Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression
- Authors: Tsai W.1, Liu Y.1, Kuo F.2, Cheng W.1, Shen C.1, Chiao M.1, Huang Y.1, Liang Y.1, Yang Y.1, Hsieh W.1, Chen J.1, Liu S.3, Chiu C.4
-
Affiliations:
- Neurological Institute, Taichung Veterans General Hospital
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital
- Department of Neurosurgery, Oncology Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital
- Spine Center, China Medical University Hospital
- Issue: Vol 21, No 3 (2024)
- Pages: 320-336
- Section: Medicine
- URL: https://gynecology.orscience.ru/1567-2026/article/view/644443
- DOI: https://doi.org/10.2174/0115672026332275240731054001
- ID: 644443
Cite item
Full Text
Abstract
Background:Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells.
Methods:Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 µM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects.
Results:Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others.
Conclusion:Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetins benefits in treating glioma.
Keywords
About the authors
Wei-En Tsai
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Yen-Tsen Liu
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Fu-Hsuan Kuo
Center for Geriatrics and Gerontology, Taichung Veterans General Hospital
Email: info@benthamscience.net
Wen-Yu Cheng
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Chiung-Chyi Shen
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Ming-Tsang Chiao
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Yu-Fen Huang
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Yea-Jiuen Liang
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Yi-Chin Yang
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Wan-Yu Hsieh
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Jun-Peng Chen
Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Szu-Yuan Liu
Department of Neurosurgery, Oncology Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital
Email: info@benthamscience.net
Cheng-Di Chiu
Spine Center, China Medical University Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96. doi: 10.1056/NEJMoa043330 PMID: 15758009
- Ma W, Li N, An Y, Zhou C, Bo C, Zhang G. Effects of temozolomide and radiotherapy on brain metastatic tumor: A systematic review and meta-analysis. World Neurosurg 2016; 92: 197-205. doi: 10.1016/j.wneu.2016.04.011 PMID: 27072333
- Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2(1): 7. doi: 10.1186/1471-2210-2-7 PMID: 11914135
- Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim Biophys Acta 2014; 1845(1): 20-30. PMID: 24269582
- Salahshoor MR, Khashiadeh M, Roshankhah S, Kakabaraei S, Jalili C. Protective effect of crocin on liver toxicity induced by morphine. Res Pharm Sci 2016; 11(2): 120-9. PMID: 27168751
- Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 2012; 26(3): 381-6. doi: 10.1002/ptr.3566 PMID: 21774008
- Gutheil WG, Reed G, Ray A, Anant S, Dhar A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 2012; 13(1): 173-9. doi: 10.2174/138920112798868566 PMID: 21466430
- Nasirzadeh M, Rasmi Y, Rahbarghazi R, et al. Crocetin promotes angiogenesis in human endothelial cells through PI3K-Akt-eNOS signaling pathway. EXCLI J 2019; 18: 936-49. PMID: 31762720
- Li S, Jiang S, Jiang W, et al. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 2015; 9(3): 1254-60. doi: 10.3892/ol.2015.2869 PMID: 25663893
- Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 2013; 91(6): 397-403. doi: 10.1139/bcb-2013-0014 PMID: 24219281
- Gaskell H, Ge X, Nieto N. High-mobility group box-1 and liver disease. Hepatol Commun 2018; 2(9): 1005-20. doi: 10.1002/hep4.1223 PMID: 30202816
- Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5(4): 331-42. doi: 10.1038/nri1594 PMID: 15803152
- Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acidmediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13(9): 832-42. doi: 10.1038/ni.2376 PMID: 22842346
- Rivera Vargas T, Apetoh L. Danger signals: Chemotherapy enhancers? Immunol Rev 2017; 280(1): 175-93. doi: 10.1111/imr.12581 PMID: 29027217
- Ito I, Fukazawa J, Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 2007; 282(22): 16336-44. doi: 10.1074/jbc.M608467200 PMID: 17403684
- Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGEamphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405(6784): 354-60. doi: 10.1038/35012626 PMID: 10830965
- Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004; 23(16): 2838-49. doi: 10.1038/sj.onc.1207556 PMID: 15077147
- Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13(9): 679-92. doi: 10.1038/nri3495 PMID: 23954936
- Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19(4): 2435-44. doi: 10.1128/MCB.19.4.2435 PMID: 10082509
- Kiefer F, Tibbles LA, Lassam N, Zanke B, Iscove N, Woodgett JR. Novel components of mammalian stress-activated protein kinase cascades. Biochem Soc Trans 1997; 25(2): 491-8. doi: 10.1042/bst0250491 PMID: 9191142
- Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824): 37-40. doi: 10.1038/35065000 PMID: 11242034
- Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447(7146): 865-9. doi: 10.1038/nature05859 PMID: 17568748
- Li S, Qu Y, Shen XY, et al. Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 cells. Pharmacology 2019; 103(5-6): 263-72. doi: 10.1159/000487956 PMID: 30783055
- Cheng WY, Chiao MT, Liang YJ, Yang YC, Shen CC, Yang CY. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep 2013; 40(9): 5315-26. doi: 10.1007/s11033-013-2632-1 PMID: 23677714
- Sliva D, Labarrere C, Slivova V, Sedlak M, Lloyd FP Jr, Ho NWY. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem Biophys Res Commun 2002; 298(4): 603-12. doi: 10.1016/S0006-291X(02)02496-8 PMID: 12408995
- Jiang J, Slivova V, Valachovicova T, Harvey K, Sliva D. Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol 2004; 24(5): 1093-9. doi: 10.3892/ijo.24.5.1093 PMID: 15067330
- Lloyd F Jr, Slivova V, Valachovicova T, Sliva D. Aspirin inhibits highly invasive prostate cancer cells. Int J Oncol 2003; 23(5): 1277-83. doi: 10.3892/ijo.23.5.1277 PMID: 14532966
- Chou YC, Chang MY, Wang MJ, et al. PEITC inhibits human brain glioblastoma GBM 8401 cell migration and invasion through the inhibition of uPA, Rho A, and Ras with inhibition of MMP-2, -7 and -9 gene expression. Oncol Rep 2015; 34(5): 2489-96. doi: 10.3892/or.2015.4260 PMID: 26352173
- Guo ZL, Li MX, Li XL, et al. Crocetin: A systematic review. Front Pharmacol 2022; 12: 745683. doi: 10.3389/fphar.2021.745683 PMID: 35095483
- Freedman V, Shin SI. Cellular tumorigenicity in nude mice: Correlation with cell growth in semi-solid medium. Cell 1974; 3(4): 355-9. doi: 10.1016/0092-8674(74)90050-6 PMID: 4442124
- Vignjevic D, Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol 2008; 18(1): 12-22. doi: 10.1016/j.semcancer.2007.08.001 PMID: 17928234
- Palm D, Lang K, Brandt B, Zaenker KS, Entschladen F. In vitro and in vivo imaging of cell migration: Two interdepending methods to unravel metastasis formation. Semin Cancer Biol 2005; 15(5): 396-404. doi: 10.1016/j.semcancer.2005.06.008 PMID: 16054391
- Ren K, Jin H, Bian C, et al. MR-1 modulates proliferation and migration of human hepatoma HepG2 cells through myosin light chains-2 (MLC2)/focal adhesion kinase (FAK)/Akt signaling pathway. J Biol Chem 2008; 283(51): 35598-605. doi: 10.1074/jbc.M802253200 PMID: 18948272
- Jones RG, Saibil SD, Pun JM, et al. NF-kappaB couples protein kinase B/Akt signaling to distinct survival pathways and the regulation of lymphocyte homeostasis in vivo. J Immunol 2005; 175(6): 3790-9. doi: 10.4049/jimmunol.175.6.3790 PMID: 16148125
- Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 2007; 26(9): 1338-45. doi: 10.1038/sj.onc.1210202 PMID: 17322919
- Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007; 148(7): 3068-76. doi: 10.1210/en.2006-1378 PMID: 17395704
- Völp K, Brezniceanu ML, Bösser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 2006; 55(2): 234-42. doi: 10.1136/gut.2004.062729 PMID: 16118352
- Rasmi Y, Khajeh E, Kheradmand F, et al. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci 2020; 15(6): 592-601. doi: 10.4103/1735-5362.301344 PMID: 33828602
- Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017; 18(1): 3-9. PMID: 28239999
- Yang X, Lv S, Zhou X, et al. The clinical implications of transforming growth factor beta in pathological grade and prognosis of glioma patients: A meta-analysis. Mol Neurobiol 2015; 52(1): 270-6. doi: 10.1007/s12035-014-8872-9 PMID: 25148935
- Tsai CF, Yeh WL, Huang SM, Tan TW, Lu DY. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13(8): 9877-92. doi: 10.3390/ijms13089877 PMID: 22949836
- Lin S, Chen Z, Wu Z, et al. Involvement of PI3K/AKT pathway in the rapid antidepressant effects of crocetin in mice with depression-like phenotypes. Neurochem Res 2024; 49(2): 477-91. doi: 10.1007/s11064-023-04051-2 PMID: 37935859
- Chen S, Luo X, Yang L, Luo L, Hu Z, Wang J. Crocetin protects mouse brain from apoptosis in traumatic brain injury model through activation of autophagy. Brain Inj 2024; 38(7): 524-30. doi: 10.1080/02699052.2024.2324022 PMID: 38433503
- Fan T, Jiang K, Wang Z, Chang Y, Tian H, Huang J. Crocetin inhibits mast cell-dependent immediate-type allergic reactions through Ca2+/PLC/IP3 and TNF pathway. Int Immunopharmacol 2024; 128: 111583. doi: 10.1016/j.intimp.2024.111583 PMID: 38286072
- Colapietro A, Mancini A, Vitale F, et al. Crocetin extracted from saffron shows antitumor effects in models of human glioblastoma. Int J Mol Sci 2020; 21(2): 423. doi: 10.3390/ijms21020423 PMID: 31936544
- Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210. doi: 10.1016/j.gendis.2016.04.007 PMID: 30258889
- Liu P, Xue Y, Zheng B, et al. Crocetin attenuates the oxidative stress, inflammation and apoptosis in arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88: 106959. doi: 10.1016/j.intimp.2020.106959 PMID: 32919218
- Lu DY, Chang CS, Yeh WL, et al. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine 2012; 19(12): 1093-100. doi: 10.1016/j.phymed.2012.06.010 PMID: 22819448
- Khorasanchi Z, Shafiee M, Kermanshahi F, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 2018; 43: 21-7. doi: 10.1016/j.phymed.2018.03.041 PMID: 29747750
- Zang M, Hou J, Huang Y, et al. Crocetin suppresses angiogenesis and metastasis through inhibiting sonic hedgehog signaling pathway in gastric cancer. Biochem Biophys Res Commun 2021; 576: 86-92. doi: 10.1016/j.bbrc.2021.08.092 PMID: 34482028
- Festuccia C, Mancini A, Gravina GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res Int 2014; 2014: 1-12. doi: 10.1155/2014/135048 PMID: 24900952
- Wu Q, Ma X, Jin Z, Ni R, Pan Y, Yang G. Zhuidu Formula suppresses the migratory and invasive properties of triple-negative breast cancer cells via dual signaling pathways of RhoA/ROCK and CDC42/MRCK. J Ethnopharmacol 2023; 315: 116644. doi: 10.1016/j.jep.2023.116644 PMID: 37196814
- Xue Y, He JT, Zhang KK, Chen LJ, Wang Q, Xie XL. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem Biophys Res Commun 2019; 509(2): 395-401. doi: 10.1016/j.bbrc.2018.12.144 PMID: 30594393
- Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2019; 19(2): 783-91. PMID: 30535469
- Fulda S. Synthetic lethality by co-targeting mitochondrial apoptosis and PI3K/Akt/mTOR signaling. Mitochondrion 2014; 19: 85-7.
- Johnston A, Creighton N, Parkinson J, et al. Ongoing improvements in postoperative survival of glioblastoma in the temozolomide era: a population-based data linkage study. Neurooncol Pract 2020; 7(1): 22-30. doi: 10.1093/nop/npz021 PMID: 32257281
- Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997-1003. doi: 10.1056/NEJMoa043331 PMID: 15758010
- Li Z, Fu WJ, Chen XQ, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. J Exp Clin Cancer Res 2022; 41(1): 74. doi: 10.1186/s13046-022-02291-8 PMID: 35193644
- Inada M, Shindo M, Kobayashi K, et al. Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS One 2019; 14(5): e0216358. doi: 10.1371/journal.pone.0216358 PMID: 31100066
- Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989; 243(4894): 1056-9. doi: 10.1126/science.2922595 PMID: 2922595
- Travers AA. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 2003; 4(2): 131-6. doi: 10.1038/sj.embor.embor741 PMID: 12612600
- Xue J, Suarez JS, Minaai M, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol 2021; 236(5): 3406-19. doi: 10.1002/jcp.30125 PMID: 33107103
- Luo Y, Chihara Y, Fujimoto K, et al. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer 2013; 49(3): 741-51. doi: 10.1016/j.ejca.2012.09.016 PMID: 23040637
- Huang CY, Chiang SF, Chen WTL, et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis 2018; 9(10): 1004. doi: 10.1038/s41419-018-1019-6 PMID: 30258050
- Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis 2021; 26(3-4): 152-62. doi: 10.1007/s10495-021-01663-3 PMID: 33713214
- Gao XY, Zang J, Zheng MH, et al. Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma. Front Cell Dev Biol 2021; 9: 620883. doi: 10.3389/fcell.2021.620883 PMID: 33614649
- Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28(1): 367-88. doi: 10.1146/annurev.immunol.021908.132603 PMID: 20192808
- Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res 2022; 1869(10): 119317. doi: 10.1016/j.bbamcr.2022.119317 PMID: 35752202
- Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 2017; 161: 201-10. doi: 10.1016/j.mad.2016.04.007
- Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti‐tumor effects of crocetin and related molecular targets. J Cell Physiol 2018; 233(3): 2170-82. doi: 10.1002/jcp.25953 PMID: 28407293
- Rubio-Moraga A, Trapero A, Ahrazem O, Gómez-Gómez L. Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry 2010; 71(13): 1506-13. doi: 10.1016/j.phytochem.2010.05.026 PMID: 20573363
Supplementary files
