Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward
- Авторы: Song X.1, Fan C.2, Atta-ur-Rahman 3, Choudhary M.3, Wang X.2
-
Учреждения:
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi
- Выпуск: Том 22, № 14 (2024)
- Страницы: 2272-2283
- Раздел: Neurology
- URL: https://gynecology.orscience.ru/1570-159X/article/view/644523
- DOI: https://doi.org/10.2174/1570159X22666240509092903
- ID: 644523
Цитировать
Полный текст
Аннотация
:The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinsons disease (PD), Alzheimers disease (AD), amyotrophic lateral sclerosis (ALS), Wilsons disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.
Ключевые слова
Об авторах
Xiao-Yan Song
Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine
Email: info@benthamscience.net
Cun-xiu Fan
Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine
Email: info@benthamscience.net
Atta-ur-Rahman
H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi
Email: info@benthamscience.net
Muhammad Choudhary
H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi
Email: info@benthamscience.net
Xiao-Ping Wang
Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol., 2020, 19(3), 255-265. doi: 10.1016/S1474-4422(19)30411-9 PMID: 31813850
- Zhu, J.; Liu, Q.; Jiang, Y.; Wu, L.; Xu, G.; Liu, X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience, 2015, 290, 288-299. doi: 10.1016/j.neuroscience.2015.01.038 PMID: 25637797
- Losurdo, M.; Pedrazzoli, M.; DAgostino, C.; Elia, C.A.; Massenzio, F.; Lonati, E.; Mauri, M.; Rizzi, L.; Molteni, L.; Bresciani, E.; Dander, E.; DAmico, G.; Bulbarelli, A.; Torsello, A.; Matteoli, M.; Buffelli, M.; Coco, S. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimers disease. Stem Cells Transl. Med., 2020, 9(9), 1068-1084. doi: 10.1002/sctm.19-0327 PMID: 32496649
- Giraldo, E.; Palmero-Canton, D.; Martinez-Rojas, B.; Sanchez-Martin, M.M.; Moreno-Manzano, V. Optogenetic modulation of neural progenitor cells improves neuroregenerative potential. Int. J. Mol. Sci., 2020, 22(1), 365. doi: 10.3390/ijms22010365 PMID: 33396468
- Goldman, S.A. Disease targets and strategies for the therapeutic modulation of endogenous neural stem and progenitor cells. Clin. Pharmacol. Ther., 2007, 82(4), 453-460. doi: 10.1038/sj.clpt.6100337 PMID: 17713467
- Dong, J.; Cui, Y.; Li, S.; Le, W. Current pharmaceutical treatments and alternative therapies of Parkinsons disease. Curr. Neuropharmacol., 2016, 14(4), 339-355. doi: 10.2174/1570159X14666151120123025 PMID: 26585523
- Perlow, M.J.; Freed, W.J.; Hoffer, B.J.; Seiger, A.; Olson, L.; Wyatt, R.J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 1979, 204(4393), 643-647. doi: 10.1126/science.571147 PMID: 571147
- Lindvall, O.; Gustavii, B.; Åstedt, B.; Lindholm, T.; Rehncrona, S.; Brundin, P.; Widner, H.; Björklund, A.; Leenders, K.L.; Frackowiak, R.; Rothwell, J.C.; Marsden, C.D.; Johnels, B.; Steg, G.; Freedman, R.; Hopper, B.J.; Seiger, Å.; Strömberg, I.; Olson, M.B.L.; Olson, L. Fetal dopamine-rich mesencephalic grafts in Parkinsons disease. Lancet, 1988, 332(8626-8627), 1483-1484. doi: 10.1016/S0140-6736(88)90950-6 PMID: 2904587
- Madrazo, I.; León, V.; Torres, C.; Aguilera, M.C.; Varela, G.; Alvarez, F.; Fraga, A.; Drucker-Colín, R.; Ostrosky, F.; Skurovich, M. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinsons disease. N. Engl. J. Med., 1988, 318(1), 51. doi: 10.1056/NEJM198801073180115 PMID: 3336384
- Freed, C.R.; Greene, P.E.; Breeze, R.E.; Tsai, W.Y.; DuMouchel, W.; Kao, R.; Dillon, S.; Winfield, H.; Culver, S.; Trojanowski, J.Q.; Eidelberg, D.; Fahn, S. Transplantation of embryonic dopamine neurons for severe Parkinsons disease. N. Engl. J. Med., 2001, 344(10), 710-719. doi: 10.1056/NEJM200103083441002 PMID: 11236774
- Moore, S.F.; Guzman, N.V.; Mason, S.L.; Williams-Gray, C.H.; Barker, R.A. Which patients with Parkinsons disease participate in clinical trials? One centres experiences with a new cell based therapy trial (TRANSEURO). J. Parkinsons Dis., 2014, 4(4), 671-676. doi: 10.3233/JPD-140432 PMID: 25170676
- Kirkeby, A.; Parmar, M.; Barker, R.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic. Prog. Brain Res.,, 2017, 230, 165-190. doi: 10.1016/bs.pbr.2016.11.011 PMID: 28552228
- Barker, R.A. Designing stem-cell-based dopamine cell replacement trials for Parkinsons disease. Nat. Med., 2019, 25(7), 1045-1053. doi: 10.1038/s41591-019-0507-2 PMID: 31263283
- Xiao, J.J.; Yin, M.; Wang, Z.J.; Wang, X.P. Transplanted neural stem cells: Playing a neuroprotective role by ceruloplasmin in the substantia nigra of PD model rats? Oxid. Med. Cell. Longev., 2015, 2015, 1-9. doi: 10.1155/2015/618631 PMID: 26146528
- Parmar, M. Towards stem cell based therapies for Parkinsons disease. Development, 2018, 145(1), dev156117. doi: 10.1242/dev.156117 PMID: 29311261
- Garitaonandia, I.; Gonzalez, R.; Christiansen-Weber, T.; Abramihina, T.; Poustovoitov, M.; Noskov, A.; Sherman, G.; Semechkin, A.; Snyder, E.; Kern, R. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinsons disease. Sci. Rep., 2016, 6(1), 34478. doi: 10.1038/srep34478 PMID: 27686862
- Wang, Y.K.; Zhu, W.W.; Wu, M.H.; Wu, Y.H.; Liu, Z.X.; Liang, L.M.; Sheng, C.; Hao, J.; Wang, L.; Li, W.; Zhou, Q.; Hu, B.Y. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinsons disease. Stem Cell Reports, 2018, 11(1), 171-182. doi: 10.1016/j.stemcr.2018.05.010 PMID: 29910127
- Piao, J.; Zabierowski, S.; Dubose, B.N.; Hill, E.J.; Navare, M.; Claros, N.; Rosen, S.; Ramnarine, K.; Horn, C.; Fredrickson, C.; Wong, K.; Safford, B.; Kriks, S.; El Maarouf, A.; Rutishauser, U.; Henchcliffe, C.; Wang, Y.; Riviere, I.; Mann, S.; Bermudez, V.; Irion, S.; Studer, L.; Tomishima, M.; Tabar, V. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell, 2021, 28(2), 217-229.e7. doi: 10.1016/j.stem.2021.01.004 PMID: 33545080
- Li, M.; Wang, Z.; Zheng, T.; Huang, T.; Liu, B.; Han, D.; Liu, S.; Liu, B.; Li, M.; Si, W.; Zhang, Y.A.; Niu, Y.; Chen, Z. Characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats. Stem Cells Int., 2022, 2022, 1-17. doi: 10.1155/2022/1396735 PMID: 36618021
- Loring, J.F. Autologous induced pluripotent stem cell-derived neurons to treat Parkinsons disease. Stem Cells Dev., 2018, 27(14), 958-959. doi: 10.1089/scd.2018.0107 PMID: 29790422
- Rivetti di Val Cervo, P.; Besusso, D.; Conforti, P.; Cattaneo, E. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat. Rev. Neurol., 2021, 17(6), 381-392. doi: 10.1038/s41582-021-00465-0 PMID: 33658662
- Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q.; Henchcliffe, C.; Kaplitt, M.; Neff, C.; Rapalino, O.; Seo, H.; Lee, I.H.; Kim, J.; Kim, T.; Petsko, G.A.; Ritz, J.; Cohen, B.M.; Kong, S.W.; Leblanc, P.; Carter, B.S.; Kim, K.S. Personalized iPSC-derived dopamine progenitor cells for Parkinsons disease. N. Engl. J. Med., 2020, 382(20), 1926-1932. doi: 10.1056/NEJMoa1915872 PMID: 32402162
- Takahashi, J. iPS cell-based therapy for Parkinsons disease: A Kyoto trial. Regen. Ther., 2020, 13, 18-22. doi: 10.1016/j.reth.2020.06.002 PMID: 33490319
- Ghosh, S.; Durgvanshi, S.; Agarwal, S.; Raghunath, M.; Sinha, J.K. Current status of drug targets and emerging therapeutic strategies in the management of Alzheimers disease. Curr. Neuropharmacol., 2020, 18(9), 883-903. doi: 10.2174/1570159X18666200429011823 PMID: 32348223
- Garcia-Contreras, M.; Thakor, A.S. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov., 2021, 7(1), 98. doi: 10.1038/s41420-021-00471-7 PMID: 33972507
- Moghadam, F.H.; Alaie, H.; Karbalaie, K.; Tanhaei, S.; Nasr Esfahani, M.H.; Baharvand, H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation, 2009, 78(2-3), 59-68. doi: 10.1016/j.diff.2009.06.005 PMID: 19616885
- Hoveizi, E.; Mohammadi, T.; Moazedi, A.A.; Zamani, N.; Eskandary, A. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy, 2018, 20(7), 964-973. doi: 10.1016/j.jcyt.2018.03.036 PMID: 30025963
- Wray, S.; Fox, N.C. Stem cell therapy for Alzheimers disease: hope or hype? Lancet Neurol., 2016, 15(2), 133-135. doi: 10.1016/S1474-4422(15)00382-8 PMID: 26704440
- Zhang, T.; Ke, W.; Zhou, X.; Qian, Y.; Feng, S.; Wang, R.; Cui, G.; Tao, R.; Guo, W.; Duan, Y.; Zhang, X.; Cao, X.; Shu, Y.; Yue, C.; Jing, N. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimers disease. Stem Cell Reports, 2019, 13(6), 1022-1037. doi: 10.1016/j.stemcr.2019.10.012 PMID: 31761676
- Comella-Bolla, A.; Orlandi, J.G.; Miguez, A.; Straccia, M.; García-Bravo, M.; Bombau, G.; Galofré, M.; Sanders, P.; Carrere, J.; Segovia, J.C.; Blasi, J.; Allen, N.D.; Alberch, J.; Soriano, J.; Canals, J.M. Human pluripotent stem cell-derived neurons are functionally mature in vitro and integrate into the mouse striatum following transplantation. Mol. Neurobiol., 2020, 57(6), 2766-2798. doi: 10.1007/s12035-020-01907-4 PMID: 32356172
- Hayashi, Y.; Lin, H.T.; Lee, C.C.; Tsai, K.J. Effects of neural stem cell transplantation in Alzheimers disease models. J. Biomed. Sci., 2020, 27(1), 29. doi: 10.1186/s12929-020-0622-x PMID: 31987051
- Marsh, S.E.; Blurton-Jones, M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem. Int., 2017, 106, 94-100. doi: 10.1016/j.neuint.2017.02.006 PMID: 28219641
- Chen, Y.; Pan, C.; Xuan, A.; Xu, L.; Bao, G.; Liu, F.; Fang, J.; Long, D. Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimers disease model rats. Med. Sci. Monit., 2015, 21, 3608-3615. doi: 10.12659/MSM.894567 PMID: 26590375
- Zhang, F.; Chen, S.Q.; Tong, M.M.; Wang, P.J.; Teng, G.J. 7.0 tesla high resolution MRI study on intracerebral migration of magnet-labeled neural stem cells in a mouse model of Alzheimers disease. Magn. Reson. Imaging, 2018, 54, 58-62. doi: 10.1016/j.mri.2018.08.005 PMID: 30118826
- Apodaca, L.A.; Baddour, A.A.D.; Garcia, C., Jr; Alikhani, L.; Giedzinski, E.; Ru, N.; Agrawal, A.; Acharya, M.M.; Baulch, J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimers disease. Alzheimers Res. Ther., 2021, 13(1), 57. doi: 10.1186/s13195-021-00791-x PMID: 33676561
- Cui, Y.; Ma, S.; Zhang, C.; Cao, W.; Liu, M.; Li, D.; Lv, P.; Xing, Q.; Qu, R.; Yao, N.; Yang, B.; Guan, F. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimers disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav. Brain Res., 2017, 320, 291-301. doi: 10.1016/j.bbr.2016.12.021 PMID: 28007537
- Lee, J.; Chang, W.S.; Shin, J.; Seo, Y.; Kong, C.; Song, B.W.; Na, Y.C.; Kim, B.S.; Chang, J.W. Non-invasively enhanced intracranial transplantation of mesenchymal stem cells using focused ultrasound mediated by overexpression of cell-adhesion molecules. Stem Cell Res. (Amst.), 2020, 43, 101726. doi: 10.1016/j.scr.2020.101726 PMID: 32028085
- Hour, F.Q.; Moghadam, A.J.; Shakeri-Zadeh, A.; Bakhtiyari, M.; Shabani, R.; Mehdizadeh, M. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Whartons jelly in Alzheimers rat models. J. Control. Release, 2020, 321, 430-441. doi: 10.1016/j.jconrel.2020.02.035 PMID: 32097673
- Jung, M.; Kim, H.; Hwang, J.W.; Choi, Y.; Kang, M.; Kim, C.; Hong, J.; Lee, N.K.; Moon, S.; Chang, J.W.; Choi, S.; Oh, S.; Jang, H.; Na, D.L.; Kim, B.S. Iron oxide nanoparticle-incorporated mesenchymal stem cells for Alzheimers disease treatment. Nano Lett., 2023, 23(2), 476-490. doi: 10.1021/acs.nanolett.2c03682 PMID: 36638236
- Kim, H.J.; Cho, K.R.; Jang, H.; Lee, N.K.; Jung, Y.H.; Kim, J.P.; Lee, J.I.; Chang, J.W.; Park, S.; Kim, S.T.; Moon, S.W.; Seo, S.W.; Choi, S.J.; Na, D.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimers disease dementia: A phase I clinical trial. Alzheimers Res. Ther., 2021, 13(1), 154. doi: 10.1186/s13195-021-00897-2 PMID: 34521461
- Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic lateral sclerosis: An update for 2018. Mayo Clin. Proc., 2018, 93(11), 1617-1628. doi: 10.1016/j.mayocp.2018.04.007 PMID: 30401437
- Mazzini, L.; Ferrari, D.; Andjus, P.R.; Buzanska, L.; Cantello, R.; De Marchi, F.; Gelati, M.; Giniatullin, R.; Glover, J.C.; Grilli, M.; Kozlova, E.N.; Maioli, M.; Mitrečić, D.; Pivoriunas, A.; Sanchez-Pernaute, R.; Sarnowska, A.; Vescovi, A.L.; Neurology, B.C.A.W. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin. Biol. Ther., 2018, 18(8), 865-881. doi: 10.1080/14712598.2018.1503248 PMID: 30025485
- Berry, J.D.; Cudkowicz, M.E.; Windebank, A.J.; Staff, N.P.; Owegi, M.; Nicholson, K.; McKenna-Yasek, D.; Levy, Y.S.; Abramov, N.; Kaspi, H.; Mehra, M.; Aricha, R.; Gothelf, Y.; Brown, R.H. NurOwn, phase 2, randomized, clinical trial in patients with ALS. Neurology, 2019, 93(24), e2294-e2305. doi: 10.1212/WNL.0000000000008620 PMID: 31740545
- Forostyak, S.; Forostyak, O.; Kwok, J.C.F.; Romanyuk, N.; Rehorova, M.; Kriska, J.; Dayanithi, G.; Raha-Chowdhury, R.; Jendelova, P.; Anderova, M.; Fawcett, J.W.; Sykova, E. Transplantation of neural precursors derived from induced pluripotent cells preserve perineuronal nets and stimulate neural plasticity in ALS rats. Int. J. Mol. Sci., 2020, 21(24), 9593. doi: 10.3390/ijms21249593 PMID: 33339362
- Sareen, D.; Gowing, G.; Sahabian, A.; Staggenborg, K.; Paradis, R.; Avalos, P.; Latter, J.; Ornelas, L.; Garcia, L.; Svendsen, C.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol., 2014, 522(12), 2707-2728. doi: 10.1002/cne.23578 PMID: 24610630
- Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol., 2013, 997, 23-33. doi: 10.1007/978-1-62703-348-0_3 PMID: 23546745
- Hamada, A.; Akagi, E.; Yamasaki, S.; Nakatao, H.; Obayashi, F.; Ohtaka, M.; Nishimura, K.; Nakanishi, M.; Toratani, S.; Okamoto, T. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell. Dev. Biol. Anim., 2020, 56(1), 85-95. doi: 10.1007/s11626-019-00412-w PMID: 31768763
- Lunetta, C.; Lizio, A.; Cabona, C.; Gerardi, F.; Sansone, V.A.; Corbo, M.; Scialò, C.; Angelucci, E.; Gualandi, F.; Marenco, P.; Grillo, G.; Cairoli, R.; Cesana, C.; Saccardi, R.; Melazzini, M.G.; Mancardi, G.; Caponnetto, C. A phase I/IIa clinical trial of autologous hematopoietic stem cell transplantation in amyotrophic lateral sclerosis. J. Neurol., 2022, 269(10), 5337-5346. doi: 10.1007/s00415-022-11185-w PMID: 35596795
- Suzuki, M.; McHugh, J.; Tork, C.; Shelley, B.; Klein, S.M.; Aebischer, P.; Svendsen, C.N. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2007, 2(8), e689. doi: 10.1371/journal.pone.0000689 PMID: 17668067
- Zalfa, C.; Rota Nodari, L.; Vacchi, E.; Gelati, M.; Profico, D.; Boido, M.; Binda, E.; De Filippis, L.; Copetti, M.; Garlatti, V.; Daniele, P.; Rosati, J.; De Luca, A.; Pinos, F.; Cajola, L.; Visioli, A.; Mazzini, L.; Vercelli, A.; Svelto, M.; Vescovi, A.L.; Ferrari, D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis., 2019, 10(5), 345. doi: 10.1038/s41419-019-1582-5 PMID: 31024007
- Nichols, N.L.; Gowing, G.; Satriotomo, I.; Nashold, L.J.; Dale, E.A.; Suzuki, M.; Avalos, P.; Mulcrone, P.L.; McHugh, J.; Svendsen, C.N.; Mitchell, G.S. Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis. Am. J. Respir. Crit. Care Med., 2013, 187(5), 535-542. doi: 10.1164/rccm.201206-1072OC PMID: 23220913
- Thomsen, G.M.; Avalos, P.; Ma, A.A.; Alkaslasi, M.; Cho, N.; Wyss, L.; Vit, J.P.; Godoy, M.; Suezaki, P.; Shelest, O.; Bankiewicz, K.S.; Svendsen, C.N. Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis. Stem Cells, 2018, 36(7), 1122-1131. doi: 10.1002/stem.2825 PMID: 29656478
- Khalid, M.U.; Masroor, T. The promise of stem cells in amyotrophic lateral sclerosis: A review of clinical trials. J. Pak. Med. Assoc., 2023, 73(2), s138-s142. doi: 10.47391/JPMA.AKUS-22 PMID: 36788405
- Gotkine, M.; Caraco, Y.; Lerner, Y.; Blotnick, S.; Wanounou, M.; Slutsky, S.G.; Chebath, J.; Kuperstein, G.; Estrin, E.; Ben-Hur, T.; Hasson, A.; Molakandov, K.; Sonnenfeld, T.; Stark, Y.; Revel, A.; Revel, M.; Izrael, M. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J. Transl. Med., 2023, 21(1), 122. doi: 10.1186/s12967-023-03903-3 PMID: 36788520
- Jaber, F.L.; Sharma, Y.; Gupta, S. Demonstrating potential of cell therapy for Wilsons disease with the long-evans cinnamon rat model. Methods Mol. Biol., 2017, 1506, 161-178. doi: 10.1007/978-1-4939-6506-9_11 PMID: 27830552
- Itoh, T.; Miyajima, A. Liver regeneration by stem/progenitor cells. Hepatology, 2014, 59(4), 1617-1626. doi: 10.1002/hep.26753 PMID: 24115180
- Cao, Y.; Ji, C.; Lu, L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Ann. Transl. Med., 2020, 8(8), 562. doi: 10.21037/atm.2020.02.119 PMID: 32775363
- Tsuchiya, A.; Takeuchi, S.; Watanabe, T.; Yoshida, T.; Nojiri, S.; Ogawa, M.; Terai, S. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as "conducting cells" for improvement of liver fibrosis and regeneration. Inflamm. Regen., 2019, 39(1), 18. doi: 10.1186/s41232-019-0107-z PMID: 31516638
- Sauer, V.; Siaj, R.; Todorov, T.; Zibert, A.; Schmidt, H.H.J. Overexpressed ATP7B protects mesenchymal stem cells from toxic copper. Biochem. Biophys. Res. Commun., 2010, 395(3), 307-311. doi: 10.1016/j.bbrc.2010.03.158 PMID: 20362556
- Zhang, D. A clinical study of bone mesenchymal stem cells for the treatment of hepatic fibrosis induced by hepatolenticular degeneration. Genet. Mol. Res., 2017, 16(1) doi: 10.4238/gmr16019352 PMID: 28301671
- Fujiyoshi, J.; Yamaza, H.; Sonoda, S.; Yuniartha, R.; Ihara, K.; Nonaka, K.; Taguchi, T.; Ohga, S.; Yamaza, T. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilsons disease. Sci. Rep., 2019, 9(1), 1535. doi: 10.1038/s41598-018-38275-y PMID: 30733544
- Wang, S.H.; Wang, X.P. Generation of an induced pluripotent stem cell (iPSC) line (THSJTUi001-A) from a Wilsons disease patient harboring a homozygous Arg778Leu mutation in ATP7B gene. Stem Cell Res. (Amst.), 2020, 49, 102050. doi: 10.1016/j.scr.2020.102050 PMID: 33096383
- Roy-Chowdhury, J.; Schilsky, M.L. Gene therapy of Wilson disease: A "golden" opportunity using rAAV on the 50th anniversary of the discovery of the virus. J. Hepatol., 2016, 64(2), 265-267. doi: 10.1016/j.jhep.2015.11.017 PMID: 26639392
- Greig, J.A.; Nordin, J.M.L.; Smith, M.K.; Ashley, S.N.; Draper, C.; Zhu, Y.; Bell, P.; Buza, E.L.; Wilson, J.M. a gene therapy approach to improve copper metabolism and prevent liver damage in a mouse model of Wilson disease. Hum. Gene Ther. Clin. Dev., 2019, 30(1), 29-39. doi: 10.1089/humc.2018.219 PMID: 30693797
- Pöhler, M.; Guttmann, S.; Nadzemova, O.; Lenders, M.; Brand, E.; Zibert, A.; Schmidt, H.H.; Sandfort, V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One, 2020, 15(9), e0239411. doi: 10.1371/journal.pone.0239411 PMID: 32997714
- Cai, H.; Cheng, X.; Wang, X.P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilsons disease. Hepatology, 2022, 76(4), 1046-1057. doi: 10.1002/hep.32484 PMID: 35340061
- Zolfaghari Baghbadorani, P.; Rayati Damavandi, A.; Moradi, S.; Ahmadi, M.; Bemani, P.; Aria, H.; Mottedayyen, H.; Rayati Damavandi, A.; Eskandari, N.; Fathi, F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev. Neurosci., 2023, 34(6), 613-633. doi: 10.1515/revneuro-2022-0102 PMID: 36496351
- Sarkar, P.; Rice, C.M.; Scolding, N.J. Cell therapy for multiple sclerosis. CNS Drugs, 2017, 31(6), 453-469. doi: 10.1007/s40263-017-0429-9 PMID: 28397112
- Pluchino, S.; Zanotti, L.; Rossi, B.; Brambilla, E.; Ottoboni, L.; Salani, G.; Martinello, M.; Cattalini, A.; Bergami, A.; Furlan, R.; Comi, G.; Constantin, G.; Martino, G. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 2005, 436(7048), 266-271. doi: 10.1038/nature03889 PMID: 16015332
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; Greco, R.; Vezzulli, P.; Ottoboni, L.; Bonopane, M.; Capilupo, D.; Ruffini, F.; Belotti, D.; Cabiati, B.; Cesana, S.; Matera, G.; Leocani, L.; Martinelli, V.; Moiola, L.; Vago, L.; Panina-Bordignon, P.; Falini, A.; Ciceri, F.; Uglietti, A.; Sormani, M.P.; Comi, G.; Battaglia, M.A.; Rocca, M.A.; Storelli, L.; Pagani, E.; Gaipa, G.; Martino, G. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med., 2023, 29(1), 75-85. doi: 10.1038/s41591-022-02097-3 PMID: 36624312
- Shroff, G. Transplantation of human embryonic stem cells in patients with multiple sclerosis and lyme disease. Am. J. Case Rep., 2016, 17, 944-949. doi: 10.12659/AJCR.899745 PMID: 27956736
- Genc, B.; Bozan, H.R.; Genc, S.; Genc, K. Stem cell therapy for multiple sclerosis. Adv. Exp. Med. Biol., 2018, 1084, 145-174. doi: 10.1007/5584_2018_247 PMID: 30039439
- Burt, R.K.; Balabanov, R.; Burman, J.; Sharrack, B.; Snowden, J.A.; Oliveira, M.C.; Fagius, J.; Rose, J.; Nelson, F.; Barreira, A.A.; Carlson, K.; Han, X.; Moraes, D.; Morgan, A.; Quigley, K.; Yaung, K.; Buckley, R.; Alldredge, C.; Clendenan, A.; Calvario, M.A.; Henry, J.; Jovanovic, B.; Helenowski, I.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs. continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA, 2019, 321(2), 165-174. doi: 10.1001/jama.2018.18743 PMID: 30644983
- Petrou, P.; Kassis, I.; Levin, N.; Paul, F.; Backner, Y.; Benoliel, T.; Oertel, F.C.; Scheel, M.; Hallimi, M.; Yaghmour, N.; Hur, T.B.; Ginzberg, A.; Levy, Y.; Abramsky, O.; Karussis, D. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain, 2020, 143(12), 3574-3588. doi: 10.1093/brain/awaa333 PMID: 33253391
- Dhir, N.; Medhi, B.; Prakash, A.; Goyal, M.K.; Modi, M.; Mohindra, S. Pre-clinical to clinical translational failures and current status of clinical trials in stroke therapy: A brief review. Curr. Neuropharmacol., 2020, 18(7), 596-612. doi: 10.2174/1570159X18666200114160844 PMID: 31934841
- Grabowski, M.; Christofferson, R.H.; Brundin, P.; Johansson, B.B. Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience, 1992, 51(3), 673-682. doi: 10.1016/0306-4522(92)90306-M PMID: 1488117
- Grabowski, M.; Brundin, P.; Johansson, B.B. Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: Ingrowth of afferent fibers from the host brain. Exp. Neurol., 1992, 116(2), 105-121. doi: 10.1016/0014-4886(92)90159-N PMID: 1577119
- Aihara, N.; Mizukawa, K.; Koide, K.; Mabe, H.; Nishino, H. Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat. Brain Res. Bull., 1994, 33(5), 483-488. doi: 10.1016/0361-9230(94)90072-8 PMID: 8186993
- Kondziolka, D.; Steinberg, G.K.; Wechsler, L.; Meltzer, C.C.; Elder, E.; Gebel, J.; DeCesare, S.; Jovin, T.; Zafonte, R.; Lebowitz, J.; Flickinger, J.C.; Tong, D.; Marks, M.P.; Jamieson, C.; Luu, D.; Bell-Stephens, T.; Teraoka, J. Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial. J. Neurosurg., 2005, 103(1), 38-45. doi: 10.3171/jns.2005.103.1.0038 PMID: 16121971
- Savitz, S.I.; Dinsmore, J.; Wu, J.; Henderson, G.V.; Stieg, P.; Caplan, L.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis., 2005, 20(2), 101-107. doi: 10.1159/000086518 PMID: 15976503
- Willis, C.M.; Nicaise, A.M.; Peruzzotti-Jametti, L.; Pluchino, S. The neural stem cell secretome and its role in brain repair. Brain Res., 2020, 1729146615. doi: 10.1016/j.brainres.2019.146615 PMID: 31863730
- Hess, D.C.; Wechsler, L.R.; Clark, W.M.; Savitz, S.I.; Ford, G.A.; Chiu, D.; Yavagal, D.R.; Uchino, K.; Liebeskind, D.S.; Auchus, A.P.; Sen, S.; Sila, C.A.; Vest, J.D.; Mays, R.W. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol., 2017, 16(5), 360-368. doi: 10.1016/S1474-4422(17)30046-7 PMID: 28320635
- Savitz, S.I.; Chopp, M.; Deans, R.; Carmichael, S.T.; Phinney, D.; Wechsler, L. Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke, 2011, 42(3), 825-829. doi: 10.1161/STROKEAHA.110.601914 PMID: 21273569
- Savitz, S.I.; Cramer, S.C.; Wechsler, L.; Aronowski, J.; Boltze, J.; Borlongan, C.; Case, C.; Chase, T.; Chopp, M.; Carmichael, S.T.; Cramer, S.C.; Duncan, P.; Finklestein, S.; Fischkoff, S.; Guzman, R.; Hess, D.C.; Huang, D.; Hinson, J.; Kautz, S.; Kondziolka, D.; Mays, R.; Misra, V.; Mitsias, P.; Modo, M.; Muir, K.; Savitz, S.I.; Sinden, J.; Snyder, E.; Steinberg, G.; Vahidy, F.; Wechsler, L.; Willing, A.; Wolf, S.; Yankee, E.; Yavagal, D.R. Stem cells as an emerging paradigm in stroke 3: Enhancing the development of clinical trials. Stroke, 2014, 45(2), 634-639. doi: 10.1161/STROKEAHA.113.003379 PMID: 24368562
- Muir, K.W.; Bulters, D.; Willmot, M.; Sprigg, N.; Dixit, A.; Ward, N.; Tyrrell, P.; Majid, A.; Dunn, L.; Bath, P.; Howell, J.; Stroemer, P.; Pollock, K.; Sinden, J. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2). J. Neurol. Neurosurg. Psychiatry, 2020, 91(4), 396-401. doi: 10.1136/jnnp-2019-322515 PMID: 32041820
- Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; Yankee, E.W.; Schwartz, N.E. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg., 2018, 1-11. PMID: 30497166
- Shichinohe, H.; Kawabori, M.; Iijima, H.; Teramoto, T.; Abumiya, T.; Nakayama, N.; Kazumata, K.; Terasaka, S.; Arato, T.; Houkin, K. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol., 2017, 17(1), 179. doi: 10.1186/s12883-017-0955-6 PMID: 28886699
- Wei, L.; Fraser, J.L.; Lu, Z.Y.; Hu, X.; Yu, S.P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis., 2012, 46(3), 635-645. doi: 10.1016/j.nbd.2012.03.002 PMID: 22426403
- Sakata, H.; Niizuma, K.; Wakai, T.; Narasimhan, P.; Maier, C.M.; Chan, P.H. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke, 2012, 43(9), 2423-2429. doi: 10.1161/STROKEAHA.112.656900 PMID: 22713489
- Doeppner, T.R.; Ewert, T.A.S.; Tönges, L.; Herz, J.; Zechariah, A.; ElAli, A.; Ludwig, A.K.; Giebel, B.; Nagel, F.; Dietz, G.P.H.; Weise, J.; Hermann, D.M.; Bähr, M. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 2012, 30(6), 1297-1310. doi: 10.1002/stem.1098 PMID: 22593021
- Moniche, F.; Cabezas-Rodriguez, J.A.; Valverde, R.; Escudero-Martinez, I.; Lebrato-Hernandez, L.; Pardo-Galiana, B.; Ainz, L.; Medina-Rodriguez, M.; de la Torre, J.; Escamilla-Gomez, V.; Ortega-Quintanilla, J.; Zapata-Arriaza, E.; de Albóniga-Chindurza, A.; Mancha, F.; Gamero, M.A.; Perez, S.; Espinosa-Rosso, R.; Forero-Diaz, L.; Moya, M.; Piñero, P.; Calderón-Cabrera, C.; Nogueras, S.; Jimenez, R.; Martin, V.; Delgado, F.; Ochoa-Sepúlveda, J.J.; Quijano, B.; Mata, R.; Santos-González, M.; Carmona-Sanchez, G.; Herrera, C.; Gonzalez, A.; Montaner, J. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial. Lancet Neurol., 2023, 22(2), 137-146. doi: 10.1016/S1474-4422(22)00526-9 PMID: 36681446
- Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of severe traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 535-541. doi: 10.23736/S0390-5616.18.04532-0 PMID: 30182649
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic brain injury. Cell Transplant., 2017, 26(7), 1118-1130. doi: 10.1177/0963689717714102 PMID: 28933211
- Gardner, R.C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell Neurosci.,, 2015, 66(Pt B), 75-80. doi: 10.1016/j.mcn.2015.03.001 PMID: 25748121
- Glushakova, O.Y.; Johnson, D.; Hayes, R.L. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J. Neurotrauma, 2014, 31(13), 1180-1193. doi: 10.1089/neu.2013.3080 PMID: 24564198
- Boltze, J.; Reich, D.M.; Hau, S.; Reymann, K.G.; Strassburger, M.; Lobsien, D.; Wagner, D.C.; Kamprad, M.; Stahl, T. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant., 2012, 21(4), 723-737. doi: 10.3727/096368911X586783 PMID: 21929866
- Weston, N.M.; Sun, D. The Potential of stem cells in treatment of traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2018, 18(1), 1. doi: 10.1007/s11910-018-0812-z PMID: 29372464
- Dela Peña, I.; Sanberg, P.R.; Acosta, S.; Tajiri, N.; Lin, S.Z.; Borlongan, C.V. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J. Neurosurg. Sci., 2014, 58(3), 145-149. PMID: 24844175
- Nguyen, H.; Aum, D.; Mashkouri, S.; Rao, G.; Vega Gonzales-Portillo, J.D.; Reyes, S.; Borlongan, C.V. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Rev. Neurother., 2016, 16(8), 915-926. doi: 10.1080/14737175.2016.1184086 PMID: 27152762
- Kim, H.J.; Lee, J.H.; Kim, S.H. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma, 2010, 27(1), 131-138. doi: 10.1089/neu.2008.0818 PMID: 19508155
- Lanfranconi, S.; Locatelli, F.; Corti, S.; Candelise, L.; Comi, G.P.; Baron, P.L.; Strazzer, S.; Bresolin, N.; Bersano, A. Growth factors in ischemic stroke. J. Cell. Mol. Med., 2009, 15(8), 1645-1687. doi: 10.1111/j.1582-4934.2009.00987.x PMID: 20015202
- Kawabori, M.; Weintraub, A.H.; Imai, H.; Zinkevych, I.; McAllister, P.; Steinberg, G.K.; Frishberg, B.M.; Yasuhara, T.; Chen, J.W.; Cramer, S.C.; Achrol, A.S.; Schwartz, N.E.; Suenaga, J.; Lu, D.C.; Semeniv, I.; Nakamura, H.; Kondziolka, D.; Chida, D.; Kaneko, T.; Karasawa, Y.; Paadre, S.; Nejadnik, B.; Bates, D.; Stonehouse, A.H.; Richardson, R.M.; Okonkwo, D.O. Cell Therapy for Chronic TBI. Neurology, 2021, 96(8), e1202-e1214. doi: 10.1212/WNL.0000000000011450 PMID: 33397772
- Merson, T.D.; Bourne, J.A. Endogenous neurogenesis following ischaemic brain injury: Insights for therapeutic strategies. Int. J. Biochem. Cell Biol., 2014, 56, 4-19. doi: 10.1016/j.biocel.2014.08.003 PMID: 25128862
- Liska, M.G.; Crowley, M.G.; Nguyen, H.; Borlongan, C.V. Biobridge concept in stem cell therapy for ischemic stroke. J. Neurosurg. Sci., 2017, 61(2), 173-179. PMID: 27406955
- Badner, A.; Cummings, B. The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms. Neural Regen. Res., 2022, 17(11), 2351-2354. doi: 10.4103/1673-5374.335833 PMID: 35535870
- Tajiri, N.; Kaneko, Y.; Shinozuka, K.; Ishikawa, H.; Yankee, E.; McGrogan, M.; Case, C.; Borlongan, C.V. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One, 2013, 8(9), e74857. doi: 10.1371/journal.pone.0074857 PMID: 24023965
- Luarte, A.; Bátiz, L.F.; Wyneken, U.; Lafourcade, C. Potential therapies by stem cell-derived exosomes in CNS diseases: Focusing on the neurogenic niche. Stem Cells Int., 2016, 2016, 1-16. doi: 10.1155/2016/5736059 PMID: 27195011
- Zhang, Y.; Chopp, M.; Zhang, Z.G.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; Mahmood, A.; Xiong, Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int., 2017, 111, 69-81. doi: 10.1016/j.neuint.2016.08.003 PMID: 27539657
- Chang, C.P.; Chio, C.C.; Cheong, C.U.; Chao, C.M.; Cheng, B.C.; Lin, M.T. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin. Sci. (Lond.), 2013, 124(3), 165-176. doi: 10.1042/CS20120226 PMID: 22876972
- Liu, X.Y.; Wei, M.G.; Liang, J.; Xu, H.H.; Wang, J.J.; Wang, J.; Yang, X.P.; Lv, F.F.; Wang, K.Q.; Duan, J.H.; Tu, Y.; Zhang, S.; Chen, C.; Li, X.H. Injury‐preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats. J. Neurochem., 2020, 153(2), 230-251. doi: 10.1111/jnc.14859 PMID: 31465551
- Badner, A.; Reinhardt, E.K.; Nguyen, T.V.; Midani, N.; Marshall, A.T.; Lepe, C.A.; Echeverria, K.; Lepe, J.J.; Torrecampo, V.; Bertan, S.H.; Tran, S.H.; Anderson, A.J.; Cummings, B.J. Freshly thawed cryobanked human neural stem cells engraft within endogenous neurogenic niches and restore cognitive function after chronic traumatic brain injury. J. Neurotrauma, 2021, 38(19), 2731-2746. doi: 10.1089/neu.2021.0045 PMID: 34130484
- Kawabori, M.; Chida, D.; Nejadnik, B.; Stonehouse, A.H.; Okonkwo, D.O. Cell therapies for acute and chronic traumatic brain injury. Curr. Med. Res. Opin., 2022, 38(12), 2183-2189. doi: 10.1080/03007995.2022.2141482 PMID: 36314422
- Sharma, A.K.; Sane, H.M.; Kulkarni, P.P.; Gokulchandran, N.; Biju, H.; Badhe, P.B. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- a clinical study. Cell Regen. , 2020, 9(1), 3. doi: 10.1186/s13619-020-00043-7 PMID: 32588151
Дополнительные файлы
