Gut Microbiome in Alzheimer’s Disease: from Mice to Humans


Дәйексөз келтіру

Толық мәтін

Аннотация

:Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.

Авторлар туралы

Chang Liang

Department of Gastroenterology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Resel Pereira

Krembil Research Institute, University Health Network

Email: info@benthamscience.net

Yan Zhang

Department of Gastroenterology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Olga Rojas

Department of Immunology, University of Toronto

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Song, E.J.; Lee, E.S.; Nam, Y.D. Progress of analytical tools and techniques for human gut microbiome research. J. Microbiol., 2018, 56(10), 693-705. doi: 10.1007/s12275-018-8238-5 PMID: 30267313
  2. Hodkinson, B.P.; Grice, E.A. Next-generation sequencing: A review of technologies and tools for wound microbiome research. Adv. Wound Care (New Rochelle), 2015, 4(1), 50-58. doi: 10.1089/wound.2014.0542 PMID: 25566414
  3. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65. doi: 10.1038/nature08821 PMID: 20203603
  4. Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638. doi: 10.1126/science.1110591 PMID: 15831718
  5. Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol., 2019, 15(5), 261-273. doi: 10.1038/s41574-019-0156-z PMID: 30670819
  6. Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol., 2020, 19(2), 179-194. doi: 10.1016/S1474-4422(19)30356-4 PMID: 31753762
  7. Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; Casero, D.; Courtney, H.; Gonzalez, A.; Graeber, T.G.; Hall, A.B.; Lake, K.; Landers, C.J.; Mallick, H.; Plichta, D.R.; Prasad, M.; Rahnavard, G.; Sauk, J.; Shungin, D.; Vázquez-Baeza, Y.; White, R.A., III; Braun, J.; Denson, L.A.; Jansson, J.K.; Knight, R.; Kugathasan, S.; McGovern, D.P.B.; Petrosino, J.F.; Stappenbeck, T.S.; Winter, H.S.; Clish, C.B.; Franzosa, E.A.; Vlamakis, H.; Xavier, R.J.; Huttenhower, C. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569(7758), 655-662. doi: 10.1038/s41586-019-1237-9 PMID: 31142855
  8. Chok, K.C.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Role of the gut microbiome in Alzheimer’s disease. Rev. Neurosci., 2021, 32(7), 767-789. doi: 10.1515/revneuro-2020-0122 PMID: 33725748
  9. Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.F.; Huang, L.; Zhu, H.; Han, Y.; Qin, C. Altered gut microbiota in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1241-1257. doi: 10.3233/JAD-170020 PMID: 29036812
  10. dos Santos Guilherme, M.; Todorov, H.; Osterhof, C.; Möllerke, A.; Cub, K.; Hankeln, T.; Gerber, S.; Endres, K. Impact of acute and chronic amyloid-β peptide exposure on gut microbial commensals in the mouse. Front. Microbiol., 2020, 11, 1008. doi: 10.3389/fmicb.2020.01008 PMID: 32508799
  11. Zhang, Y.; Shen, Y.; Liufu, N.; Liu, L.; Li, W.; Shi, Z.; Zheng, H.; Mei, X.; Chen, C.Y.; Jiang, Z.; Abtahi, S.; Dong, Y.; Liang, F.; Shi, Y.; Cheng, L.L.; Yang, G.; Kang, J.X.; Wilkinson, J.E.; Xie, Z. Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: Evidence from mice and patients. Mol. Psychiatry, 2023, 28(10), 4421-4437. doi: 10.1038/s41380-023-02216-7 PMID: 37604976
  12. Chen, C.; Ahn, E.H.; Kang, S.S.; Liu, X.; Alam, A.; Ye, K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model. Sci. Adv., 2020, 6(31), eaba0466. doi: 10.1126/sciadv.aba0466 PMID: 32832679
  13. Grabrucker, S.; Marizzoni, M.; Silajdžić, E.; Lopizzo, N.; Mombelli, E.; Nicolas, S.; Dohm-Hansen, S.; Scassellati, C.; Moretti, D.V.; Rosa, M.; Hoffmann, K.; Cryan, J.F.; O’Leary, O.F.; English, J.A.; Lavelle, A.; O’Neill, C.; Thuret, S.; Cattaneo, A.; Nolan, Y.M. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain, 2023, 146(12), 4916-4934. doi: 10.1093/brain/awad303 PMID: 37849234
  14. Li, Z.; Zhu, H.; Guo, Y.; Du, X.; Qin, C. Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease. J. Neurochem., 2020, 155(4), 448-461. doi: 10.1111/jnc.15031 PMID: 32319677
  15. Brandscheid, C.; Schuck, F.; Reinhardt, S.; Schäfer, K.H.; Pietrzik, C.U.; Grimm, M.; Hartmann, T.; Schwiertz, A.; Endres, K. Altered gut microbiome composition and tryptic activity of the 5xfad Alzheimer’s mouse model. J. Alzheimers Dis., 2017, 56(2), 775-788. doi: 10.3233/JAD-160926 PMID: 28035935
  16. Cuervo-Zanatta, D.; Garcia-Mena, J.; Perez-Cruz, C. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of Alzheimer’s disease. J. Alzheimers Dis., 2021, 82(s1), S195-S214. doi: 10.3233/JAD-201367 PMID: 33492296
  17. Park, J.Y.; Choi, J.; Lee, Y.; Lee, J.E.; Lee, E.H.; Kwon, H.J.; Yang, J.; Jeong, B.R.; Kim, Y.K.; Han, P.L. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Exp. Neurobiol., 2017, 26(6), 369-379. doi: 10.5607/en.2017.26.6.369 PMID: 29302204
  18. Zhan, G.; Yang, N.; Li, S.; Huang, N.; Fang, X.; Zhang, J.; Zhu, B.; Yang, L.; Yang, C.; Luo, A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY), 2018, 10(6), 1257-1267. doi: 10.18632/aging.101464 PMID: 29886457
  19. Cao, J.; Amakye, W.K.; Qi, C.; Liu, X.; Ma, J.; Ren, J. Bifidobacterium lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur. J. Nutr., 2021, 60(7), 3757-3769. doi: 10.1007/s00394-021-02543-x PMID: 33796919
  20. Sun, Y.; Sommerville, N.R.; Liu, J.Y.H.; Ngan, M.P.; Poon, D.; Ponomarev, E.D.; Lu, Z.; Kung, J.S.C.; Rudd, J.A. Intra‐gastrointestinal amyloid‐β1–42 oligomers perturb enteric function and induce Alzheimer’s disease pathology. J. Physiol., 2020, 598(19), 4209-4223. doi: 10.1113/JP279919 PMID: 32617993
  21. Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 2017, 20(2), 145-155. doi: 10.1038/nn.4476 PMID: 28092661
  22. Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; Chang, S.; Gong, Y.; Ruan, L.; Zhang, G.; Yan, S.; Lian, W.; Du, C.; Yang, D.; Zhang, Q.; Lin, F.; Liu, J.; Zhang, H.; Ge, C.; Xiao, S.; Ding, J.; Geng, M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res., 2019, 29(10), 787-803. doi: 10.1038/s41422-019-0216-x PMID: 31488882
  23. Shukla, P.K.; Delotterie, D.F.; Xiao, J.; Pierre, J.F.; Rao, R.; McDonald, M.P.; Khan, M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimer’s disease. Cells, 2021, 10(4), 779. doi: 10.3390/cells10040779 PMID: 33916001
  24. Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478. doi: 10.1038/s41575-019-0157-3 PMID: 31123355
  25. Tran, T.T.T.; Corsini, S.; Kellingray, L.; Hegarty, C.; Le Gall, G.; Narbad, A.; Müller, M.; Tejera, N.; O’Toole, P.W.; Minihane, A.M.; Vauzour, D. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology. FASEB J., 2019, 33(7), 8221-8231. doi: 10.1096/fj.201900071R PMID: 30958695
  26. Kundu, P.; Torres, E.R.S.; Stagaman, K.; Kasschau, K.; Okhovat, M.; Holden, S.; Ward, S.; Nevonen, K.A.; Davis, B.A.; Saito, T.; Saido, T.C.; Carbone, L.; Sharpton, T.J.; Raber, J. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-F, AppNL-F, and wild type mice. Sci. Rep., 2021, 11(1), 4678. doi: 10.1038/s41598-021-83851-4 PMID: 33633159
  27. Org, E.; Mehrabian, M.; Parks, B.W.; Shipkova, P.; Liu, X.; Drake, T.A.; Lusis, A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7(4), 313-322. doi: 10.1080/19490976.2016.1203502 PMID: 27355107
  28. Wang, J.; Tanila, H.; Puoliväli, J.; Kadish, I.; Groen, T. Gender differences in the amount and deposition of amyloidβ in APPswe and PS1 double transgenic mice. Neurobiol. Dis., 2003, 14(3), 318-327. doi: 10.1016/j.nbd.2003.08.009 PMID: 14678749
  29. Bäuerl, C.; Collado, M.C.; Diaz Cuevas, A.; Viña, J.; Pérez Martínez, G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett. Appl. Microbiol., 2018, 66(6), 464-471. doi: 10.1111/lam.12882 PMID: 29575030
  30. Shen, L.; Liu, L.; Ji, H-F. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J. Alzheimers Dis., 2017, 56, 385-390. doi: 10.3233/JAD-160884 PMID: 27911317
  31. Xin, Y.; Diling, C.; Jian, Y.; Ting, L.; Guoyan, H.; Hualun, L.; Xiaocui, T.; Guoxiao, L.; Ou, S.; Chaoqun, Z.; Jun, Z.; Yizhen, X. Effects of oligosaccharides from Morinda officinalis on gut microbiota and metabolome of APP/PS1 transgenic mice. Front. Neurol., 2018, 9, 412. doi: 10.3389/fneur.2018.00412 PMID: 29962999
  32. Cox, L.M.; Schafer, M.J.; Sohn, J.; Vincentini, J.; Weiner, H.L.; Ginsberg, S.D.; Blaser, M.J. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep., 2019, 9(1), 17904. doi: 10.1038/s41598-019-54187-x PMID: 31784610
  33. Wang, S.; Jiang, W.; Ouyang, T.; Shen, X.Y.; Wang, F.; Qu, Y.; Zhang, M.; Luo, T.; Wang, H.Q. Jatrorrhizine balances the gut microbiota and reverses learning and memory deficits in APP/PS1 transgenic mice. Sci. Rep., 2019, 9(1), 19575. doi: 10.1038/s41598-019-56149-9 PMID: 31862965
  34. Sun, B.L.; Li, W.W.; Wang, J.; Xu, Y.L.; Sun, H.L.; Tian, D.Y.; Wang, Y.J.; Yao, X.Q. Gut microbiota alteration and its time course in a tauopathy mouse model. J. Alzheimers Dis., 2019, 70(2), 399-412. doi: 10.3233/JAD-181220 PMID: 31177213
  35. Kim, M.S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D.W.; Lee, J.Y.; Choi, E.Y.; Lee, D.S.; Bae, J.W.; Mook-Jung, I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut, 2020, 69(2), 283-294. doi: 10.1136/gutjnl-2018-317431 PMID: 31471351
  36. Colombo, A.V.; Sadler, R.K.; Llovera, G.; Singh, V.; Roth, S.; Heindl, S.; Sebastian Monasor, L.; Verhoeven, A.; Peters, F.; Parhizkar, S.; Kamp, F.; Gomez de Aguero, M.; MacPherson, A.J.; Winkler, E.; Herms, J.; Benakis, C.; Dichgans, M.; Steiner, H.; Giera, M.; Haass, C.; Tahirovic, S.; Liesz, A. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife, 2021, 10, e59826. doi: 10.7554/eLife.59826 PMID: 33845942
  37. Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut microbiota and dysbiosis in Alzheimer’s disease: implications for pathogenesis and treatment. Mol. Neurobiol., 2020, 57(12), 5026-5043. doi: 10.1007/s12035-020-02073-3 PMID: 32829453
  38. Giau, V.; Wu, S.; Jamerlan, A.; An, S.; Kim, S.; Hulme, J. Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients, 2018, 10(11), 1765. doi: 10.3390/nu10111765 PMID: 30441866
  39. Szabady, R.L.; Louissaint, C.; Lubben, A.; Xie, B.; Reeksting, S.; Tuohy, C.; Demma, Z.; Foley, S.E.; Faherty, C.S.; Llanos-Chea, A.; Olive, A.J.; Mrsny, R.J.; McCormick, B.A. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J. Clin. Invest., 2018, 128(9), 4044-4056. doi: 10.1172/JCI96817 PMID: 30102254
  40. Ling, Z.; Zhu, M.; Yan, X.; Cheng, Y.; Shao, L.; Liu, X.; Jiang, R.; Wu, S. Structural and functional dysbiosis of fecal microbiota in chinese patients with Alzheimer’s disease. Front. Cell Dev. Biol., 2021, 8, 634069. doi: 10.3389/fcell.2020.634069 PMID: 33614635
  41. Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway. MBio, 2019, 10(3), e00632-e19. doi: 10.1128/mBio.00632-19 PMID: 31064831
  42. Zhang, X.; Wang, Y.; Liu, W.; Wang, T.; Wang, L.; Hao, L.; Ju, M.; Xiao, R. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr., 2021, 114(2), 429-440. doi: 10.1093/ajcn/nqab078 PMID: 33871591
  43. Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; Li, L.; Luo, B.; Wang, B. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun., 2019, 80, 633-643. doi: 10.1016/j.bbi.2019.05.008 PMID: 31063846
  44. Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537. doi: 10.1038/s41598-017-13601-y PMID: 29051531
  45. Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; Zheng, P.; Li, H.Y.; Zhu, J.; Zhou, H.D.; Bu, X.L.; Wang, Y.J. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis., 2018, 63(4), 1337-1346. doi: 10.3233/JAD-180176 PMID: 29758946
  46. Zhan, X.; Stamova, B.; Jin, L.W.; DeCarli, C.; Phinney, B.; Sharp, F.R. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology, 2016, 87(22), 2324-2332. doi: 10.1212/WNL.0000000000003391 PMID: 27784770
  47. Zhao, Y.; Cong, L.; Jaber, V.; Lukiw, W.J. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front. Immunol., 2017, 8, 1064. doi: 10.3389/fimmu.2017.01064 PMID: 28928740
  48. Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68. doi: 10.1016/j.neurobiolaging.2016.08.019 PMID: 27776263
  49. Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol. Neurobiol., 2019, 56(3), 1841-1851. doi: 10.1007/s12035-018-1188-4 PMID: 29936690
  50. Li, B.; He, Y.; Ma, J.; Huang, P.; Du, J.; Cao, L.; Wang, Y.; Xiao, Q.; Tang, H.; Chen, S. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement., 2019, 15(10), 1357-1366. doi: 10.1016/j.jalz.2019.07.002 PMID: 31434623
  51. Guo, M.; Peng, J.; Huang, X.; Xiao, L.; Huang, F.; Zuo, Z. Gut microbiome features of chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis., 2021, 80(1), 299-310. doi: 10.3233/JAD-201040 PMID: 33523001
  52. Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; Chen, J. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep., 2023, 13(1), 5258. doi: 10.1038/s41598-023-31730-5 PMID: 37002253
  53. Laske, C.; Müller, S.; Preische, O.; Ruschil, V.; Munk, M.H.J.; Honold, I.; Peter, S.; Schoppmeier, U.; Willmann, M. Signature of Alzheimer’s disease in intestinal microbiome: Results from the AlzBiom study. Front. Neurosci., 2022, 16, 792996. doi: 10.3389/fnins.2022.792996 PMID: 35516807
  54. Jeong, S.; Huang, L.K.; Tsai, M.J.; Liao, Y.T.; Lin, Y.S.; Chang, C.; Chi, W-K.; Hu, C-J.; Hsu, Y-H. Whole genome shotgun metagenomic sequencing to identify differential abundant microbiome features between dementia and mild cognitive impairment (MCI) in AD subjects. Alzheimers Dement., 2021, 17(S5), e051914. doi: 10.1002/alz.051914
  55. Marizzoni, M.; Cattaneo, A.; Mirabelli, P.; Festari, C.; Lopizzo, N.; Nicolosi, V.; Mombelli, E.; Mazzelli, M.; Luongo, D.; Naviglio, D.; Coppola, L.; Salvatore, M.; Frisoni, G.B. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J. Alzheimers Dis., 2020, 78(2), 683-697. doi: 10.3233/JAD-200306 PMID: 33074224
  56. Ning, J.; Huang, S.Y.; Chen, S.D.; Zhang, Y.R.; Huang, Y.Y.; Yu, J.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study. J. Alzheimers Dis., 2022, 87(1), 211-222. doi: 10.3233/JAD-215411 PMID: 35275534
  57. Vogt, N.M.; Romano, K.A.; Darst, B.F.; Engelman, C.D.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Blennow, K.; Zetterberg, H.; Bendlin, B.B.; Rey, F.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 124. doi: 10.1186/s13195-018-0451-2 PMID: 30579367
  58. Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci., 2010, 55(2), 204-211. doi: 10.2478/v10039-010-0023-6 PMID: 20639188
  59. Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol. Appl. Neurobiol., 2005, 31(4), 395-404. doi: 10.1111/j.1365-2990.2005.00655.x PMID: 16008823
  60. Kaddurah-Daouk, R.; Zhu, H.; Sharma, S.; Bogdanov, M.; Rozen, S.G.; Matson, W.; Oki, N.O.; Motsinger-Reif, A.A.; Churchill, E.; Lei, Z.; Appleby, D.; Kling, M.A.; Trojanowski, J.Q.; Doraiswamy, P.M.; Arnold, S.E. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl. Psychiatry, 2013, 3(4), e244. doi: 10.1038/tp.2013.18 PMID: 23571809
  61. Ferreiro, A.L.; Choi, J.; Ryou, J.; Newcomer, E.P.; Thompson, R.; Bollinger, R.M.; Hall-Moore, C.; Ndao, I.M.; Sax, L.; Benzinger, T.L.S.; Stark, S.L.; Holtzman, D.M.; Fagan, A.M.; Schindler, S.E.; Cruchaga, C.; Butt, O.H.; Morris, J.C.; Tarr, P.I.; Ances, B.M.; Dantas, G. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med., 2023, 15(700), eabo2984. doi: 10.1126/scitranslmed.abo2984 PMID: 37315112
  62. Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res., 2021, 164, 105314. doi: 10.1016/j.phrs.2020.105314 PMID: 33246175
  63. Fröhlich, E.E.; Farzi, A.; Mayerhofer, R.; Reichmann, F.; Jačan, A.; Wagner, B.; Zinser, E.; Bordag, N.; Magnes, C.; Fröhlich, E.; Kashofer, K.; Gorkiewicz, G.; Holzer, P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun., 2016, 56, 140-155. doi: 10.1016/j.bbi.2016.02.020 PMID: 26923630
  64. Minter, M.R.; Zhang, C.; Leone, V.; Ringus, D.L.; Zhang, X.; Oyler-Castrillo, P.; Musch, M.W.; Liao, F.; Ward, J.F.; Holtzman, D.M.; Chang, E.B.; Tanzi, R.E.; Sisodia, S.S. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep., 2016, 6(1), 30028. doi: 10.1038/srep30028 PMID: 27443609
  65. Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes, 2015, 6(5), 707-717. doi: 10.3920/BM2014.0177 PMID: 25869281
  66. Ravelli, K.G.; Rosário, B.A.; Camarini, R.; Hernandes, M.S.; Britto, L.R. Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: Neurochemical and behavioral characterization in mice. Neurotox. Res., 2017, 31(3), 327-333. doi: 10.1007/s12640-016-9684-7 PMID: 27913964
  67. Desbonnet, L.; Clarke, G.; Traplin, A.; O’Sullivan, O.; Crispie, F.; Moloney, R.D.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav. Immun., 2015, 48, 165-173. doi: 10.1016/j.bbi.2015.04.004 PMID: 25866195
  68. Payne, L.E.; Gagnon, D.J.; Riker, R.R.; Seder, D.B.; Glisic, E.K.; Morris, J.G.; Fraser, G.L. Cefepime-induced neurotoxicity: A systematic review. Crit. Care, 2017, 21(1), 276. doi: 10.1186/s13054-017-1856-1 PMID: 29137682
  69. Mehta, R.S.; Lochhead, P.; Wang, Y.; Ma, W.; Nguyen, L.H.; Kochar, B.; Huttenhower, C.; Grodstein, F.; Chan, A.T. Association of midlife antibiotic use with subsequent cognitive function in women. PLoS One, 2022, 17(3), e0264649. doi: 10.1371/journal.pone.0264649 PMID: 35320274
  70. Umeda, T.; Ono, K.; Sakai, A.; Yamashita, M.; Mizuguchi, M.; Klein, W.L.; Yamada, M.; Mori, H.; Tomiyama, T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain, 2016, 139(5), 1568-1586. doi: 10.1093/brain/aww042 PMID: 27020329
  71. Tucker, S.; Ahl, M.; Bush, A.; Westaway, D.; Huang, X.; Rogers, J. Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer’s APP 5′ untranslated region. Curr. Alzheimer Res., 2005, 2(2), 249-254. doi: 10.2174/1567205053585855 PMID: 15974925
  72. Parachikova, A.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M.; Green, K.N. Reductions in amyloid-beta-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J. Alzheimers Dis., 2010, 21(2), 527-542. doi: 10.3233/JAD-2010-100204 PMID: 20555131
  73. Kountouras, J.; Boziki, M.; Gavalas, E.; Zavos, C.; Grigoriadis, N.; Deretzi, G.; Tzilves, D.; Katsinelos, P.; Tsolaki, M.; Chatzopoulos, D.; Venizelos, I. Eradication of helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J. Neurol., 2009, 256(5), 758-767. doi: 10.1007/s00415-009-5011-z PMID: 19240960
  74. Loeb, M.B.; Molloy, D.W.; Smieja, M.; Standish, T.; Goldsmith, C.H.; Mahony, J.; Smith, S.; Borrie, M.; Decoteau, E.; Davidson, W.; Mcdougall, A.; Gnarpe, J.; O’donnell, M.; Chernesky, M. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J. Am. Geriatr. Soc., 2004, 52(3), 381-387. doi: 10.1111/j.1532-5415.2004.52109.x PMID: 14962152
  75. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563. doi: 10.1038/nature12820 PMID: 24336217
  76. Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; Pascale, A. The potential role of gut microbiota in Alzheimer’s disease: From diagnosis to treatment. Nutrients, 2022, 14(3), 668. doi: 10.3390/nu14030668 PMID: 35277027
  77. Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The mediterranean diet and cardiovascular health. Circ. Res., 2019, 124(5), 779-798. doi: 10.1161/CIRCRESAHA.118.313348 PMID: 30817261
  78. Wu, L.; Sun, D. Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies. Sci. Rep., 2017, 7(1), 41317. doi: 10.1038/srep41317 PMID: 28112268
  79. Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The impact of the mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Adv. Nutr., 2017, 8(4), 571-586. doi: 10.3945/an.117.015495 PMID: 28710144
  80. Keenan, T.D.; Agrón, E.; Mares, J.A.; Clemons, T.E.; van Asten, F.; Swaroop, A.; Chew, E.Y. Adherence to a mediterranean diet and cognitive function in the age‐related eye disease studies 1 & 2. Alzheimers Dement., 2020, 16(6), 831-842. doi: 10.1002/alz.12077 PMID: 32285590
  81. Mantzorou, M.; Vadikolias, K.; Pavlidou, E.; Tryfonos, C.; Vasios, G.; Serdari, A.; Giaginis, C. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population. Aging Clin. Exp. Res., 2021, 33(4), 1033-1040. doi: 10.1007/s40520-020-01608-x PMID: 32488472
  82. Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.D.; Murphy, K.J. A mediterranean diet with fresh, lean pork improves processing speed and mood: Cognitive findings from the MedPork randomised controlled trial. Nutrients, 2019, 11(7), 1521. doi: 10.3390/nu11071521 PMID: 31277446
  83. Wade, A.T.; Elias, M.F.; Murphy, K.J. Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: Findings from the Maine-Syracuse Longitudinal Study. Nutr. Neurosci., 2021, 24(7), 542-553. doi: 10.1080/1028415X.2019.1655201 PMID: 31432770
  84. Knight, A.; Bryan, J.; Wilson, C.; Hodgson, J.; Davis, C.; Murphy, K. The mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: The medley study. Nutrients, 2016, 8(9), 579. doi: 10.3390/nu8090579 PMID: 27657119
  85. Wardle, J.; Rogers, P.; Judd, P.; Taylor, M.A.; Rapoport, L.; Green, M.; Nicholson Perry, K. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. Am. J. Med., 2000, 108(7), 547-553. doi: 10.1016/S0002-9343(00)00330-2 PMID: 10806283
  86. Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; Zoetendal, E.G.; Hermes, G.D.A.; Elodie, C.; Meunier, N.; Brugere, C.M.; Pujos-Guillot, E.; Berendsen, A.M.; De Groot, L.C.P.G.M.; Feskins, E.J.M.; Kaluza, J.; Pietruszka, B.; Bielak, M.J.; Comte, B.; Maijo-Ferre, M.; Nicoletti, C.; De Vos, W.M.; Fairweather-Tait, S.; Cassidy, A.; Brigidi, P.; Franceschi, C.; O’Toole, P.W. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69(7), 1218-1228. doi: 10.1136/gutjnl-2019-319654 PMID: 32066625
  87. Bailey, M.A.; Holscher, H.D. Microbiome-Mediated effects of the Mediterranean diet on inflammation. Adv. Nutr., 2018, 9(3), 193-206. doi: 10.1093/advances/nmy013 PMID: 29767701
  88. Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean diet on human gut microbiota. Nutrients, 2020, 13(1), 7. doi: 10.3390/nu13010007 PMID: 33375042
  89. Ho, L.; Ono, K.; Tsuji, M.; Mazzola, P.; Singh, R.; Pasinetti, G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother., 2018, 18(1), 83-90. doi: 10.1080/14737175.2018.1400909 PMID: 29095058
  90. Levitan, E.B.; Wolk, A.; Mittleman, M.A. Consistency with the DASH diet and incidence of heart failure. Arch. Intern. Med., 2009, 169(9), 851-857. doi: 10.1001/archinternmed.2009.56 PMID: 19433696
  91. Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; Lin, P.H.; Karanja, N.; Simons-Morton, D.; McCullough, M.; Swain, J.; Steele, P.; Evans, M.A.; Miller, E.R.; Harsha, D.W. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med., 1997, 336(16), 1117-1124. doi: 10.1056/NEJM199704173361601 PMID: 9099655
  92. Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective study of dietary approaches to stop hypertension- and mediterranean-style dietary patterns and age-related cognitive change: The cache county study on memory, health and aging. Am. J. Clin. Nutr., 2013, 98(5), 1263-1271. doi: 10.3945/ajcn.112.051276 PMID: 24047922
  93. Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M.; Burke, J.R.; Sherwood, A. Lifestyle and neurocognition in older adults with cognitive impairments. Neurology, 2019, 92(3), e212-e223. doi: 10.1212/WNL.0000000000006784 PMID: 30568005
  94. Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement., 2015, 11(9), 1007-1014. doi: 10.1016/j.jalz.2014.11.009 PMID: 25681666
  95. Kheirouri, S.; Alizadeh, M. MIND diet and cognitive performance in older adults: A systematic review. Crit. Rev. Food Sci. Nutr., 2022, 62(29), 8059-8077. doi: 10.1080/10408398.2021.1925220 PMID: 33989093
  96. McEvoy, C.T.; Guyer, H.; Langa, K.M.; Yaffe, K. Neuroprotective diets are associated with better cognitive function: The health and retirement study. J. Am. Geriatr. Soc., 2017, 65(8), 1857-1862. doi: 10.1111/jgs.14922 PMID: 28440854
  97. Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12‐year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement., 2019, 15(4), 581-589. doi: 10.1016/j.jalz.2018.12.011 PMID: 30826160
  98. Chu, C.Q.; Yu, L.; Qi, G.; Mi, Y.S.; Wu, W.Q.; Lee, Y.; Zhai, Q.X.; Tian, F.W.; Chen, W. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev., 2022, 135, 104556. doi: 10.1016/j.neubiorev.2022.104556 PMID: 35122783
  99. Fortier, M.; Castellano, C.A.; St-Pierre, V.; Myette-Côté, É.; Langlois, F.; Roy, M.; Morin, M.C.; Bocti, C.; Fulop, T.; Godin, J.P.; Delannoy, C.; Cuenoud, B.; Cunnane, S.C. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6‐month RCT. Alzheimers Dement., 2021, 17(3), 543-552. doi: 10.1002/alz.12206 PMID: 33103819
  100. Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; Kunugi, H. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci. Lett., 2019, 690, 232-236. doi: 10.1016/j.neulet.2018.10.048 PMID: 30367958
  101. Ota, M.; Matsuo, J.; Ishida, I.; Hattori, K.; Teraishi, T.; Tonouchi, H.; Ashida, K.; Takahashi, T.; Kunugi, H. Effect of a ketogenic meal on cognitive function in elderly adults: Potential for cognitive enhancement. Psychopharmacology (Berl.), 2016, 233(21-22), 3797-3802. doi: 10.1007/s00213-016-4414-7 PMID: 27568199
  102. Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine, 2019, 47, 529-542. doi: 10.1016/j.ebiom.2019.08.032 PMID: 31477562
  103. Nicco, C.; Paule, A.; Konturek, P.; Edeas, M. From Donor to Patient: Collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases, 2020, 8(2), 9. doi: 10.3390/diseases8020009 PMID: 32326509
  104. Dailey, F.E.; Turse, E.P.; Daglilar, E.; Tahan, V. The dirty aspects of fecal microbiota transplantation: A review of its adverse effects and complications. Curr. Opin. Pharmacol., 2019, 49, 29-33. doi: 10.1016/j.coph.2019.04.008 PMID: 31103793
  105. Craig-Schapiro, R.; Fagan, A.M.; Holtzman, D.M. Biomarkers of Alzheimer’s disease. Neurobiol. Dis., 2009, 35(2), 128-140. doi: 10.1016/j.nbd.2008.10.003 PMID: 19010417
  106. Hazan, S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J. Int. Med. Res., 2020, 48(6) doi: 10.1177/0300060520925930 PMID: 32600151
  107. Park, S.H.; Lee, J.H.; Shin, J.; Kim, J.S.; Cha, B.; Lee, S.; Kwon, K.S.; Shin, Y.W.; Choi, S.H. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: A case report. Curr. Med. Res. Opin., 2021, 37(10), 1739-1744. doi: 10.1080/03007995.2021.1957807 PMID: 34289768
  108. Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; Guarner, F.; Respondek, F.; Whelan, K.; Coxam, V.; Davicco, M.J.; Léotoing, L.; Wittrant, Y.; Delzenne, N.M.; Cani, P.D.; Neyrinck, A.M.; Meheust, A. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr., 2010, 104(S2)(Suppl. 2), S1-S63. doi: 10.1017/S0007114510003363 PMID: 20920376
  109. McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2017, 106(3), 930-945. doi: 10.3945/ajcn.117.156265 PMID: 28793992
  110. Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The role of prebiotics in cognition, anxiety, and depression. Eur. Neuropsychopharmacol., 2020, 34, 1-18. doi: 10.1016/j.euroneuro.2020.03.006 PMID: 32241688
  111. Gu, Y.; Nishikawa, M.; Brickman, A.M.; Manly, J.J.; Schupf, N.; Mayeux, R.P. Association of dietary prebiotic consumption with reduced risk of Alzheimer’s disease in a multiethnic population. Curr. Alzheimer Res., 2021, 18(12), 984-992. doi: 10.2174/1567205019666211222115142 PMID: 34951365
  112. Alfa, M.J.; Strang, D.; Tappia, P.S.; Graham, M.; Van Domselaar, G.; Forbes, J.D.; Laminman, V.; Olson, N.; DeGagne, P.; Bray, D.; Murray, B.L.; Dufault, B.; Lix, L.M. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin. Nutr., 2018, 37(3), 797-807. doi: 10.1016/j.clnu.2017.03.025 PMID: 28410921
  113. Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr., 2015, 114(4), 586-595. doi: 10.1017/S0007114515001889 PMID: 26218845
  114. Walton, G.E.; van den Heuvel, E.G.H.M.; Kosters, M.H.W.; Rastall, R.A.; Tuohy, K.M.; Gibson, G.R. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br. J. Nutr., 2012, 107(10), 1466-1475. doi: 10.1017/S0007114511004697 PMID: 21910949
  115. Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277. doi: 10.3389/fimmu.2019.00277 PMID: 30915065
  116. Larroya-García, A.; Navas-Carrillo, D.; Orenes-Piñero, E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3102-3116. doi: 10.1080/10408398.2018.1484340 PMID: 29870270
  117. Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci., 2016, 8, 256. doi: 10.3389/fnagi.2016.00256 PMID: 27891089
  118. Agahi, A.; Hamidi, G.A.; Daneshvar, R.; Hamdieh, M.; Soheili, M.; Alinaghipour, A.; Esmaeili, T.S.M.; Salami, M. Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front. Neurol., 2018, 9, 662. doi: 10.3389/fneur.2018.00662 PMID: 30158897
  119. Leblhuber, F.; Steiner, K.; Schuetz, B.; Fuchs, D.; Gostner, J.M. Probiotic supplementation in patients with Alzheimer’s dementia - An explorative intervention study. Curr. Alzheimer Res., 2018, 15(12), 1106-1113. doi: 10.2174/1389200219666180813144834 PMID: 30101706
  120. Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575. doi: 10.1016/j.clnu.2018.11.034 PMID: 30642737

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024