Activation of Src Kinase Mediates the Disruption of Adherens Junction in the Blood-labyrinth Barrier after Acoustic Trauma
- Authors: Sun J.1, Zhang T.1, Tang C.2, Fan S.1, Wang Q.1, Liu D.1, Sai N.1, Ji Q.3, Guo W.1, Han W.1
-
Affiliations:
- , Medical School of Chinese PLA
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University
- , Liaoning Women and Children's Hospital
- Issue: Vol 21, No 3 (2024)
- Pages: 274-285
- Section: Medicine
- URL: https://gynecology.orscience.ru/1567-2026/article/view/644410
- DOI: https://doi.org/10.2174/0115672026320884240620070951
- ID: 644410
Cite item
Full Text
Abstract
Background:Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma.
Aims:This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets.
Methods:Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blotting in C57BL/6J mice.
Results:Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction, which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase, VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated, but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair, neurotrophy and pericytes proliferation mediated by upstream VEGFR2.
Conclusion:Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.
About the authors
Jianbin Sun
, Medical School of Chinese PLA
Email: info@benthamscience.net
Tong Zhang
, Medical School of Chinese PLA
Email: info@benthamscience.net
Chaoying Tang
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University
Email: info@benthamscience.net
Shuhang Fan
, Medical School of Chinese PLA
Email: info@benthamscience.net
Qin Wang
, Medical School of Chinese PLA
Email: info@benthamscience.net
Da Liu
, Medical School of Chinese PLA
Email: info@benthamscience.net
Na Sai
, Medical School of Chinese PLA
Email: info@benthamscience.net
Qi Ji
, Liaoning Women and Children's Hospital
Email: info@benthamscience.net
Weiwei Guo
, Medical School of Chinese PLA
Author for correspondence.
Email: info@benthamscience.net
Weiju Han
, Medical School of Chinese PLA
Author for correspondence.
Email: info@benthamscience.net
References
- Hibino H, Nin F, Tsuzuki C, Kurachi Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch 2010; 459(4): 521-33. doi: 10.1007/s00424-009-0754-z PMID: 20012478
- Cosentino A, Agafonova A, Modafferi S, et al. Bloodlabyrinth barrier in health and diseases: Effect of hormetic nutrients. Antioxid Redox Signal 2024; 40(7-9): 542-63. doi: 10.1089/ars.2023.0251 PMID: 37565276
- Ke Y, Ma X, Jing Y, Diao T, Yu L. The breakdown of blood-labyrinth barrier makes it easier for drugs to enter the inner ear. Laryngoscope 2024; 134(5): 2377-86. doi: 10.1002/lary.31194 PMID: 37987231
- Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338: 52-63. doi: 10.1016/j.heares.2016.01.010 PMID: 26802581
- Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17: 1368058. doi: 10.3389/fnmol.2024.1368058 PMID: 38486963
- Wu J, Han W, Chen X, et al. Matrix metalloproteinase-2 and −9 contribute to functional integrity and noise-induced damage to the blood-labyrinth-barrier. Mol Med Rep 2017; 16(2): 1731-8. doi: 10.3892/mmr.2017.6784 PMID: 28627704
- Wu YX, Zhu GX, Liu XQ, et al. Noise alters guinea pigs blood-labyrinth barrier ultrastructure and permeability along with a decrease of cochlear Claudin-5 and Occludin. BMC Neurosci 2014; 15(1): 136. doi: 10.1186/s12868-014-0136-0 PMID: 25539640
- Bahloul A, Simmler MC, Michel V, et al. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Mol Med 2009; 1(2): 125-38. doi: 10.1002/emmm.200900015 PMID: 20049712
- Sai N, Zhang T, Wu J, Han WJ. Noise-induced blood-labyrinth-barrier trauma of guinea pig and the protective effect of matrix metalloproteinase inhibitors. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2020; 55(4): 363-70. PMID: 32306634
- Liu X, Zheng G, Wu Y, et al. Lead exposure results in hearing loss and disruption of the cochlear bloodlabyrinth barrier and the protective role of iron supplement. Neurotoxicology 2013; 39: 173-81. doi: 10.1016/j.neuro.2013.10.002 PMID: 24144481
- Gu J, Tong L, Lin X, et al. The disruption and hyperpermeability of blood-labyrinth barrier mediates cisplatin-induced ototoxicity. Toxicol Lett 2022; 354: 56-64. doi: 10.1016/j.toxlet.2021.10.015 PMID: 34757176
- Garcia MA, Nelson WJ, Chavez N. Cellcell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol 2018; 10(4): a029181. doi: 10.1101/cshperspect.a029181 PMID: 28600395
- Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 2015; 209(4): 493-506. doi: 10.1083/jcb.201412147 PMID: 26008742
- Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res 2017; 358(1): 39-44. doi: 10.1016/j.yexcr.2017.03.061 PMID: 28372972
- Li W, Chen Z, Chin I, Chen Z, Dai H. The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr Neuropharmacol 2018; 16(9): 1375-84. doi: 10.2174/1570159X16666180222164809 PMID: 29473514
- Ninchoji T, Love DT, Smith RO, et al. eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin. eLife 2021; 10: e64944. doi: 10.7554/eLife.64944 PMID: 33908348
- Shen D, Ye X, Li J, et al. Metformin preserves VECadherin in choroid plexus and attenuates hydrocephalus via VEGF/VEGFR2/p-Src in an intraventricular hemorrhage rat model. Int J Mol Sci 2022; 23(15): 8552. doi: 10.3390/ijms23158552 PMID: 35955686
- Bielefeld EC. Protection from noise-induced hearing loss with Src inhibitors. Drug Discov Today 2015; 20(6): 760-5. doi: 10.1016/j.drudis.2015.01.010 PMID: 25637168
- Bielefeld EC, Hangauer D, Henderson D. Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors. Neurosci Res 2011; 71(4): 348-54. doi: 10.1016/j.neures.2011.07.1836 PMID: 21840347
- Bielefeld EC, Tanaka C, Chen G, et al. An Src-protein tyrosine kinase inhibitor to reduce cisplatin ototoxicity while preserving its antitumor effect. Anticancer Drugs 2013; 24(1): 43-51. doi: 10.1097/CAD.0b013e32835739fd PMID: 22828384
- Harris KC, Hu B, Hangauer D, Henderson D. Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res 2005; 208(1-2): 14-25. doi: 10.1016/j.heares.2005.04.009 PMID: 15950415
- Fetoni AR, Bielefeld EC, Paludetti G, Nicotera T, Henderson D. A putative role of p53 pathway against impulse noise induced damage as demonstrated by protection with pifithrin-alpha and a Src inhibitor. Neurosci Res 2014; 81-82: 30-7. doi: 10.1016/j.neures.2014.01.006 PMID: 24472721
- Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019; 176(6): 1248-64. doi: 10.1016/j.cell.2019.01.021 PMID: 30849371
- Zhou W, Liu K, Zeng L, et al. Targeting VEGF-A/VEGFR2 Y949 signaling-mediated vascular permeability alleviates hypoxic pulmonary hypertension. Circulation 2022; 146(24): 1855-81. doi: 10.1161/CIRCULATIONAHA.122.061900 PMID: 36384284
- Zhang SX, Wang JJ, Gao G, Parke K, Ma J. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGFVEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 2006; 37(1): 1-12. doi: 10.1677/jme.1.02008 PMID: 16901919
- Zhang M, Tombran-Tink J, Yang S, Zhang X, Li X, Barnstable CJ. PEDF is an endogenous inhibitor of VEGF-R2 angiogenesis signaling in endothelial cells. Exp Eye Res 2021; 213: 108828. doi: 10.1016/j.exer.2021.108828 PMID: 34742690
- Picciotti PM, Fetoni AR, Paludetti G, et al. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss. Hear Res 2006; 214(1-2): 76-83. doi: 10.1016/j.heares.2006.02.004 PMID: 16603326
- Zhang F, Dai M, Neng L, et al. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma-a salient feature of strial barrier associated hearing loss. FASEB J 2013; 27(9): 3730-40. doi: 10.1096/fj.13-232892 PMID: 23729595
- Yan Y, Ma L, Zhou X, et al. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int 2016; 89(1): 68-81. doi: 10.1038/ki.2015.293 PMID: 26444028
- Huang TH, Sun CK, Chen YL, et al. Shock wave therapy enhances angiogenesis through VEGFR2 activation and recycling. Mol Med 2016; 22(1): 850-62. doi: 10.2119/molmed.2016.00108 PMID: 27925633
- Chetty S, Engquist EN, Mehanna E, Lui KO, Tsankov AM, Melton DA. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. J Cell Biol 2015; 210(7): 1257-68. doi: 10.1083/jcb.201502035 PMID: 26416968
- Rutledge CA, Ng FS, Sulkin MS, et al. c-Src kinase inhibition reduces arrhythmia inducibility and connexin43 dysregulation after myocardial infarction. J Am Coll Cardiol 2014; 63(9): 928-34. doi: 10.1016/j.jacc.2013.10.081 PMID: 24361364
- Lipovsek M, Elgoyhen AB. The evolutionary tuning of hearing. Trends Neurosci 2023; 46(2): 110-23. doi: 10.1016/j.tins.2022.12.002 PMID: 36621369
- Juhn SK, Rybak LP. Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 1981; 91(1-6): 529-34. doi: 10.3109/00016488109138538 PMID: 6791457
- Schmutzhard J, Kositz CH, Glueckert R, Schmutzhard E, Schrott-Fischer A, Lackner P. Apoptosis of the fibrocytes type 1 in the spiral ligament and blood labyrinth barrier disturbance cause hearing impairment in murine cerebral malaria. Malar J 2012; 11(1): 30. doi: 10.1186/1475-2875-11-30 PMID: 22297132
- Neng L, Zhang J, Yang J, et al. Structural changes in thestrial bloodlabyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015; 361(3): 685-96. doi: 10.1007/s00441-015-2147-2 PMID: 25740201
- Zhang J, Chen S, Cai J, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage like melanocytes from the young mouse vestibular system. Hear Res 2017; 345: 10-22. doi: 10.1016/j.heares.2016.12.012 PMID: 28087417
- Shi X. Research advances in cochlear pericytes and hearing loss. Hear Res 2023; 438: 108877. doi: 10.1016/j.heares.2023.108877 PMID: 37651921
- Morini MF, Giampietro C, Corada M, et al. VE-cadherinmediated epigenetic regulation of endothelial gene expression. Circ Res 2018; 122(2): 231-45. doi: 10.1161/CIRCRESAHA.117.312392 PMID: 29233846
- Sekulic M, Puche R, Bodmer D, Petkovic V. Human blood-labyrinth barrier model to study the effects of cytokines and inflammation. Front Mol Neurosci 2023; 16: 1243370. doi: 10.3389/fnmol.2023.1243370 PMID: 37808472
- Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Dev Cell 2009; 16(2): 209-21. doi: 10.1016/j.devcel.2009.01.004 PMID: 19217423
- Vestweber D, Winderlich M, Cagna G, Nottebaum AF. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 2009; 19(1): 8-15. doi: 10.1016/j.tcb.2008.10.001 PMID: 19010680
- Cai J, Wu L, Qi X, et al. PEDF regulates vascular permeability by a γ-secretase-mediated pathway. PLoS One 2011; 6(6): e21164. doi: 10.1371/journal.pone.0021164 PMID: 21695048
- Kaur C, Ling E. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 2008; 5(1): 71-81. doi: 10.2174/156720208783565645 PMID: 18289024
- Shi X, Doycheva DM, Xu L, Tang J, Yan M, Zhang JH. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol Dis 2016; 95: 111-21. doi: 10.1016/j.nbd.2016.07.016 PMID: 27425892
- Yang D, Zhou H, Zhang J, Liu L. Increased endothelial progenitor cell circulation and VEGF production in a rat model of noise-induced hearing loss. Acta Otolaryngol 2015; 135(6): 622-8. doi: 10.3109/00016489.2014.1003092 PMID: 25720428
- Yamashita T, Abe K. Mechanisms of endogenous endothelial repair in stroke. Curr Pharm Des 2012; 18(25): 3649-52. doi: 10.2174/138161212802002832 PMID: 22574978
- Monge Naldi A, Gassmann M, Bodmer D. Erythropoietin but not VEGF has a protective effect on auditory hair cells in the inner ear. Cell Mol Life Sci 2009; 66(22): 3595-9. doi: 10.1007/s00018-009-0144-x PMID: 19763398
- Zhang J, Hou Z, Wang X, et al. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss. JCI Insight 2021; 6(8): e143285. doi: 10.1172/jci.insight.143285 PMID: 33690221
- Ueda S, Yamagishi SI, Okuda S. Anti-vasopermeability effects of PEDF in retinal-renal disorders. Curr Mol Med 2010; 10(3): 279-83. doi: 10.2174/156652410791065291 PMID: 20236056
- Hui HL, Jiang B, Zhou YY, et al. PEDF inhibits VEGF-induced vascular leakage through binding to VEGFR2 in acute myocardial infarction. J Biomol Struct Dyn 2024; 12(2): 1-13. doi: 10.1080/07391102.2024.2314260 PMID: 38345053
- Zhang J, Fan W, Neng L, Chen B, Zuo B, Lu W. Long non-coding RNA Rian promotes the expression of tight junction proteins in endothelial cells by regulating perivascular-resident macrophage like melanocytes and PEDF secretion. Hum Cell 2021; 34(4): 1093-102. doi: 10.1007/s13577-021-00521-3 PMID: 33768511
- Yu Q, Liu S, Guo R, et al. Complete restoration of hearing loss and cochlear synaptopathy via minimally invasive, single-dose, and controllable middle ear delivery of brain-derived neurotrophic FactorPoly( DL -lactic acid- co -glycolic acid)-loaded Hydrogel. ACS Nano 2024; 18(8): 6298-313. doi: 10.1021/acsnano.3c11049 PMID: 38345574
- Ingersoll MA, Lutze RD, Kelmann RG, et al. KSR1 knockout mouse model demonstrates MAPK pathways key role in cisplatin- and noise-induced hearing loss. J Neurosci 2024; 44(18): e2174232024. doi: 10.1523/JNEUROSCI.2174-23.2024 PMID: 38548338
- Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434: 108783. doi: 10.1016/j.heares.2023.108783 PMID: 37167889
- Feng B, Dong T, Song X, et al. Personalized porous gelatin methacryloyl sustained-release nicotinamide protects against noise-induced hearing loss. Adv Sci (Weinh) 2024; 11(12): 2305682. doi: 10.1002/advs.202305682 PMID: 38225752
- Chen MB, Li MH, Wu LY, et al. Oridonin employs interleukin 1 receptor type 2 to treat noise-induced hearing loss by blocking inner ear inflammation. Biochem Pharmacol 2023; 210: 115457. doi: 10.1016/j.bcp.2023.115457 PMID: 36806583
- Lye J, Delaney DS, Leith FK, et al. Recent therapeutic progress and future perspectives for the treatment of hearing loss. Biomedicines 2023; 11(12): 3347. doi: 10.3390/biomedicines11123347 PMID: 38137568
- Saidia AR, François F, Casas F, et al. Oxidative stress plays an important role in glutamatergic excitotoxicity-induced cochlear synaptopathy: Implication for therapeutic molecules screening. Antioxidants 2024; 13(2): 149. doi: 10.3390/antiox13020149 PMID: 38397748
- Xu K, Xu B, Gu J, Wang X, Yu D, Chen Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023; 13(11): 3524-49. doi: 10.7150/thno.83383 PMID: 37441605
Supplementary files
