Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward


Цитировать

Полный текст

Аннотация

:The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Wilson’s disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.

Об авторах

Xiao-Yan Song

Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine

Email: info@benthamscience.net

Cun-xiu Fan

Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine

Email: info@benthamscience.net

Atta-ur-Rahman

H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi

Email: info@benthamscience.net

Muhammad Choudhary

H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi

Email: info@benthamscience.net

Xiao-Ping Wang

Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol., 2020, 19(3), 255-265. doi: 10.1016/S1474-4422(19)30411-9 PMID: 31813850
  2. Zhu, J.; Liu, Q.; Jiang, Y.; Wu, L.; Xu, G.; Liu, X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience, 2015, 290, 288-299. doi: 10.1016/j.neuroscience.2015.01.038 PMID: 25637797
  3. Losurdo, M.; Pedrazzoli, M.; D’Agostino, C.; Elia, C.A.; Massenzio, F.; Lonati, E.; Mauri, M.; Rizzi, L.; Molteni, L.; Bresciani, E.; Dander, E.; D’Amico, G.; Bulbarelli, A.; Torsello, A.; Matteoli, M.; Buffelli, M.; Coco, S. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease. Stem Cells Transl. Med., 2020, 9(9), 1068-1084. doi: 10.1002/sctm.19-0327 PMID: 32496649
  4. Giraldo, E.; Palmero-Canton, D.; Martinez-Rojas, B.; Sanchez-Martin, M.M.; Moreno-Manzano, V. Optogenetic modulation of neural progenitor cells improves neuroregenerative potential. Int. J. Mol. Sci., 2020, 22(1), 365. doi: 10.3390/ijms22010365 PMID: 33396468
  5. Goldman, S.A. Disease targets and strategies for the therapeutic modulation of endogenous neural stem and progenitor cells. Clin. Pharmacol. Ther., 2007, 82(4), 453-460. doi: 10.1038/sj.clpt.6100337 PMID: 17713467
  6. Dong, J.; Cui, Y.; Li, S.; Le, W. Current pharmaceutical treatments and alternative therapies of Parkinson’s disease. Curr. Neuropharmacol., 2016, 14(4), 339-355. doi: 10.2174/1570159X14666151120123025 PMID: 26585523
  7. Perlow, M.J.; Freed, W.J.; Hoffer, B.J.; Seiger, A.; Olson, L.; Wyatt, R.J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 1979, 204(4393), 643-647. doi: 10.1126/science.571147 PMID: 571147
  8. Lindvall, O.; Gustavii, B.; Åstedt, B.; Lindholm, T.; Rehncrona, S.; Brundin, P.; Widner, H.; Björklund, A.; Leenders, K.L.; Frackowiak, R.; Rothwell, J.C.; Marsden, C.D.; Johnels, B.; Steg, G.; Freedman, R.; Hopper, B.J.; Seiger, Å.; Strömberg, I.; Olson, M.B.L.; Olson, L. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet, 1988, 332(8626-8627), 1483-1484. doi: 10.1016/S0140-6736(88)90950-6 PMID: 2904587
  9. Madrazo, I.; León, V.; Torres, C.; Aguilera, M.C.; Varela, G.; Alvarez, F.; Fraga, A.; Drucker-Colín, R.; Ostrosky, F.; Skurovich, M. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med., 1988, 318(1), 51. doi: 10.1056/NEJM198801073180115 PMID: 3336384
  10. Freed, C.R.; Greene, P.E.; Breeze, R.E.; Tsai, W.Y.; DuMouchel, W.; Kao, R.; Dillon, S.; Winfield, H.; Culver, S.; Trojanowski, J.Q.; Eidelberg, D.; Fahn, S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med., 2001, 344(10), 710-719. doi: 10.1056/NEJM200103083441002 PMID: 11236774
  11. Moore, S.F.; Guzman, N.V.; Mason, S.L.; Williams-Gray, C.H.; Barker, R.A. Which patients with Parkinson’s disease participate in clinical trials? One centre’s experiences with a new cell based therapy trial (TRANSEURO). J. Parkinsons Dis., 2014, 4(4), 671-676. doi: 10.3233/JPD-140432 PMID: 25170676
  12. Kirkeby, A.; Parmar, M.; Barker, R.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic. Prog. Brain Res.,, 2017, 230, 165-190. doi: 10.1016/bs.pbr.2016.11.011 PMID: 28552228
  13. Barker, R.A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med., 2019, 25(7), 1045-1053. doi: 10.1038/s41591-019-0507-2 PMID: 31263283
  14. Xiao, J.J.; Yin, M.; Wang, Z.J.; Wang, X.P. Transplanted neural stem cells: Playing a neuroprotective role by ceruloplasmin in the substantia nigra of PD model rats? Oxid. Med. Cell. Longev., 2015, 2015, 1-9. doi: 10.1155/2015/618631 PMID: 26146528
  15. Parmar, M. Towards stem cell based therapies for Parkinson’s disease. Development, 2018, 145(1), dev156117. doi: 10.1242/dev.156117 PMID: 29311261
  16. Garitaonandia, I.; Gonzalez, R.; Christiansen-Weber, T.; Abramihina, T.; Poustovoitov, M.; Noskov, A.; Sherman, G.; Semechkin, A.; Snyder, E.; Kern, R. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease. Sci. Rep., 2016, 6(1), 34478. doi: 10.1038/srep34478 PMID: 27686862
  17. Wang, Y.K.; Zhu, W.W.; Wu, M.H.; Wu, Y.H.; Liu, Z.X.; Liang, L.M.; Sheng, C.; Hao, J.; Wang, L.; Li, W.; Zhou, Q.; Hu, B.Y. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Reports, 2018, 11(1), 171-182. doi: 10.1016/j.stemcr.2018.05.010 PMID: 29910127
  18. Piao, J.; Zabierowski, S.; Dubose, B.N.; Hill, E.J.; Navare, M.; Claros, N.; Rosen, S.; Ramnarine, K.; Horn, C.; Fredrickson, C.; Wong, K.; Safford, B.; Kriks, S.; El Maarouf, A.; Rutishauser, U.; Henchcliffe, C.; Wang, Y.; Riviere, I.; Mann, S.; Bermudez, V.; Irion, S.; Studer, L.; Tomishima, M.; Tabar, V. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell, 2021, 28(2), 217-229.e7. doi: 10.1016/j.stem.2021.01.004 PMID: 33545080
  19. Li, M.; Wang, Z.; Zheng, T.; Huang, T.; Liu, B.; Han, D.; Liu, S.; Liu, B.; Li, M.; Si, W.; Zhang, Y.A.; Niu, Y.; Chen, Z. Characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats. Stem Cells Int., 2022, 2022, 1-17. doi: 10.1155/2022/1396735 PMID: 36618021
  20. Loring, J.F. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson’s disease. Stem Cells Dev., 2018, 27(14), 958-959. doi: 10.1089/scd.2018.0107 PMID: 29790422
  21. Rivetti di Val Cervo, P.; Besusso, D.; Conforti, P.; Cattaneo, E. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat. Rev. Neurol., 2021, 17(6), 381-392. doi: 10.1038/s41582-021-00465-0 PMID: 33658662
  22. Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q.; Henchcliffe, C.; Kaplitt, M.; Neff, C.; Rapalino, O.; Seo, H.; Lee, I.H.; Kim, J.; Kim, T.; Petsko, G.A.; Ritz, J.; Cohen, B.M.; Kong, S.W.; Leblanc, P.; Carter, B.S.; Kim, K.S. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med., 2020, 382(20), 1926-1932. doi: 10.1056/NEJMoa1915872 PMID: 32402162
  23. Takahashi, J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen. Ther., 2020, 13, 18-22. doi: 10.1016/j.reth.2020.06.002 PMID: 33490319
  24. Ghosh, S.; Durgvanshi, S.; Agarwal, S.; Raghunath, M.; Sinha, J.K. Current status of drug targets and emerging therapeutic strategies in the management of Alzheimer’s disease. Curr. Neuropharmacol., 2020, 18(9), 883-903. doi: 10.2174/1570159X18666200429011823 PMID: 32348223
  25. Garcia-Contreras, M.; Thakor, A.S. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov., 2021, 7(1), 98. doi: 10.1038/s41420-021-00471-7 PMID: 33972507
  26. Moghadam, F.H.; Alaie, H.; Karbalaie, K.; Tanhaei, S.; Nasr Esfahani, M.H.; Baharvand, H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation, 2009, 78(2-3), 59-68. doi: 10.1016/j.diff.2009.06.005 PMID: 19616885
  27. Hoveizi, E.; Mohammadi, T.; Moazedi, A.A.; Zamani, N.; Eskandary, A. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy, 2018, 20(7), 964-973. doi: 10.1016/j.jcyt.2018.03.036 PMID: 30025963
  28. Wray, S.; Fox, N.C. Stem cell therapy for Alzheimer’s disease: hope or hype? Lancet Neurol., 2016, 15(2), 133-135. doi: 10.1016/S1474-4422(15)00382-8 PMID: 26704440
  29. Zhang, T.; Ke, W.; Zhou, X.; Qian, Y.; Feng, S.; Wang, R.; Cui, G.; Tao, R.; Guo, W.; Duan, Y.; Zhang, X.; Cao, X.; Shu, Y.; Yue, C.; Jing, N. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer’s disease. Stem Cell Reports, 2019, 13(6), 1022-1037. doi: 10.1016/j.stemcr.2019.10.012 PMID: 31761676
  30. Comella-Bolla, A.; Orlandi, J.G.; Miguez, A.; Straccia, M.; García-Bravo, M.; Bombau, G.; Galofré, M.; Sanders, P.; Carrere, J.; Segovia, J.C.; Blasi, J.; Allen, N.D.; Alberch, J.; Soriano, J.; Canals, J.M. Human pluripotent stem cell-derived neurons are functionally mature in vitro and integrate into the mouse striatum following transplantation. Mol. Neurobiol., 2020, 57(6), 2766-2798. doi: 10.1007/s12035-020-01907-4 PMID: 32356172
  31. Hayashi, Y.; Lin, H.T.; Lee, C.C.; Tsai, K.J. Effects of neural stem cell transplantation in Alzheimer’s disease models. J. Biomed. Sci., 2020, 27(1), 29. doi: 10.1186/s12929-020-0622-x PMID: 31987051
  32. Marsh, S.E.; Blurton-Jones, M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem. Int., 2017, 106, 94-100. doi: 10.1016/j.neuint.2017.02.006 PMID: 28219641
  33. Chen, Y.; Pan, C.; Xuan, A.; Xu, L.; Bao, G.; Liu, F.; Fang, J.; Long, D. Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med. Sci. Monit., 2015, 21, 3608-3615. doi: 10.12659/MSM.894567 PMID: 26590375
  34. Zhang, F.; Chen, S.Q.; Tong, M.M.; Wang, P.J.; Teng, G.J. 7.0 tesla high resolution MRI study on intracerebral migration of magnet-labeled neural stem cells in a mouse model of Alzheimer’s disease. Magn. Reson. Imaging, 2018, 54, 58-62. doi: 10.1016/j.mri.2018.08.005 PMID: 30118826
  35. Apodaca, L.A.; Baddour, A.A.D.; Garcia, C., Jr; Alikhani, L.; Giedzinski, E.; Ru, N.; Agrawal, A.; Acharya, M.M.; Baulch, J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 57. doi: 10.1186/s13195-021-00791-x PMID: 33676561
  36. Cui, Y.; Ma, S.; Zhang, C.; Cao, W.; Liu, M.; Li, D.; Lv, P.; Xing, Q.; Qu, R.; Yao, N.; Yang, B.; Guan, F. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav. Brain Res., 2017, 320, 291-301. doi: 10.1016/j.bbr.2016.12.021 PMID: 28007537
  37. Lee, J.; Chang, W.S.; Shin, J.; Seo, Y.; Kong, C.; Song, B.W.; Na, Y.C.; Kim, B.S.; Chang, J.W. Non-invasively enhanced intracranial transplantation of mesenchymal stem cells using focused ultrasound mediated by overexpression of cell-adhesion molecules. Stem Cell Res. (Amst.), 2020, 43, 101726. doi: 10.1016/j.scr.2020.101726 PMID: 32028085
  38. Hour, F.Q.; Moghadam, A.J.; Shakeri-Zadeh, A.; Bakhtiyari, M.; Shabani, R.; Mehdizadeh, M. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models. J. Control. Release, 2020, 321, 430-441. doi: 10.1016/j.jconrel.2020.02.035 PMID: 32097673
  39. Jung, M.; Kim, H.; Hwang, J.W.; Choi, Y.; Kang, M.; Kim, C.; Hong, J.; Lee, N.K.; Moon, S.; Chang, J.W.; Choi, S.; Oh, S.; Jang, H.; Na, D.L.; Kim, B.S. Iron oxide nanoparticle-incorporated mesenchymal stem cells for Alzheimer’s disease treatment. Nano Lett., 2023, 23(2), 476-490. doi: 10.1021/acs.nanolett.2c03682 PMID: 36638236
  40. Kim, H.J.; Cho, K.R.; Jang, H.; Lee, N.K.; Jung, Y.H.; Kim, J.P.; Lee, J.I.; Chang, J.W.; Park, S.; Kim, S.T.; Moon, S.W.; Seo, S.W.; Choi, S.J.; Na, D.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial. Alzheimers Res. Ther., 2021, 13(1), 154. doi: 10.1186/s13195-021-00897-2 PMID: 34521461
  41. Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic lateral sclerosis: An update for 2018. Mayo Clin. Proc., 2018, 93(11), 1617-1628. doi: 10.1016/j.mayocp.2018.04.007 PMID: 30401437
  42. Mazzini, L.; Ferrari, D.; Andjus, P.R.; Buzanska, L.; Cantello, R.; De Marchi, F.; Gelati, M.; Giniatullin, R.; Glover, J.C.; Grilli, M.; Kozlova, E.N.; Maioli, M.; Mitrečić, D.; Pivoriunas, A.; Sanchez-Pernaute, R.; Sarnowska, A.; Vescovi, A.L.; Neurology, B.C.A.W. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin. Biol. Ther., 2018, 18(8), 865-881. doi: 10.1080/14712598.2018.1503248 PMID: 30025485
  43. Berry, J.D.; Cudkowicz, M.E.; Windebank, A.J.; Staff, N.P.; Owegi, M.; Nicholson, K.; McKenna-Yasek, D.; Levy, Y.S.; Abramov, N.; Kaspi, H.; Mehra, M.; Aricha, R.; Gothelf, Y.; Brown, R.H. NurOwn, phase 2, randomized, clinical trial in patients with ALS. Neurology, 2019, 93(24), e2294-e2305. doi: 10.1212/WNL.0000000000008620 PMID: 31740545
  44. Forostyak, S.; Forostyak, O.; Kwok, J.C.F.; Romanyuk, N.; Rehorova, M.; Kriska, J.; Dayanithi, G.; Raha-Chowdhury, R.; Jendelova, P.; Anderova, M.; Fawcett, J.W.; Sykova, E. Transplantation of neural precursors derived from induced pluripotent cells preserve perineuronal nets and stimulate neural plasticity in ALS rats. Int. J. Mol. Sci., 2020, 21(24), 9593. doi: 10.3390/ijms21249593 PMID: 33339362
  45. Sareen, D.; Gowing, G.; Sahabian, A.; Staggenborg, K.; Paradis, R.; Avalos, P.; Latter, J.; Ornelas, L.; Garcia, L.; Svendsen, C.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol., 2014, 522(12), 2707-2728. doi: 10.1002/cne.23578 PMID: 24610630
  46. Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol., 2013, 997, 23-33. doi: 10.1007/978-1-62703-348-0_3 PMID: 23546745
  47. Hamada, A.; Akagi, E.; Yamasaki, S.; Nakatao, H.; Obayashi, F.; Ohtaka, M.; Nishimura, K.; Nakanishi, M.; Toratani, S.; Okamoto, T. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell. Dev. Biol. Anim., 2020, 56(1), 85-95. doi: 10.1007/s11626-019-00412-w PMID: 31768763
  48. Lunetta, C.; Lizio, A.; Cabona, C.; Gerardi, F.; Sansone, V.A.; Corbo, M.; Scialò, C.; Angelucci, E.; Gualandi, F.; Marenco, P.; Grillo, G.; Cairoli, R.; Cesana, C.; Saccardi, R.; Melazzini, M.G.; Mancardi, G.; Caponnetto, C. A phase I/IIa clinical trial of autologous hematopoietic stem cell transplantation in amyotrophic lateral sclerosis. J. Neurol., 2022, 269(10), 5337-5346. doi: 10.1007/s00415-022-11185-w PMID: 35596795
  49. Suzuki, M.; McHugh, J.; Tork, C.; Shelley, B.; Klein, S.M.; Aebischer, P.; Svendsen, C.N. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2007, 2(8), e689. doi: 10.1371/journal.pone.0000689 PMID: 17668067
  50. Zalfa, C.; Rota Nodari, L.; Vacchi, E.; Gelati, M.; Profico, D.; Boido, M.; Binda, E.; De Filippis, L.; Copetti, M.; Garlatti, V.; Daniele, P.; Rosati, J.; De Luca, A.; Pinos, F.; Cajola, L.; Visioli, A.; Mazzini, L.; Vercelli, A.; Svelto, M.; Vescovi, A.L.; Ferrari, D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis., 2019, 10(5), 345. doi: 10.1038/s41419-019-1582-5 PMID: 31024007
  51. Nichols, N.L.; Gowing, G.; Satriotomo, I.; Nashold, L.J.; Dale, E.A.; Suzuki, M.; Avalos, P.; Mulcrone, P.L.; McHugh, J.; Svendsen, C.N.; Mitchell, G.S. Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis. Am. J. Respir. Crit. Care Med., 2013, 187(5), 535-542. doi: 10.1164/rccm.201206-1072OC PMID: 23220913
  52. Thomsen, G.M.; Avalos, P.; Ma, A.A.; Alkaslasi, M.; Cho, N.; Wyss, L.; Vit, J.P.; Godoy, M.; Suezaki, P.; Shelest, O.; Bankiewicz, K.S.; Svendsen, C.N. Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis. Stem Cells, 2018, 36(7), 1122-1131. doi: 10.1002/stem.2825 PMID: 29656478
  53. Khalid, M.U.; Masroor, T. The promise of stem cells in amyotrophic lateral sclerosis: A review of clinical trials. J. Pak. Med. Assoc., 2023, 73(2), s138-s142. doi: 10.47391/JPMA.AKUS-22 PMID: 36788405
  54. Gotkine, M.; Caraco, Y.; Lerner, Y.; Blotnick, S.; Wanounou, M.; Slutsky, S.G.; Chebath, J.; Kuperstein, G.; Estrin, E.; Ben-Hur, T.; Hasson, A.; Molakandov, K.; Sonnenfeld, T.; Stark, Y.; Revel, A.; Revel, M.; Izrael, M. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J. Transl. Med., 2023, 21(1), 122. doi: 10.1186/s12967-023-03903-3 PMID: 36788520
  55. Jaber, F.L.; Sharma, Y.; Gupta, S. Demonstrating potential of cell therapy for Wilson’s disease with the long-evans cinnamon rat model. Methods Mol. Biol., 2017, 1506, 161-178. doi: 10.1007/978-1-4939-6506-9_11 PMID: 27830552
  56. Itoh, T.; Miyajima, A. Liver regeneration by stem/progenitor cells. Hepatology, 2014, 59(4), 1617-1626. doi: 10.1002/hep.26753 PMID: 24115180
  57. Cao, Y.; Ji, C.; Lu, L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Ann. Transl. Med., 2020, 8(8), 562. doi: 10.21037/atm.2020.02.119 PMID: 32775363
  58. Tsuchiya, A.; Takeuchi, S.; Watanabe, T.; Yoshida, T.; Nojiri, S.; Ogawa, M.; Terai, S. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as "conducting cells" for improvement of liver fibrosis and regeneration. Inflamm. Regen., 2019, 39(1), 18. doi: 10.1186/s41232-019-0107-z PMID: 31516638
  59. Sauer, V.; Siaj, R.; Todorov, T.; Zibert, A.; Schmidt, H.H.J. Overexpressed ATP7B protects mesenchymal stem cells from toxic copper. Biochem. Biophys. Res. Commun., 2010, 395(3), 307-311. doi: 10.1016/j.bbrc.2010.03.158 PMID: 20362556
  60. Zhang, D. A clinical study of bone mesenchymal stem cells for the treatment of hepatic fibrosis induced by hepatolenticular degeneration. Genet. Mol. Res., 2017, 16(1) doi: 10.4238/gmr16019352 PMID: 28301671
  61. Fujiyoshi, J.; Yamaza, H.; Sonoda, S.; Yuniartha, R.; Ihara, K.; Nonaka, K.; Taguchi, T.; Ohga, S.; Yamaza, T. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci. Rep., 2019, 9(1), 1535. doi: 10.1038/s41598-018-38275-y PMID: 30733544
  62. Wang, S.H.; Wang, X.P. Generation of an induced pluripotent stem cell (iPSC) line (THSJTUi001-A) from a Wilson’s disease patient harboring a homozygous Arg778Leu mutation in ATP7B gene. Stem Cell Res. (Amst.), 2020, 49, 102050. doi: 10.1016/j.scr.2020.102050 PMID: 33096383
  63. Roy-Chowdhury, J.; Schilsky, M.L. Gene therapy of Wilson disease: A "golden" opportunity using rAAV on the 50th anniversary of the discovery of the virus. J. Hepatol., 2016, 64(2), 265-267. doi: 10.1016/j.jhep.2015.11.017 PMID: 26639392
  64. Greig, J.A.; Nordin, J.M.L.; Smith, M.K.; Ashley, S.N.; Draper, C.; Zhu, Y.; Bell, P.; Buza, E.L.; Wilson, J.M. a gene therapy approach to improve copper metabolism and prevent liver damage in a mouse model of Wilson disease. Hum. Gene Ther. Clin. Dev., 2019, 30(1), 29-39. doi: 10.1089/humc.2018.219 PMID: 30693797
  65. Pöhler, M.; Guttmann, S.; Nadzemova, O.; Lenders, M.; Brand, E.; Zibert, A.; Schmidt, H.H.; Sandfort, V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One, 2020, 15(9), e0239411. doi: 10.1371/journal.pone.0239411 PMID: 32997714
  66. Cai, H.; Cheng, X.; Wang, X.P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease. Hepatology, 2022, 76(4), 1046-1057. doi: 10.1002/hep.32484 PMID: 35340061
  67. Zolfaghari Baghbadorani, P.; Rayati Damavandi, A.; Moradi, S.; Ahmadi, M.; Bemani, P.; Aria, H.; Mottedayyen, H.; Rayati Damavandi, A.; Eskandari, N.; Fathi, F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev. Neurosci., 2023, 34(6), 613-633. doi: 10.1515/revneuro-2022-0102 PMID: 36496351
  68. Sarkar, P.; Rice, C.M.; Scolding, N.J. Cell therapy for multiple sclerosis. CNS Drugs, 2017, 31(6), 453-469. doi: 10.1007/s40263-017-0429-9 PMID: 28397112
  69. Pluchino, S.; Zanotti, L.; Rossi, B.; Brambilla, E.; Ottoboni, L.; Salani, G.; Martinello, M.; Cattalini, A.; Bergami, A.; Furlan, R.; Comi, G.; Constantin, G.; Martino, G. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 2005, 436(7048), 266-271. doi: 10.1038/nature03889 PMID: 16015332
  70. Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; Greco, R.; Vezzulli, P.; Ottoboni, L.; Bonopane, M.; Capilupo, D.; Ruffini, F.; Belotti, D.; Cabiati, B.; Cesana, S.; Matera, G.; Leocani, L.; Martinelli, V.; Moiola, L.; Vago, L.; Panina-Bordignon, P.; Falini, A.; Ciceri, F.; Uglietti, A.; Sormani, M.P.; Comi, G.; Battaglia, M.A.; Rocca, M.A.; Storelli, L.; Pagani, E.; Gaipa, G.; Martino, G. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med., 2023, 29(1), 75-85. doi: 10.1038/s41591-022-02097-3 PMID: 36624312
  71. Shroff, G. Transplantation of human embryonic stem cells in patients with multiple sclerosis and lyme disease. Am. J. Case Rep., 2016, 17, 944-949. doi: 10.12659/AJCR.899745 PMID: 27956736
  72. Genc, B.; Bozan, H.R.; Genc, S.; Genc, K. Stem cell therapy for multiple sclerosis. Adv. Exp. Med. Biol., 2018, 1084, 145-174. doi: 10.1007/5584_2018_247 PMID: 30039439
  73. Burt, R.K.; Balabanov, R.; Burman, J.; Sharrack, B.; Snowden, J.A.; Oliveira, M.C.; Fagius, J.; Rose, J.; Nelson, F.; Barreira, A.A.; Carlson, K.; Han, X.; Moraes, D.; Morgan, A.; Quigley, K.; Yaung, K.; Buckley, R.; Alldredge, C.; Clendenan, A.; Calvario, M.A.; Henry, J.; Jovanovic, B.; Helenowski, I.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs. continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA, 2019, 321(2), 165-174. doi: 10.1001/jama.2018.18743 PMID: 30644983
  74. Petrou, P.; Kassis, I.; Levin, N.; Paul, F.; Backner, Y.; Benoliel, T.; Oertel, F.C.; Scheel, M.; Hallimi, M.; Yaghmour, N.; Hur, T.B.; Ginzberg, A.; Levy, Y.; Abramsky, O.; Karussis, D. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain, 2020, 143(12), 3574-3588. doi: 10.1093/brain/awaa333 PMID: 33253391
  75. Dhir, N.; Medhi, B.; Prakash, A.; Goyal, M.K.; Modi, M.; Mohindra, S. Pre-clinical to clinical translational failures and current status of clinical trials in stroke therapy: A brief review. Curr. Neuropharmacol., 2020, 18(7), 596-612. doi: 10.2174/1570159X18666200114160844 PMID: 31934841
  76. Grabowski, M.; Christofferson, R.H.; Brundin, P.; Johansson, B.B. Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience, 1992, 51(3), 673-682. doi: 10.1016/0306-4522(92)90306-M PMID: 1488117
  77. Grabowski, M.; Brundin, P.; Johansson, B.B. Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: Ingrowth of afferent fibers from the host brain. Exp. Neurol., 1992, 116(2), 105-121. doi: 10.1016/0014-4886(92)90159-N PMID: 1577119
  78. Aihara, N.; Mizukawa, K.; Koide, K.; Mabe, H.; Nishino, H. Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat. Brain Res. Bull., 1994, 33(5), 483-488. doi: 10.1016/0361-9230(94)90072-8 PMID: 8186993
  79. Kondziolka, D.; Steinberg, G.K.; Wechsler, L.; Meltzer, C.C.; Elder, E.; Gebel, J.; DeCesare, S.; Jovin, T.; Zafonte, R.; Lebowitz, J.; Flickinger, J.C.; Tong, D.; Marks, M.P.; Jamieson, C.; Luu, D.; Bell-Stephens, T.; Teraoka, J. Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial. J. Neurosurg., 2005, 103(1), 38-45. doi: 10.3171/jns.2005.103.1.0038 PMID: 16121971
  80. Savitz, S.I.; Dinsmore, J.; Wu, J.; Henderson, G.V.; Stieg, P.; Caplan, L.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis., 2005, 20(2), 101-107. doi: 10.1159/000086518 PMID: 15976503
  81. Willis, C.M.; Nicaise, A.M.; Peruzzotti-Jametti, L.; Pluchino, S. The neural stem cell secretome and its role in brain repair. Brain Res., 2020, 1729146615. doi: 10.1016/j.brainres.2019.146615 PMID: 31863730
  82. Hess, D.C.; Wechsler, L.R.; Clark, W.M.; Savitz, S.I.; Ford, G.A.; Chiu, D.; Yavagal, D.R.; Uchino, K.; Liebeskind, D.S.; Auchus, A.P.; Sen, S.; Sila, C.A.; Vest, J.D.; Mays, R.W. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol., 2017, 16(5), 360-368. doi: 10.1016/S1474-4422(17)30046-7 PMID: 28320635
  83. Savitz, S.I.; Chopp, M.; Deans, R.; Carmichael, S.T.; Phinney, D.; Wechsler, L. Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke, 2011, 42(3), 825-829. doi: 10.1161/STROKEAHA.110.601914 PMID: 21273569
  84. Savitz, S.I.; Cramer, S.C.; Wechsler, L.; Aronowski, J.; Boltze, J.; Borlongan, C.; Case, C.; Chase, T.; Chopp, M.; Carmichael, S.T.; Cramer, S.C.; Duncan, P.; Finklestein, S.; Fischkoff, S.; Guzman, R.; Hess, D.C.; Huang, D.; Hinson, J.; Kautz, S.; Kondziolka, D.; Mays, R.; Misra, V.; Mitsias, P.; Modo, M.; Muir, K.; Savitz, S.I.; Sinden, J.; Snyder, E.; Steinberg, G.; Vahidy, F.; Wechsler, L.; Willing, A.; Wolf, S.; Yankee, E.; Yavagal, D.R. Stem cells as an emerging paradigm in stroke 3: Enhancing the development of clinical trials. Stroke, 2014, 45(2), 634-639. doi: 10.1161/STROKEAHA.113.003379 PMID: 24368562
  85. Muir, K.W.; Bulters, D.; Willmot, M.; Sprigg, N.; Dixit, A.; Ward, N.; Tyrrell, P.; Majid, A.; Dunn, L.; Bath, P.; Howell, J.; Stroemer, P.; Pollock, K.; Sinden, J. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2). J. Neurol. Neurosurg. Psychiatry, 2020, 91(4), 396-401. doi: 10.1136/jnnp-2019-322515 PMID: 32041820
  86. Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; Yankee, E.W.; Schwartz, N.E. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg., 2018, 1-11. PMID: 30497166
  87. Shichinohe, H.; Kawabori, M.; Iijima, H.; Teramoto, T.; Abumiya, T.; Nakayama, N.; Kazumata, K.; Terasaka, S.; Arato, T.; Houkin, K. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol., 2017, 17(1), 179. doi: 10.1186/s12883-017-0955-6 PMID: 28886699
  88. Wei, L.; Fraser, J.L.; Lu, Z.Y.; Hu, X.; Yu, S.P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis., 2012, 46(3), 635-645. doi: 10.1016/j.nbd.2012.03.002 PMID: 22426403
  89. Sakata, H.; Niizuma, K.; Wakai, T.; Narasimhan, P.; Maier, C.M.; Chan, P.H. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke, 2012, 43(9), 2423-2429. doi: 10.1161/STROKEAHA.112.656900 PMID: 22713489
  90. Doeppner, T.R.; Ewert, T.A.S.; Tönges, L.; Herz, J.; Zechariah, A.; ElAli, A.; Ludwig, A.K.; Giebel, B.; Nagel, F.; Dietz, G.P.H.; Weise, J.; Hermann, D.M.; Bähr, M. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 2012, 30(6), 1297-1310. doi: 10.1002/stem.1098 PMID: 22593021
  91. Moniche, F.; Cabezas-Rodriguez, J.A.; Valverde, R.; Escudero-Martinez, I.; Lebrato-Hernandez, L.; Pardo-Galiana, B.; Ainz, L.; Medina-Rodriguez, M.; de la Torre, J.; Escamilla-Gomez, V.; Ortega-Quintanilla, J.; Zapata-Arriaza, E.; de Albóniga-Chindurza, A.; Mancha, F.; Gamero, M.A.; Perez, S.; Espinosa-Rosso, R.; Forero-Diaz, L.; Moya, M.; Piñero, P.; Calderón-Cabrera, C.; Nogueras, S.; Jimenez, R.; Martin, V.; Delgado, F.; Ochoa-Sepúlveda, J.J.; Quijano, B.; Mata, R.; Santos-González, M.; Carmona-Sanchez, G.; Herrera, C.; Gonzalez, A.; Montaner, J. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial. Lancet Neurol., 2023, 22(2), 137-146. doi: 10.1016/S1474-4422(22)00526-9 PMID: 36681446
  92. Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of severe traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 535-541. doi: 10.23736/S0390-5616.18.04532-0 PMID: 30182649
  93. Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic brain injury. Cell Transplant., 2017, 26(7), 1118-1130. doi: 10.1177/0963689717714102 PMID: 28933211
  94. Gardner, R.C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell Neurosci.,, 2015, 66(Pt B), 75-80. doi: 10.1016/j.mcn.2015.03.001 PMID: 25748121
  95. Glushakova, O.Y.; Johnson, D.; Hayes, R.L. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J. Neurotrauma, 2014, 31(13), 1180-1193. doi: 10.1089/neu.2013.3080 PMID: 24564198
  96. Boltze, J.; Reich, D.M.; Hau, S.; Reymann, K.G.; Strassburger, M.; Lobsien, D.; Wagner, D.C.; Kamprad, M.; Stahl, T. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant., 2012, 21(4), 723-737. doi: 10.3727/096368911X586783 PMID: 21929866
  97. Weston, N.M.; Sun, D. The Potential of stem cells in treatment of traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2018, 18(1), 1. doi: 10.1007/s11910-018-0812-z PMID: 29372464
  98. Dela Peña, I.; Sanberg, P.R.; Acosta, S.; Tajiri, N.; Lin, S.Z.; Borlongan, C.V. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J. Neurosurg. Sci., 2014, 58(3), 145-149. PMID: 24844175
  99. Nguyen, H.; Aum, D.; Mashkouri, S.; Rao, G.; Vega Gonzales-Portillo, J.D.; Reyes, S.; Borlongan, C.V. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Rev. Neurother., 2016, 16(8), 915-926. doi: 10.1080/14737175.2016.1184086 PMID: 27152762
  100. Kim, H.J.; Lee, J.H.; Kim, S.H. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma, 2010, 27(1), 131-138. doi: 10.1089/neu.2008.0818 PMID: 19508155
  101. Lanfranconi, S.; Locatelli, F.; Corti, S.; Candelise, L.; Comi, G.P.; Baron, P.L.; Strazzer, S.; Bresolin, N.; Bersano, A. Growth factors in ischemic stroke. J. Cell. Mol. Med., 2009, 15(8), 1645-1687. doi: 10.1111/j.1582-4934.2009.00987.x PMID: 20015202
  102. Kawabori, M.; Weintraub, A.H.; Imai, H.; Zinkevych, I.; McAllister, P.; Steinberg, G.K.; Frishberg, B.M.; Yasuhara, T.; Chen, J.W.; Cramer, S.C.; Achrol, A.S.; Schwartz, N.E.; Suenaga, J.; Lu, D.C.; Semeniv, I.; Nakamura, H.; Kondziolka, D.; Chida, D.; Kaneko, T.; Karasawa, Y.; Paadre, S.; Nejadnik, B.; Bates, D.; Stonehouse, A.H.; Richardson, R.M.; Okonkwo, D.O. Cell Therapy for Chronic TBI. Neurology, 2021, 96(8), e1202-e1214. doi: 10.1212/WNL.0000000000011450 PMID: 33397772
  103. Merson, T.D.; Bourne, J.A. Endogenous neurogenesis following ischaemic brain injury: Insights for therapeutic strategies. Int. J. Biochem. Cell Biol., 2014, 56, 4-19. doi: 10.1016/j.biocel.2014.08.003 PMID: 25128862
  104. Liska, M.G.; Crowley, M.G.; Nguyen, H.; Borlongan, C.V. Biobridge concept in stem cell therapy for ischemic stroke. J. Neurosurg. Sci., 2017, 61(2), 173-179. PMID: 27406955
  105. Badner, A.; Cummings, B. The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms. Neural Regen. Res., 2022, 17(11), 2351-2354. doi: 10.4103/1673-5374.335833 PMID: 35535870
  106. Tajiri, N.; Kaneko, Y.; Shinozuka, K.; Ishikawa, H.; Yankee, E.; McGrogan, M.; Case, C.; Borlongan, C.V. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One, 2013, 8(9), e74857. doi: 10.1371/journal.pone.0074857 PMID: 24023965
  107. Luarte, A.; Bátiz, L.F.; Wyneken, U.; Lafourcade, C. Potential therapies by stem cell-derived exosomes in CNS diseases: Focusing on the neurogenic niche. Stem Cells Int., 2016, 2016, 1-16. doi: 10.1155/2016/5736059 PMID: 27195011
  108. Zhang, Y.; Chopp, M.; Zhang, Z.G.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; Mahmood, A.; Xiong, Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int., 2017, 111, 69-81. doi: 10.1016/j.neuint.2016.08.003 PMID: 27539657
  109. Chang, C.P.; Chio, C.C.; Cheong, C.U.; Chao, C.M.; Cheng, B.C.; Lin, M.T. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin. Sci. (Lond.), 2013, 124(3), 165-176. doi: 10.1042/CS20120226 PMID: 22876972
  110. Liu, X.Y.; Wei, M.G.; Liang, J.; Xu, H.H.; Wang, J.J.; Wang, J.; Yang, X.P.; Lv, F.F.; Wang, K.Q.; Duan, J.H.; Tu, Y.; Zhang, S.; Chen, C.; Li, X.H. Injury‐preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats. J. Neurochem., 2020, 153(2), 230-251. doi: 10.1111/jnc.14859 PMID: 31465551
  111. Badner, A.; Reinhardt, E.K.; Nguyen, T.V.; Midani, N.; Marshall, A.T.; Lepe, C.A.; Echeverria, K.; Lepe, J.J.; Torrecampo, V.; Bertan, S.H.; Tran, S.H.; Anderson, A.J.; Cummings, B.J. Freshly thawed cryobanked human neural stem cells engraft within endogenous neurogenic niches and restore cognitive function after chronic traumatic brain injury. J. Neurotrauma, 2021, 38(19), 2731-2746. doi: 10.1089/neu.2021.0045 PMID: 34130484
  112. Kawabori, M.; Chida, D.; Nejadnik, B.; Stonehouse, A.H.; Okonkwo, D.O. Cell therapies for acute and chronic traumatic brain injury. Curr. Med. Res. Opin., 2022, 38(12), 2183-2189. doi: 10.1080/03007995.2022.2141482 PMID: 36314422
  113. Sharma, A.K.; Sane, H.M.; Kulkarni, P.P.; Gokulchandran, N.; Biju, H.; Badhe, P.B. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- a clinical study. Cell Regen. , 2020, 9(1), 3. doi: 10.1186/s13619-020-00043-7 PMID: 32588151

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024