Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression


Cite item

Full Text

Abstract

Background:Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells.

Methods:Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 µM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects.

Results:Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others.

Conclusion:Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetin’s benefits in treating glioma.

About the authors

Wei-En Tsai

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Yen-Tsen Liu

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Fu-Hsuan Kuo

Center for Geriatrics and Gerontology, Taichung Veterans General Hospital

Email: info@benthamscience.net

Wen-Yu Cheng

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Chiung-Chyi Shen

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Ming-Tsang Chiao

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Yu-Fen Huang

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Yea-Jiuen Liang

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Yi-Chin Yang

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Wan-Yu Hsieh

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Jun-Peng Chen

Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Szu-Yuan Liu

Department of Neurosurgery, Oncology Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital

Email: info@benthamscience.net

Cheng-Di Chiu

Spine Center, China Medical University Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96. doi: 10.1056/NEJMoa043330 PMID: 15758009
  2. Ma W, Li N, An Y, Zhou C, Bo C, Zhang G. Effects of temozolomide and radiotherapy on brain metastatic tumor: A systematic review and meta-analysis. World Neurosurg 2016; 92: 197-205. doi: 10.1016/j.wneu.2016.04.011 PMID: 27072333
  3. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2(1): 7. doi: 10.1186/1471-2210-2-7 PMID: 11914135
  4. Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim Biophys Acta 2014; 1845(1): 20-30. PMID: 24269582
  5. Salahshoor MR, Khashiadeh M, Roshankhah S, Kakabaraei S, Jalili C. Protective effect of crocin on liver toxicity induced by morphine. Res Pharm Sci 2016; 11(2): 120-9. PMID: 27168751
  6. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 2012; 26(3): 381-6. doi: 10.1002/ptr.3566 PMID: 21774008
  7. Gutheil WG, Reed G, Ray A, Anant S, Dhar A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 2012; 13(1): 173-9. doi: 10.2174/138920112798868566 PMID: 21466430
  8. Nasirzadeh M, Rasmi Y, Rahbarghazi R, et al. Crocetin promotes angiogenesis in human endothelial cells through PI3K-Akt-eNOS signaling pathway. EXCLI J 2019; 18: 936-49. PMID: 31762720
  9. Li S, Jiang S, Jiang W, et al. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 2015; 9(3): 1254-60. doi: 10.3892/ol.2015.2869 PMID: 25663893
  10. Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 2013; 91(6): 397-403. doi: 10.1139/bcb-2013-0014 PMID: 24219281
  11. Gaskell H, Ge X, Nieto N. High-mobility group box-1 and liver disease. Hepatol Commun 2018; 2(9): 1005-20. doi: 10.1002/hep4.1223 PMID: 30202816
  12. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5(4): 331-42. doi: 10.1038/nri1594 PMID: 15803152
  13. Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13(9): 832-42. doi: 10.1038/ni.2376 PMID: 22842346
  14. Rivera Vargas T, Apetoh L. Danger signals: Chemotherapy enhancers? Immunol Rev 2017; 280(1): 175-93. doi: 10.1111/imr.12581 PMID: 29027217
  15. Ito I, Fukazawa J, Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 2007; 282(22): 16336-44. doi: 10.1074/jbc.M608467200 PMID: 17403684
  16. Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405(6784): 354-60. doi: 10.1038/35012626 PMID: 10830965
  17. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004; 23(16): 2838-49. doi: 10.1038/sj.onc.1207556 PMID: 15077147
  18. Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13(9): 679-92. doi: 10.1038/nri3495 PMID: 23954936
  19. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19(4): 2435-44. doi: 10.1128/MCB.19.4.2435 PMID: 10082509
  20. Kiefer F, Tibbles LA, Lassam N, Zanke B, Iscove N, Woodgett JR. Novel components of mammalian stress-activated protein kinase cascades. Biochem Soc Trans 1997; 25(2): 491-8. doi: 10.1042/bst0250491 PMID: 9191142
  21. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824): 37-40. doi: 10.1038/35065000 PMID: 11242034
  22. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447(7146): 865-9. doi: 10.1038/nature05859 PMID: 17568748
  23. Li S, Qu Y, Shen XY, et al. Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 cells. Pharmacology 2019; 103(5-6): 263-72. doi: 10.1159/000487956 PMID: 30783055
  24. Cheng WY, Chiao MT, Liang YJ, Yang YC, Shen CC, Yang CY. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep 2013; 40(9): 5315-26. doi: 10.1007/s11033-013-2632-1 PMID: 23677714
  25. Sliva D, Labarrere C, Slivova V, Sedlak M, Lloyd FP Jr, Ho NWY. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem Biophys Res Commun 2002; 298(4): 603-12. doi: 10.1016/S0006-291X(02)02496-8 PMID: 12408995
  26. Jiang J, Slivova V, Valachovicova T, Harvey K, Sliva D. Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol 2004; 24(5): 1093-9. doi: 10.3892/ijo.24.5.1093 PMID: 15067330
  27. Lloyd F Jr, Slivova V, Valachovicova T, Sliva D. Aspirin inhibits highly invasive prostate cancer cells. Int J Oncol 2003; 23(5): 1277-83. doi: 10.3892/ijo.23.5.1277 PMID: 14532966
  28. Chou YC, Chang MY, Wang MJ, et al. PEITC inhibits human brain glioblastoma GBM 8401 cell migration and invasion through the inhibition of uPA, Rho A, and Ras with inhibition of MMP-2, -7 and -9 gene expression. Oncol Rep 2015; 34(5): 2489-96. doi: 10.3892/or.2015.4260 PMID: 26352173
  29. Guo ZL, Li MX, Li XL, et al. Crocetin: A systematic review. Front Pharmacol 2022; 12: 745683. doi: 10.3389/fphar.2021.745683 PMID: 35095483
  30. Freedman V, Shin SI. Cellular tumorigenicity in nude mice: Correlation with cell growth in semi-solid medium. Cell 1974; 3(4): 355-9. doi: 10.1016/0092-8674(74)90050-6 PMID: 4442124
  31. Vignjevic D, Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol 2008; 18(1): 12-22. doi: 10.1016/j.semcancer.2007.08.001 PMID: 17928234
  32. Palm D, Lang K, Brandt B, Zaenker KS, Entschladen F. In vitro and in vivo imaging of cell migration: Two interdepending methods to unravel metastasis formation. Semin Cancer Biol 2005; 15(5): 396-404. doi: 10.1016/j.semcancer.2005.06.008 PMID: 16054391
  33. Ren K, Jin H, Bian C, et al. MR-1 modulates proliferation and migration of human hepatoma HepG2 cells through myosin light chains-2 (MLC2)/focal adhesion kinase (FAK)/Akt signaling pathway. J Biol Chem 2008; 283(51): 35598-605. doi: 10.1074/jbc.M802253200 PMID: 18948272
  34. Jones RG, Saibil SD, Pun JM, et al. NF-kappaB couples protein kinase B/Akt signaling to distinct survival pathways and the regulation of lymphocyte homeostasis in vivo. J Immunol 2005; 175(6): 3790-9. doi: 10.4049/jimmunol.175.6.3790 PMID: 16148125
  35. Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 2007; 26(9): 1338-45. doi: 10.1038/sj.onc.1210202 PMID: 17322919
  36. Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007; 148(7): 3068-76. doi: 10.1210/en.2006-1378 PMID: 17395704
  37. Völp K, Brezniceanu ML, Bösser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 2006; 55(2): 234-42. doi: 10.1136/gut.2004.062729 PMID: 16118352
  38. Rasmi Y, Khajeh E, Kheradmand F, et al. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci 2020; 15(6): 592-601. doi: 10.4103/1735-5362.301344 PMID: 33828602
  39. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017; 18(1): 3-9. PMID: 28239999
  40. Yang X, Lv S, Zhou X, et al. The clinical implications of transforming growth factor beta in pathological grade and prognosis of glioma patients: A meta-analysis. Mol Neurobiol 2015; 52(1): 270-6. doi: 10.1007/s12035-014-8872-9 PMID: 25148935
  41. Tsai CF, Yeh WL, Huang SM, Tan TW, Lu DY. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13(8): 9877-92. doi: 10.3390/ijms13089877 PMID: 22949836
  42. Lin S, Chen Z, Wu Z, et al. Involvement of PI3K/AKT pathway in the rapid antidepressant effects of crocetin in mice with depression-like phenotypes. Neurochem Res 2024; 49(2): 477-91. doi: 10.1007/s11064-023-04051-2 PMID: 37935859
  43. Chen S, Luo X, Yang L, Luo L, Hu Z, Wang J. Crocetin protects mouse brain from apoptosis in traumatic brain injury model through activation of autophagy. Brain Inj 2024; 38(7): 524-30. doi: 10.1080/02699052.2024.2324022 PMID: 38433503
  44. Fan T, Jiang K, Wang Z, Chang Y, Tian H, Huang J. Crocetin inhibits mast cell-dependent immediate-type allergic reactions through Ca2+/PLC/IP3 and TNF pathway. Int Immunopharmacol 2024; 128: 111583. doi: 10.1016/j.intimp.2024.111583 PMID: 38286072
  45. Colapietro A, Mancini A, Vitale F, et al. Crocetin extracted from saffron shows antitumor effects in models of human glioblastoma. Int J Mol Sci 2020; 21(2): 423. doi: 10.3390/ijms21020423 PMID: 31936544
  46. Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210. doi: 10.1016/j.gendis.2016.04.007 PMID: 30258889
  47. Liu P, Xue Y, Zheng B, et al. Crocetin attenuates the oxidative stress, inflammation and apoptosis in arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88: 106959. doi: 10.1016/j.intimp.2020.106959 PMID: 32919218
  48. Lu DY, Chang CS, Yeh WL, et al. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine 2012; 19(12): 1093-100. doi: 10.1016/j.phymed.2012.06.010 PMID: 22819448
  49. Khorasanchi Z, Shafiee M, Kermanshahi F, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 2018; 43: 21-7. doi: 10.1016/j.phymed.2018.03.041 PMID: 29747750
  50. Zang M, Hou J, Huang Y, et al. Crocetin suppresses angiogenesis and metastasis through inhibiting sonic hedgehog signaling pathway in gastric cancer. Biochem Biophys Res Commun 2021; 576: 86-92. doi: 10.1016/j.bbrc.2021.08.092 PMID: 34482028
  51. Festuccia C, Mancini A, Gravina GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res Int 2014; 2014: 1-12. doi: 10.1155/2014/135048 PMID: 24900952
  52. Wu Q, Ma X, Jin Z, Ni R, Pan Y, Yang G. Zhuidu Formula suppresses the migratory and invasive properties of triple-negative breast cancer cells via dual signaling pathways of RhoA/ROCK and CDC42/MRCK. J Ethnopharmacol 2023; 315: 116644. doi: 10.1016/j.jep.2023.116644 PMID: 37196814
  53. Xue Y, He JT, Zhang KK, Chen LJ, Wang Q, Xie XL. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem Biophys Res Commun 2019; 509(2): 395-401. doi: 10.1016/j.bbrc.2018.12.144 PMID: 30594393
  54. Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2019; 19(2): 783-91. PMID: 30535469
  55. Fulda S. Synthetic lethality by co-targeting mitochondrial apoptosis and PI3K/Akt/mTOR signaling. Mitochondrion 2014; 19: 85-7.
  56. Johnston A, Creighton N, Parkinson J, et al. Ongoing improvements in postoperative survival of glioblastoma in the temozolomide era: a population-based data linkage study. Neurooncol Pract 2020; 7(1): 22-30. doi: 10.1093/nop/npz021 PMID: 32257281
  57. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997-1003. doi: 10.1056/NEJMoa043331 PMID: 15758010
  58. Li Z, Fu WJ, Chen XQ, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. J Exp Clin Cancer Res 2022; 41(1): 74. doi: 10.1186/s13046-022-02291-8 PMID: 35193644
  59. Inada M, Shindo M, Kobayashi K, et al. Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS One 2019; 14(5): e0216358. doi: 10.1371/journal.pone.0216358 PMID: 31100066
  60. Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989; 243(4894): 1056-9. doi: 10.1126/science.2922595 PMID: 2922595
  61. Travers AA. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 2003; 4(2): 131-6. doi: 10.1038/sj.embor.embor741 PMID: 12612600
  62. Xue J, Suarez JS, Minaai M, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol 2021; 236(5): 3406-19. doi: 10.1002/jcp.30125 PMID: 33107103
  63. Luo Y, Chihara Y, Fujimoto K, et al. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer 2013; 49(3): 741-51. doi: 10.1016/j.ejca.2012.09.016 PMID: 23040637
  64. Huang CY, Chiang SF, Chen WTL, et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis 2018; 9(10): 1004. doi: 10.1038/s41419-018-1019-6 PMID: 30258050
  65. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis 2021; 26(3-4): 152-62. doi: 10.1007/s10495-021-01663-3 PMID: 33713214
  66. Gao XY, Zang J, Zheng MH, et al. Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma. Front Cell Dev Biol 2021; 9: 620883. doi: 10.3389/fcell.2021.620883 PMID: 33614649
  67. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28(1): 367-88. doi: 10.1146/annurev.immunol.021908.132603 PMID: 20192808
  68. Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res 2022; 1869(10): 119317. doi: 10.1016/j.bbamcr.2022.119317 PMID: 35752202
  69. Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 2017; 161: 201-10. doi: 10.1016/j.mad.2016.04.007
  70. Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti‐tumor effects of crocetin and related molecular targets. J Cell Physiol 2018; 233(3): 2170-82. doi: 10.1002/jcp.25953 PMID: 28407293
  71. Rubio-Moraga A, Trapero A, Ahrazem O, Gómez-Gómez L. Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry 2010; 71(13): 1506-13. doi: 10.1016/j.phytochem.2010.05.026 PMID: 20573363

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers