
  27. Aravalli RN, Steer CJ. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 2016; 16(5): 595-608. doi: 10.1517/14712598.2016.1158808 PMID: 26914853
  28. Rahim J, Gulzar S, Zahid R, Rahim KA. A systematic review on the comparison of molecular gene editing tools. Int J Innov Sci Res Tech 2021; 6: 1-8.
  29. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1. doi: 10.1038/s41392-019-0089-y PMID: 32296011
  30. Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol 2016; 428(5): 963-89. doi: 10.1016/j.jmb.2015.10.014 PMID: 26506267
  31. Bogdanove AJ, Voytas DF. TAL effectors: Customizable proteins for DNA targeting. Science 2011; 333(6051): 1843-6. doi: 10.1126/science.1204094 PMID: 21960622
  32. Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu Rev Phytopathol 2010; 48(1): 419-36. doi: 10.1146/annurev-phyto-080508-081936 PMID: 19400638
  33. Kim MS, Kini AG. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells 2017; 40(8): 533-41. doi: 10.14348/molcells.2017.0139 PMID: 28835021
  34. Bultmann S, Morbitzer R, Schmidt CS, et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 2012; 40(12): 5368-77. doi: 10.1093/nar/gks199 PMID: 22387464
  35. Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2013; 41(5): e63. doi: 10.1093/nar/gks1446 PMID: 23275534
  36. Li T, Huang S, Jiang WZ, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 2011; 39(1): 359-72. doi: 10.1093/nar/gkq704 PMID: 20699274
  37. Joung JK, Sander JD. TALENs: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14(1): 49-55. doi: 10.1038/nrm3486 PMID: 23169466
  38. Walker HE, Rizzo M, Fras Z, Jug B, Banach M, Penson PE. CRISPR gene editing in lipid disorders and atherosclerosis: Mechanisms and opportunities. Metabolites 2021; 11(12): 857. doi: 10.3390/metabo11120857 PMID: 34940615
  39. Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017; 599: 1-18. doi: 10.1016/j.gene.2016.11.008 PMID: 27836667
  40. Amitai G, Sorek R. CRISPR–Cas adaptation: Insights into the mechanism of action. Nat Rev Microbiol 2016; 14(2): 67-76. doi: 10.1038/nrmicro.2015.14 PMID: 26751509
  41. Nguyen Q, Lim KRQ, Yokota T. Genome editing for the understanding and treatment of inherited cardiomyopathies. Int J Mol Sci 2020; 21(3): 733. doi: 10.3390/ijms21030733 PMID: 31979133
  42. Roshanravan N, Tutunchi H, Najafipour F, Dastouri M, Ghaffari S, Jebeli A. A glance at the application of CRISPR/Cas9 gene-editing technology in cardiovascular diseases. J Cardiovasc Thorac Res 2022; 14(2): 77-83. doi: 10.34172/jcvtr.2022.14 PMID: 35935390
  43. Khouzam JPS, Tivakaran VS. CRISPR-Cas9 applications in cardiovascular disease. Curr Probl Cardiol 2021; 46(3): 100652. doi: 10.1016/j.cpcardiol.2020.100652 PMID: 32828559
  44. Mani I. Genome editing in cardiovascular diseases. Prog Mol Biol Transl Sci 2021; 181: 289-308. doi: 10.1016/bs.pmbts.2021.01.021 PMID: 34127197
  45. Vermersch E, Jouve C, Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc Res 2020; 116(5): 894-907. doi: 10.1093/cvr/cvz250 PMID: 31584620
  46. Chakraborty S. A glance at genome editing with CRISPR Cas9 technology. Springer Nature 2019.
  47. Musunuru K. The hope and hype of CRISPR-Cas9 genome editing: a review. JAMA Cardiol 2017; 2(8): 914-9. doi: 10.1001/jamacardio.2017.1713 PMID: 28614576
  48. Ganipineni VDP, Gutlapalli SD, Danda S, et al. Clustered regularly interspaced short palindromic repeats (CRISPR) in cardiovascular disease: A comprehensive clinical review on dilated cardiomyopathy. Cureus 2023; 15(3): e35774. doi: 10.7759/cureus.35774 PMID: 37025725
  49. Alhakamy NA, Curiel DT, Berkland CJ. The era of gene therapy: From preclinical development to clinical application. Drug Discov Today 2021; 26(7): 1602-19. doi: 10.1016/j.drudis.2021.03.021 PMID: 33781953
  50. Akram F, Sahreen S, Aamir F, et al. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol Biotechnol 2023; 65(2): 227-42. doi: 10.1007/s12033-022-00501-4 PMID: 35474409
  51. Mak MCE, Gurung R, Foo RSY. Applications of genome editing technologies in CAD research and therapy with a focus on atherosclerosis. Int J Mol Sci 2023; 24(18): 14057. doi: 10.3390/ijms241814057 PMID: 37762360
  52. Tamura R, Toda M. Historic overview of genetic engineering technologies for human gene therapy. Neurol Med Chir 2020; 60(10): 483-91. doi: 10.2176/nmc.ra.2020-0049 PMID: 32908085
  53. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10. doi: 10.1056/NEJMoa1300662 PMID: 24597865
  54. Strong A, Musunuru K. Genome editing in cardiovascular diseases. Nat Rev Cardiol 2017; 14(1): 11-20. doi: 10.1038/nrcardio.2016.139 PMID: 27609628
  55. Mussolino C, Alzubi J, Fine EJ, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 2014; 42(10): 6762-73. doi: 10.1093/nar/gku305 PMID: 24792154
  56. Hernandez-Benitez R, Martinez-Martinez ML, Lajara J, Magistretti P, Montserrat N, Belmonte JC. At the heart of genome editing and cardiovascular diseases. Circ Res 2018; 123(2): 221-3. doi: 10.1161/CIRCRESAHA.118.312676 PMID: 29976689
  57. Karakikes I, Termglinchan V, Cepeda DA, et al. A comprehensive TALEN-based knockout library for generating human-induced pluripotent stem cell–based models for cardiovascular diseases. Circ Res 2017; 120(10): 1561-71. doi: 10.1161/CIRCRESAHA.116.309948 PMID: 28246128
  58. Rezaei H, khadempar S, Farahani N, et al. Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends Cardiovasc Med 2020; 30(2): 93-101. doi: 10.1016/j.tcm.2019.03.005 PMID: 30935726
  59. Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023; 10(1): 12. doi: 10.1186/s40779-023-00447-x PMID: 36895064
  60. Lee CM, Cradick TJ, Fine EJ, Bao G. Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol Ther 2016; 24(3): 475-87. doi: 10.1038/mt.2016.1 PMID: 26750397
  61. Musunuru K. Genome editing. J Am Coll Cardiol 2017; 70(22): 2808-21. doi: 10.1016/j.jacc.2017.10.002 PMID: 29191331
  62. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6. doi: 10.7860/JCDR/2015/10443.5394 PMID: 25738007
  63. Laakkonen JP, Ylä-Herttuala S. Recent advancements in cardiovascular gene therapy and vascular biology. Hum Gene Ther 2015; 26(8): 518-24. doi: 10.1089/hum.2015.095 PMID: 26192706
  64. Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: Current concepts and future applications. Hum Gene Ther 2013; 24(11): 914-27. doi: 10.1089/hum.2013.2517 PMID: 24164239
  65. Katz MG, Fargnoli AS, Kendle AP, Bridges CR. Gene therapy in cardiovascular disease. In: Pathophysiology and Pharmacotherapy of Cardiovascular Disease 2015; pp. 265-87.
  66. Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med 2022; 7(1): e10258. doi: 10.1002/btm2.10258 PMID: 35079633
  67. Weber T, Zangi L, Hajjar RJ. Gene therapy for cardiovascular diseases. In: Stem cell and gene therapy for cardiovascular disease. Academic Press 2016; pp. 377-87.
  68. Wang D, Gao G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 2014; 18(97): 67-77. PMID: 25091489
  69. Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8. doi: 10.4103/0971-6866.112870 PMID: 23901186
  70. Reyes-Juárez JL, Zarain-Herzberg A. Gene therapy in cardiovascular disease. Gene Therapy Applications. InTech 2011; pp. 95-126.
  71. Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes 2017; 8(2): 65. doi: 10.3390/genes8020065 PMID: 28208635
  72. Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene therapy for regenerative medicine. Pharmaceutics 2023; 15(3): 856. doi: 10.3390/pharmaceutics15030856 PMID: 36986717
  73. Williams PD, Kingston PA. Plasmid-mediated gene therapy for cardiovascular disease. Cardiovasc Res 2011; 91(4): 565-76. doi: 10.1093/cvr/cvr197 PMID: 21742674
  74. Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: Advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 2015; 108(1): 4-20. doi: 10.1093/cvr/cvv205 PMID: 26239654
  75. Hurley A, Lagor WR. Treating cardiovascular disease with liver genome engineering. Curr Atheroscler Rep 2022; 24(2): 75-84. doi: 10.1007/s11883-022-00986-z PMID: 35230602
  76. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022; 23(5): 265-80. doi: 10.1038/s41576-021-00439-4 PMID: 34983972
  77. Katzmann JL, Cupido AJ, Laufs U. Gene therapy targeting PCSK9. Metabolites 2022; 12(1): 70. doi: 10.3390/metabo12010070 PMID: 35050192
  78. Soumya RS, Raghu KG. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J Cardiol 2023; 81(1): 10-8. doi: 10.1016/j.jjcc.2022.02.009 PMID: 35210166
  79. Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42. doi: 10.3390/diseases6020042 PMID: 29883422
  80. Ghosh S, Brown AM, Jenkins C, Campbell K. Viral vector systems for gene therapy: A comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020; 25(1): 7-18. doi: 10.1177/1535676019899502 PMID: 36033383
  81. Lähteenvuo J, Ylä-Herttuala S. Advances and challenges in cardiovascular gene therapy. Hum Gene Ther 2017; 28(11): 1024-32. doi: 10.1089/hum.2017.129 PMID: 28810808
  82. Chen C, Seeger T, Termglinchan V, Karakikes I. Recent advances in cardiac gene therapy strategies targeting advanced heart failure. Contin Cardiol Educ 2017; 3(4): 163-9. doi: 10.1002/cce2.68
  83. Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: A clinical and industry perspective. J Mol Med 2022; 100(6): 875-901. doi: 10.1007/s00109-022-02208-0 PMID: 35606652
  84. Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4(2): 43-63. doi: 10.1016/j.gendis.2017.04.001 PMID: 28944281
  85. Matsunaga W, Gotoh A. Adenovirus as a vector and oncolytic virus. Curr Issues Mol Biol 2023; 45(6): 4826-40. doi: 10.3390/cimb45060307 PMID: 37367056
  86. Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. Mol Ther Nucleic Acids 2023; 34: 102027. doi: 10.1016/j.omtn.2023.09.004 PMID: 37808925
  87. Alonso-Padilla J, Papp T, Kaján GL, et al. Development of novel adenoviral vectors to overcome challenges observed with HAdV-5–based constructs. Mol Ther 2016; 24(1): 6-16. doi: 10.1038/mt.2015.194 PMID: 26478249
  88. Singh S, Kumar R, Agrawal B. Adenoviral vector-based vaccines and gene therapies: Current status and future prospects. Adenoviruses 2019; 4: 53-91. doi: 10.5772/intechopen.79697
  89. Lundstrom K. Viral vectors in gene therapy: Where do we stand in 2023? Viruses 2023; 15(3): 698. doi: 10.3390/v15030698 PMID: 36992407
  90. Syyam A, Nawaz A, Ijaz A, et al. Adenovirus vector system: Construction, history and therapeutic applications. Biotechniques 2022; 73(6): 297-305. doi: 10.2144/btn-2022-0051 PMID: 36475496
  91. Balakrishnan B, Jayandharan G. Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther 2014; 14(2): 86-100. doi: 10.2174/1566523214666140302193709 PMID: 24588706
  92. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1(1): 427-51. doi: 10.1146/annurev-virology-031413-085355 PMID: 26958729
  93. Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24(11): 906-13. doi: 10.1089/hum.2013.2515 PMID: 24164238
  94. Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114(11): 1827-46. doi: 10.1161/CIRCRESAHA.114.302331 PMID: 24855205
  95. Chen H. Adeno-associated virus vectors for human gene therapy. World J Med Genet 2015; 5(3): 28-45. doi: 10.5496/wjmg.v5.i3.28
  96. Zhang H, Zhan Q, Huang B, Wang Y, Wang X. AAV-mediated gene therapy: Advancing cardiovascular disease treatment. Front Cardiovasc Med 2022; 9: 952755. doi: 10.3389/fcvm.2022.952755 PMID: 36061546
  97. Mancini D, Farr MJ. Gene therapy for heart failure: An investigational treatment that is coming of age. Rev Esp Cardiol 2010; 63(2): 137-40. doi: 10.1016/S0300-8932(10)70030-0 PMID: 20109411
  98. Zinn E, Vandenberghe LH. Adeno-associated virus: Fit to serve. Curr Opin Virol 2014; 8: 90-7. doi: 10.1016/j.coviro.2014.07.008 PMID: 25128609
  99. Gorabi AM, Hajighasemi S, Tafti HA, et al. Gene therapy in cardiovascular diseases: A review of recent updates. J Cell Biochem 2018; 119(12): 9645-54. doi: 10.1002/jcb.27303 PMID: 30129172
  100. Hayward A. Origin of the retroviruses: When, where, and how? Curr Opin Virol 2017; 25: 23-7. doi: 10.1016/j.coviro.2017.06.006 PMID: 28672160
  101. Yi Y, Noh M, Lee K. Current advances in retroviral gene therapy. Curr Gene Ther 2011; 11(3): 218-28. doi: 10.2174/156652311795684740 PMID: 21453283
  102. Advani U, Bansal A, Prakash R, Agarwal S. Gene therapy and its applications. J Med Evid 2023; 4(1): 46-56. doi: 10.4103/JME.JME_65_21
  103. Matuskova M, Durinikova E. Retroviral vectors in gene therapy. Adv Mol Retrovirol 2016.
  104. Gopinath C, Nathar TJ, Nelson EJ. Retroviral vectors in gene therapy. Gene and Cell Therapy: Biology and Applications 2018; 3-28.
  105. Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral vector-based gene therapy. Int J Mol Sci 2023; 24(9): 7736. doi: 10.3390/ijms24097736 PMID: 37175441
  106. Cavalieri V, Baiamonte E, Lo Iacono M. Non-primate lentiviral vectors and their applications in gene therapy for ocular disorders. Viruses 2018; 10(6): 316. doi: 10.3390/v10060316 PMID: 29890733
  107. Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. BioEssays 2013; 35(9): 794-803. doi: 10.1002/bies.201300049 PMID: 23864388
  108. Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014; 510(7504): 235-40. doi: 10.1038/nature13420 PMID: 24870228
  109. Mamcarz E, Zhou S, Lockey T, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med 2019; 380(16): 1525-34. doi: 10.1056/NEJMoa1815408 PMID: 30995372
  110. Nayak S, Herzog RW. Progress and prospects: Immune responses to viral vectors. Gene Ther 2010; 17(3): 295-304. doi: 10.1038/gt.2009.148 PMID: 19907498
  111. Papayannakos C, Daniel R. Understanding lentiviral vector chromatin targeting: Working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2013; 20(6): 581-8. doi: 10.1038/gt.2012.88 PMID: 23171920
  112. Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J 2010; 4: 123-56. PMID: 20835362
  113. Miyagawa Y, Marino P, Verlengia G, et al. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci 2015; 112(13): E1632-41. doi: 10.1073/pnas.1423556112 PMID: 25775541
  114. Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 297. doi: 10.3389/fonc.2019.00297 PMID: 31069169
  115. Khan KH. Gene transfer technologies and their applications: Roles in human diseases. Asian J Exp Biol Sci 2010; 1(2): 208-18.
  116. Horii T, Arai Y, Yamazaki M, et al. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 2014; 4(1): 4513. doi: 10.1038/srep04513 PMID: 24675426
  117. Young JL, Dean DA. Electroporation-mediated gene delivery. Adv Genet 2015; 89: 49-88. doi: 10.1016/bs.adgen.2014.10.003 PMID: 25620008
  118. Potter H, Heller R. Transfection by electroporation. Curr Protoc Immunol 2017; 117(1): 15.1-, 9. doi: 10.1002/cpim.24 PMID: 28369680
  119. Ayuni EL, Gazdhar A, Giraud MN, et al. In vivo electroporation mediated gene delivery to the beating heart. PLoS One 2010; 5(12): e14467. doi: 10.1371/journal.pone.0014467 PMID: 21209934
  120. Gascón AR, del Pozo-Rodríguez A, Solinís MÁ. Non-viral delivery systems in gene therapy. In Gene therapy-tools and potential applications. IntechOpen 2013.
  121. Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol 2012; 303(6): H629-38. doi: 10.1152/ajpheart.00126.2012 PMID: 22821991
  122. Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183: 2055-73. doi: 10.1016/j.ijbiomac.2021.05.192 PMID: 34087309
  123. Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3(4): 39-44. doi: 10.5662/wjm.v3.i4.39 PMID: 25237622
  124. Castle J, Feinstein SB. Drug and gene delivery using sonoporation for cardiovascular disease. Therapeutic Ultrasound 2016; pp. 331-8. doi: 10.1007/978-3-319-22536-4_18
  125. Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason Sonochem 2020; 67: 105096. doi: 10.1016/j.ultsonch.2020.105096 PMID: 32278246
  126. Delalande A, Postema M, Mignet N, Midoux P, Pichon C. Ultrasound and microbubble-assisted gene delivery: Recent advances and ongoing challenges. Ther Deliv 2012; 3(10): 1199-215. doi: 10.4155/tde.12.100 PMID: 23116012
  127. Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013; 10(5): 573-92. doi: 10.1517/17425247.2013.772578 PMID: 23448121
  128. Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16(6): 815-26. doi: 10.1517/14712598.2016.1169268 PMID: 27063021
  129. Estelrich J, Escribano E, Queralt J, Busquets M. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 2015; 16(12): 8070-101. doi: 10.3390/ijms16048070 PMID: 25867479
  130. Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomaterials research 2019; 23: 1-7. doi: 10.1186/s40824-019-0156-z
  131. Crespo-Barreda A, Encabo-Berzosa MM, González-Pastor R, et al. Viral and nonviral vectors for in vivo and ex vivo gene therapies. Translating Regenerative Medicine to the Clinic 2016; pp. 155-77. doi: 10.1016/B978-0-12-800548-4.00011-5
  132. Schwerdt JI, Goya GF, Calatayud MP, Hereñú CB, Reggiani PC, Goya RG. Magnetic field-assisted gene delivery: Achievements and therapeutic potential. Curr Gene Ther 2012; 12(2): 116-26. doi: 10.2174/156652312800099616 PMID: 22348552
  133. Herrero MJ, Sendra L, Miguel A, Aliño SF. Physical methods of gene delivery. Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders 2017; pp. 113-35.
  134. Di Mauro V, Iafisco M, Salvarani N, et al. Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine 2016; 11(8): 891-906. doi: 10.2217/nnm.16.26 PMID: 26979495
  135. Fus-Kujawa A, Prus P, Bajdak-Rusinek K, et al. An overview of methods and tools for transfection of eukaryotic cells in vitro. Front Bioeng Biotechnol 2021; 9: 701031. doi: 10.3389/fbioe.2021.701031 PMID: 34354988
  136. Hirata M, Wittayarat M, Namula Z, et al. Lipofection-mediated introduction of CRISPR/Cas9 system into porcine oocytes and embryos. Animals 2021; 11(2): 578. doi: 10.3390/ani11020578 PMID: 33672168
  137. Mathiyalagan P, Sahoo S. Exosomes-based gene therapy for microRNA delivery. Cardiac gene therapy: Methods and protocols 2017; 139-52.
  138. Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene 2016; 575(2): 377-84. doi: 10.1016/j.gene.2015.08.067 PMID: 26341056
  139. Baek G, Choi H, Kim Y, Lee HC, Choi C. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med 2019; 8(9): 880-6. doi: 10.1002/sctm.18-0226 PMID: 31045328
  140. Bu T, Li Z, Hou Y, et al. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics 2021; 11(20): 9988-10000. doi: 10.7150/thno.64229 PMID: 34815799
  141. Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018; 3(8): e99263. doi: 10.1172/jci.insight.99263 PMID: 29669940
  142. Guo D, Xu Y, Ding J, et al. Roles and clinical applications of exosomes in cardiovascular disease. BioMed Res Int 2020; 2020: 1-8. doi: 10.1155/2020/5424281 PMID: 32596327
  143. Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR. Current strategies for myocardial gene delivery. J Mol Cell Cardiol 2011; 50(5): 766-76. doi: 10.1016/j.yjmcc.2010.09.003 PMID: 20837022
  144. Ishikawa K, Tilemann L, Fish K, Hajjar RJ. Gene delivery methods in cardiac gene therapy. J Gene Med 2011; 13(10): 566-72. doi: 10.1002/jgm.1609 PMID: 21954037
  145. Vekstein AM, Wendell DC, DeLuca S, et al. Targeted delivery for cardiac regeneration: comparison of intra-coronary infusion and intra-myocardial injection in porcine hearts. Front Cardiovasc Med 2022; 9: 833335. doi: 10.3389/fcvm.2022.833335 PMID: 35224061
  146. Ylä-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: Dream or vision? Eur Heart J 2017; 38(18): ehw547. doi: 10.1093/eurheartj/ehw547 PMID: 28073865
  147. Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart failure. Circ Res 2012; 110(5): 777-93. doi: 10.1161/CIRCRESAHA.111.252981 PMID: 22383712
  148. Dib N, Khawaja H, Varner S, McCarthy M, Campbell A. Cell therapy for cardiovascular disease: A comparison of methods of delivery. J Cardiovasc Transl Res 2011; 4(2): 177-81. doi: 10.1007/s12265-010-9253-z PMID: 21181320
  149. Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res 2020; 126(10): 1394-414. doi: 10.1161/CIRCRESAHA.120.315855 PMID: 32379579
  150. Korpela H, Järveläinen N, Siimes S, et al. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290(3): 567-82. doi: 10.1111/joim.13308 PMID: 34033164
  151. Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc 2013; 2(4): e000119. doi: 10.1161/JAHA.113.000119 PMID: 23963752
  152. Katz MG, Fargnoli AS, Pritchette LA, Bridges CR. Gene delivery technologies for cardiac applications. Gene Ther 2012; 19(6): 659-69. doi: 10.1038/gt.2012.11 PMID: 22418063
  153. Garcia FC, Bazan V, Zado ES, Ren JF, Marchlinski FE. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 2009; 120(5): 366-75. doi: 10.1161/CIRCULATIONAHA.108.834903 PMID: 19620503
  154. Ladage D, Turnbull IC, Ishikawa K, et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Ther 2011; 18(10): 979-85. doi: 10.1038/gt.2011.52 PMID: 21512506
  155. Ishikawa K, Weber T, Hajjar RJ. Human cardiac gene therapy. Circ Res 2018; 123(5): 601-13. doi: 10.1161/CIRCRESAHA.118.311587 PMID: 30355138
  156. Han S, Hwang C. Pericardial approach for cardiac therapies: Old practice with new ideas. Korean Circ J 2010; 40(10): 479-88. doi: 10.4070/kcj.2010.40.10.479 PMID: 21088750
  157. de Pedro MÁ, Pulido M, Marinaro F, et al. Intrapericardial administration of secretomes from menstrual blood-derived mesenchymal stromal cells: effects on immune-related genes in a porcine model of myocardial infarction. Biomedicines 2022; 10(5): 1117. doi: 10.3390/biomedicines10051117 PMID: 35625854
  158. Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS Open 2022; 10: 185-94. doi: 10.1016/j.xjon.2022.04.043 PMID: 36004211
  159. Tuma J, Fernández-Viña R, Carrasco A, et al. Safety and feasibility of percutaneous retrograde coronary sinus delivery of autologous bone marrow mononuclear cell transplantation in patients with chronic refractory angina. J Transl Med 2011; 9(1): 183. doi: 10.1186/1479-5876-9-183 PMID: 22029669
  160. Hulot JS, Ishikawa K, Hajjar RJ. Gene therapy for the treatment of heart failure: Promise postponed. Eur Heart J 2016; 37(21): 1651-8. doi: 10.1093/eurheartj/ehw019 PMID: 26922809
  161. Safri Z. Management of coronary artery disease. In IOP Conference Series: Earth and Environmental Science. IOP Publishing 2018; 125: p. 012125.
  162. Ylä-Herttuala S, Baker AH. Cardiovascular gene therapy: Past, present, and future. Mol Ther 2017; 25(5): 1095-106. doi: 10.1016/j.ymthe.2017.03.027 PMID: 28389321
  163. Zachary I, Morgan RD. Therapeutic angiogenesis for cardiovascular disease: Biological context, challenges, prospects. Heart 2011; 97(3): 181-9. doi: 10.1136/hrt.2009.180414 PMID: 20884790
  164. Scimia MC, Gumpert AM, Koch WJ. Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther 2014; 14(2): 183-95. doi: 10.1517/14712598.2014.866085 PMID: 24328708
  165. Ylä-Herttuala S. Cardiovascular gene therapy with vascular endothelial growth factors. Gene 2013; 525(2): 217-9. doi: 10.1016/j.gene.2013.03.051 PMID: 23608170
  166. clinicaltrials.gov. Available from: https://clinicaltrials.gov/search?locStr=United%20States&country=United%20States&distance=50&cond=Coronary%20Artery%20Disease&term=Coronary%20Heart%20Disease&intr=gene%20therapy (Accessed Sept 11, 2023).
  167. Migliara G, Baccolini V, Rosso A, et al. Familial hypercholesterolemia: A systematic review of guidelines on genetic testing and patient management. Front Public Health 2017; 5: 252. doi: 10.3389/fpubh.2017.00252 PMID: 28993804
  168. Fu Q, Hu L, Shen T, Yang R, Jiang L. Recent advances in gene therapy for familial hypercholesterolemia: An update review. J Clin Med 2022; 11(22): 6773. doi: 10.3390/jcm11226773 PMID: 36431249
  169. Gold ME, Nanna MG, Doerfler SM, et al. Prevalence, treatment, and control of severe hyperlipidemia. Am J Prevent Cardiol 2020; 3: 100079. doi: 10.1016/j.ajpc.2020.100079 PMID: 34327462
  170. Huff MW, Assini JM, Hegele RA. Gene therapy for hypercholesterolemia: Sweet dreams and flying machines. Circ Res 2014; 115(6): 542-5. doi: 10.1161/CIRCRESAHA.114.304800 PMID: 25170090
  171. Tadin-Strapps M, Peterson LB, Cumiskey AM, et al. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J Lipid Res 2011; 52(6): 1084-97. doi: 10.1194/jlr.M012872 PMID: 21398511
  172. Gaudet D, Stroes ES, Méthot J, et al. Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis. Hum Gene Ther 2016; 27(11): 916-25. doi: 10.1089/hum.2015.158 PMID: 27412455
  173. clinicaltrials.gov. Available from: https://clinicaltrials.gov/search?locStr=United%20States&country=United%20States&distance=50&cond=Hyperlipidemia&term=Familial%20Hypercholesterolemia&intr=gene%20therapy(Accessed Sept 11, 2023).
  174. Eckhouse SR, Jones JA, Spinale FG. Gene targeting in ischemic heart disease and failure: Translational and clinical studies. Biochem Pharmacol 2013; 85(1): 1-11. doi: 10.1016/j.bcp.2012.08.018 PMID: 22935384
  175. Swedberg K. Heart failure subtypes: Pathophysiology and definitions. Diabetes Res Clin Pract 2021; 175: 108815. doi: 10.1016/j.diabres.2021.108815 PMID: 33862057
  176. clinicaltrials.gov. Available from: https://clinicaltrials.gov/search?locStr=United%20States&country=United%20States&distance=50&cond=Heart%20Failure&term=Cardiovascular%20Diseases&intr=gene%20therapy (Accessed Sept 11, 2023).
  177. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: A report from the american heart association. circulation 2014; 129(3): 28-92.
  178. Bezzerides VJ, Prondzynski M, Carrier L, Pu WT. Gene therapy for inherited arrhythmias. Cardiovasc Res 2020; 116(9): 1635-50. doi: 10.1093/cvr/cvaa107 PMID: 32321160
  179. Bongianino R, Priori SG. Gene therapy to treat cardiac arrhythmias. Nat Rev Cardiol 2015; 12(9): 531-46. doi: 10.1038/nrcardio.2015.61 PMID: 25917154
  180. clinicaltrials.gov. Available from: https://clinicaltrials.gov/search?locStr=United%20States&country=United%20States&distance=50&cond=Cardiac%20Arrhythmia&term=Arrhythmogenic%20Cardiomyopathy&intr=gene%20therapy (Accessed Sept 11, 2023).
  181. Musunuru K. How genome editing could be used in the treatment of cardiovascular diseases. Per Med 2018; 15(2): 67-9. doi: 10.2217/pme-2017-0078 PMID: 29714123
  182. Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13. Nature 2017; 550(7675): 280-4. doi: 10.1038/nature24049 PMID: 28976959
  183. Merkle T, Merz S, Reautschnig P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37(2): 133-8. doi: 10.1038/s41587-019-0013-6 PMID: 30692694
  184. Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017; 548(7668): 413-9. doi: 10.1038/nature23305 PMID: 28783728
  185. Friedmann T. Genetic therapies, human genetic enhancement, and eugenics? Gene Ther 2019; 26(9): 351-3. doi: 10.1038/s41434-019-0088-1 PMID: 31273325
  186. National academies of sciences, engineering, and medicine. Human Genome Editing: Science Ethics, and Governance. National Academies Press 2017.
  187. German DM, Mitalipov S, Mishra A, Kaul S. Therapeutic genome editing in cardiovascular diseases. JACC Basic Transl Sci 2019; 4(1): 122-31. doi: 10.1016/j.jacbts.2018.11.004 PMID: 30847427
  188. Evans JH. Setting ethical limits on human gene editing after the fall of the somatic/germline barrier. Proc Natl Acad Sci 2021; 118(22): e2004837117. doi: 10.1073/pnas.2004837117 PMID: 34050016
  189. Rossant J. Gene editing in human development: Ethical concerns and practical applications. Development 2018; 145(16): dev150888. doi: 10.1242/dev.150888 PMID: 30045910
  190. Gumer JM. The wisdom of germline editing: An ethical analysis of the use of CRISPR-Cas9 to edit human embryos. New Bioeth 2019; 25(2): 137-52. doi: 10.1080/20502877.2019.1606151 PMID: 31130112
  191. Ansah EO. Ethical challenges and controversies in the practice and advancement of gene therapy. Adv Cell Gene Ther 2022; 2022: 1-5. doi: 10.1155/2022/1015996
  192. Nishiga M, Qi LS, Wu JC. Therapeutic genome editing in cardiovascular diseases. Adv Drug Deliv Rev 2021; 168: 147-57. doi: 10.1016/j.addr.2020.02.003 PMID: 32092381

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers