Gut Microbiome in Alzheimers Disease: from Mice to Humans
- Авторлар: Liang C.1, Pereira R.2, Zhang Y.1, Rojas O.3
-
Мекемелер:
- Department of Gastroenterology, West China Hospital of Sichuan University
- Krembil Research Institute, University Health Network
- Department of Immunology, University of Toronto
- Шығарылым: Том 22, № 14 (2024)
- Беттер: 2314-2329
- Бөлім: Neurology
- URL: https://gynecology.orscience.ru/1570-159X/article/view/644536
- DOI: https://doi.org/10.2174/1570159X22666240308090741
- ID: 644536
Дәйексөз келтіру
Толық мәтін
Аннотация
:Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.
Негізгі сөздер
Авторлар туралы
Chang Liang
Department of Gastroenterology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Resel Pereira
Krembil Research Institute, University Health Network
Email: info@benthamscience.net
Yan Zhang
Department of Gastroenterology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Olga Rojas
Department of Immunology, University of Toronto
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Song, E.J.; Lee, E.S.; Nam, Y.D. Progress of analytical tools and techniques for human gut microbiome research. J. Microbiol., 2018, 56(10), 693-705. doi: 10.1007/s12275-018-8238-5 PMID: 30267313
- Hodkinson, B.P.; Grice, E.A. Next-generation sequencing: A review of technologies and tools for wound microbiome research. Adv. Wound Care (New Rochelle), 2015, 4(1), 50-58. doi: 10.1089/wound.2014.0542 PMID: 25566414
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65. doi: 10.1038/nature08821 PMID: 20203603
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638. doi: 10.1126/science.1110591 PMID: 15831718
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol., 2019, 15(5), 261-273. doi: 10.1038/s41574-019-0156-z PMID: 30670819
- Cryan, J.F.; ORiordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol., 2020, 19(2), 179-194. doi: 10.1016/S1474-4422(19)30356-4 PMID: 31753762
- Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; Casero, D.; Courtney, H.; Gonzalez, A.; Graeber, T.G.; Hall, A.B.; Lake, K.; Landers, C.J.; Mallick, H.; Plichta, D.R.; Prasad, M.; Rahnavard, G.; Sauk, J.; Shungin, D.; Vázquez-Baeza, Y.; White, R.A., III; Braun, J.; Denson, L.A.; Jansson, J.K.; Knight, R.; Kugathasan, S.; McGovern, D.P.B.; Petrosino, J.F.; Stappenbeck, T.S.; Winter, H.S.; Clish, C.B.; Franzosa, E.A.; Vlamakis, H.; Xavier, R.J.; Huttenhower, C. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569(7758), 655-662. doi: 10.1038/s41586-019-1237-9 PMID: 31142855
- Chok, K.C.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Role of the gut microbiome in Alzheimers disease. Rev. Neurosci., 2021, 32(7), 767-789. doi: 10.1515/revneuro-2020-0122 PMID: 33725748
- Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.F.; Huang, L.; Zhu, H.; Han, Y.; Qin, C. Altered gut microbiota in a mouse model of Alzheimers disease. J. Alzheimers Dis., 2017, 60(4), 1241-1257. doi: 10.3233/JAD-170020 PMID: 29036812
- dos Santos Guilherme, M.; Todorov, H.; Osterhof, C.; Möllerke, A.; Cub, K.; Hankeln, T.; Gerber, S.; Endres, K. Impact of acute and chronic amyloid-β peptide exposure on gut microbial commensals in the mouse. Front. Microbiol., 2020, 11, 1008. doi: 10.3389/fmicb.2020.01008 PMID: 32508799
- Zhang, Y.; Shen, Y.; Liufu, N.; Liu, L.; Li, W.; Shi, Z.; Zheng, H.; Mei, X.; Chen, C.Y.; Jiang, Z.; Abtahi, S.; Dong, Y.; Liang, F.; Shi, Y.; Cheng, L.L.; Yang, G.; Kang, J.X.; Wilkinson, J.E.; Xie, Z. Transmission of Alzheimers disease-associated microbiota dysbiosis and its impact on cognitive function: Evidence from mice and patients. Mol. Psychiatry, 2023, 28(10), 4421-4437. doi: 10.1038/s41380-023-02216-7 PMID: 37604976
- Chen, C.; Ahn, E.H.; Kang, S.S.; Liu, X.; Alam, A.; Ye, K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimers disease mouse model. Sci. Adv., 2020, 6(31), eaba0466. doi: 10.1126/sciadv.aba0466 PMID: 32832679
- Grabrucker, S.; Marizzoni, M.; Silajdić, E.; Lopizzo, N.; Mombelli, E.; Nicolas, S.; Dohm-Hansen, S.; Scassellati, C.; Moretti, D.V.; Rosa, M.; Hoffmann, K.; Cryan, J.F.; OLeary, O.F.; English, J.A.; Lavelle, A.; ONeill, C.; Thuret, S.; Cattaneo, A.; Nolan, Y.M. Microbiota from Alzheimers patients induce deficits in cognition and hippocampal neurogenesis. Brain, 2023, 146(12), 4916-4934. doi: 10.1093/brain/awad303 PMID: 37849234
- Li, Z.; Zhu, H.; Guo, Y.; Du, X.; Qin, C. Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimers disease. J. Neurochem., 2020, 155(4), 448-461. doi: 10.1111/jnc.15031 PMID: 32319677
- Brandscheid, C.; Schuck, F.; Reinhardt, S.; Schäfer, K.H.; Pietrzik, C.U.; Grimm, M.; Hartmann, T.; Schwiertz, A.; Endres, K. Altered gut microbiome composition and tryptic activity of the 5xfad Alzheimers mouse model. J. Alzheimers Dis., 2017, 56(2), 775-788. doi: 10.3233/JAD-160926 PMID: 28035935
- Cuervo-Zanatta, D.; Garcia-Mena, J.; Perez-Cruz, C. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of Alzheimers disease. J. Alzheimers Dis., 2021, 82(s1), S195-S214. doi: 10.3233/JAD-201367 PMID: 33492296
- Park, J.Y.; Choi, J.; Lee, Y.; Lee, J.E.; Lee, E.H.; Kwon, H.J.; Yang, J.; Jeong, B.R.; Kim, Y.K.; Han, P.L. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Exp. Neurobiol., 2017, 26(6), 369-379. doi: 10.5607/en.2017.26.6.369 PMID: 29302204
- Zhan, G.; Yang, N.; Li, S.; Huang, N.; Fang, X.; Zhang, J.; Zhu, B.; Yang, L.; Yang, C.; Luo, A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY), 2018, 10(6), 1257-1267. doi: 10.18632/aging.101464 PMID: 29886457
- Cao, J.; Amakye, W.K.; Qi, C.; Liu, X.; Ma, J.; Ren, J. Bifidobacterium lactis Probio-M8 regulates gut microbiota to alleviate Alzheimers disease in the APP/PS1 mouse model. Eur. J. Nutr., 2021, 60(7), 3757-3769. doi: 10.1007/s00394-021-02543-x PMID: 33796919
- Sun, Y.; Sommerville, N.R.; Liu, J.Y.H.; Ngan, M.P.; Poon, D.; Ponomarev, E.D.; Lu, Z.; Kung, J.S.C.; Rudd, J.A. Intra‐gastrointestinal amyloid‐β142 oligomers perturb enteric function and induce Alzheimers disease pathology. J. Physiol., 2020, 598(19), 4209-4223. doi: 10.1113/JP279919 PMID: 32617993
- Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 2017, 20(2), 145-155. doi: 10.1038/nn.4476 PMID: 28092661
- Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; Chang, S.; Gong, Y.; Ruan, L.; Zhang, G.; Yan, S.; Lian, W.; Du, C.; Yang, D.; Zhang, Q.; Lin, F.; Liu, J.; Zhang, H.; Ge, C.; Xiao, S.; Ding, J.; Geng, M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimers disease progression. Cell Res., 2019, 29(10), 787-803. doi: 10.1038/s41422-019-0216-x PMID: 31488882
- Shukla, P.K.; Delotterie, D.F.; Xiao, J.; Pierre, J.F.; Rao, R.; McDonald, M.P.; Khan, M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimers disease. Cells, 2021, 10(4), 779. doi: 10.3390/cells10040779 PMID: 33916001
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiotagutbrain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478. doi: 10.1038/s41575-019-0157-3 PMID: 31123355
- Tran, T.T.T.; Corsini, S.; Kellingray, L.; Hegarty, C.; Le Gall, G.; Narbad, A.; Müller, M.; Tejera, N.; OToole, P.W.; Minihane, A.M.; Vauzour, D. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimers disease pathophysiology. FASEB J., 2019, 33(7), 8221-8231. doi: 10.1096/fj.201900071R PMID: 30958695
- Kundu, P.; Torres, E.R.S.; Stagaman, K.; Kasschau, K.; Okhovat, M.; Holden, S.; Ward, S.; Nevonen, K.A.; Davis, B.A.; Saito, T.; Saido, T.C.; Carbone, L.; Sharpton, T.J.; Raber, J. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-F, AppNL-F, and wild type mice. Sci. Rep., 2021, 11(1), 4678. doi: 10.1038/s41598-021-83851-4 PMID: 33633159
- Org, E.; Mehrabian, M.; Parks, B.W.; Shipkova, P.; Liu, X.; Drake, T.A.; Lusis, A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7(4), 313-322. doi: 10.1080/19490976.2016.1203502 PMID: 27355107
- Wang, J.; Tanila, H.; Puoliväli, J.; Kadish, I.; Groen, T. Gender differences in the amount and deposition of amyloidβ in APPswe and PS1 double transgenic mice. Neurobiol. Dis., 2003, 14(3), 318-327. doi: 10.1016/j.nbd.2003.08.009 PMID: 14678749
- Bäuerl, C.; Collado, M.C.; Diaz Cuevas, A.; Viña, J.; Pérez Martínez, G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimers disease during lifespan. Lett. Appl. Microbiol., 2018, 66(6), 464-471. doi: 10.1111/lam.12882 PMID: 29575030
- Shen, L.; Liu, L.; Ji, H-F. Alzheimers disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J. Alzheimers Dis., 2017, 56, 385-390. doi: 10.3233/JAD-160884 PMID: 27911317
- Xin, Y.; Diling, C.; Jian, Y.; Ting, L.; Guoyan, H.; Hualun, L.; Xiaocui, T.; Guoxiao, L.; Ou, S.; Chaoqun, Z.; Jun, Z.; Yizhen, X. Effects of oligosaccharides from Morinda officinalis on gut microbiota and metabolome of APP/PS1 transgenic mice. Front. Neurol., 2018, 9, 412. doi: 10.3389/fneur.2018.00412 PMID: 29962999
- Cox, L.M.; Schafer, M.J.; Sohn, J.; Vincentini, J.; Weiner, H.L.; Ginsberg, S.D.; Blaser, M.J. Calorie restriction slows age-related microbiota changes in an Alzheimers disease model in female mice. Sci. Rep., 2019, 9(1), 17904. doi: 10.1038/s41598-019-54187-x PMID: 31784610
- Wang, S.; Jiang, W.; Ouyang, T.; Shen, X.Y.; Wang, F.; Qu, Y.; Zhang, M.; Luo, T.; Wang, H.Q. Jatrorrhizine balances the gut microbiota and reverses learning and memory deficits in APP/PS1 transgenic mice. Sci. Rep., 2019, 9(1), 19575. doi: 10.1038/s41598-019-56149-9 PMID: 31862965
- Sun, B.L.; Li, W.W.; Wang, J.; Xu, Y.L.; Sun, H.L.; Tian, D.Y.; Wang, Y.J.; Yao, X.Q. Gut microbiota alteration and its time course in a tauopathy mouse model. J. Alzheimers Dis., 2019, 70(2), 399-412. doi: 10.3233/JAD-181220 PMID: 31177213
- Kim, M.S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D.W.; Lee, J.Y.; Choi, E.Y.; Lee, D.S.; Bae, J.W.; Mook-Jung, I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimers disease animal model. Gut, 2020, 69(2), 283-294. doi: 10.1136/gutjnl-2018-317431 PMID: 31471351
- Colombo, A.V.; Sadler, R.K.; Llovera, G.; Singh, V.; Roth, S.; Heindl, S.; Sebastian Monasor, L.; Verhoeven, A.; Peters, F.; Parhizkar, S.; Kamp, F.; Gomez de Aguero, M.; MacPherson, A.J.; Winkler, E.; Herms, J.; Benakis, C.; Dichgans, M.; Steiner, H.; Giera, M.; Haass, C.; Tahirovic, S.; Liesz, A. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife, 2021, 10, e59826. doi: 10.7554/eLife.59826 PMID: 33845942
- Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut microbiota and dysbiosis in Alzheimers disease: implications for pathogenesis and treatment. Mol. Neurobiol., 2020, 57(12), 5026-5043. doi: 10.1007/s12035-020-02073-3 PMID: 32829453
- Giau, V.; Wu, S.; Jamerlan, A.; An, S.; Kim, S.; Hulme, J. Gut microbiota and their neuroinflammatory implications in Alzheimers disease. Nutrients, 2018, 10(11), 1765. doi: 10.3390/nu10111765 PMID: 30441866
- Szabady, R.L.; Louissaint, C.; Lubben, A.; Xie, B.; Reeksting, S.; Tuohy, C.; Demma, Z.; Foley, S.E.; Faherty, C.S.; Llanos-Chea, A.; Olive, A.J.; Mrsny, R.J.; McCormick, B.A. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J. Clin. Invest., 2018, 128(9), 4044-4056. doi: 10.1172/JCI96817 PMID: 30102254
- Ling, Z.; Zhu, M.; Yan, X.; Cheng, Y.; Shao, L.; Liu, X.; Jiang, R.; Wu, S. Structural and functional dysbiosis of fecal microbiota in chinese patients with Alzheimers disease. Front. Cell Dev. Biol., 2021, 8, 634069. doi: 10.3389/fcell.2020.634069 PMID: 33614635
- Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimers disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway. MBio, 2019, 10(3), e00632-e19. doi: 10.1128/mBio.00632-19 PMID: 31064831
- Zhang, X.; Wang, Y.; Liu, W.; Wang, T.; Wang, L.; Hao, L.; Ju, M.; Xiao, R. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr., 2021, 114(2), 429-440. doi: 10.1093/ajcn/nqab078 PMID: 33871591
- Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; Li, L.; Luo, B.; Wang, B. Altered microbiomes distinguish Alzheimers disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun., 2019, 80, 633-643. doi: 10.1016/j.bbi.2019.05.008 PMID: 31063846
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimers disease. Sci. Rep., 2017, 7(1), 13537. doi: 10.1038/s41598-017-13601-y PMID: 29051531
- Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; Zheng, P.; Li, H.Y.; Zhu, J.; Zhou, H.D.; Bu, X.L.; Wang, Y.J. Gut microbiota is altered in patients with Alzheimers disease. J. Alzheimers Dis., 2018, 63(4), 1337-1346. doi: 10.3233/JAD-180176 PMID: 29758946
- Zhan, X.; Stamova, B.; Jin, L.W.; DeCarli, C.; Phinney, B.; Sharp, F.R. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology, 2016, 87(22), 2324-2332. doi: 10.1212/WNL.0000000000003391 PMID: 27784770
- Zhao, Y.; Cong, L.; Jaber, V.; Lukiw, W.J. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimers disease brain. Front. Immunol., 2017, 8, 1064. doi: 10.3389/fimmu.2017.01064 PMID: 28928740
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68. doi: 10.1016/j.neurobiolaging.2016.08.019 PMID: 27776263
- Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimers diseasea critical review. Mol. Neurobiol., 2019, 56(3), 1841-1851. doi: 10.1007/s12035-018-1188-4 PMID: 29936690
- Li, B.; He, Y.; Ma, J.; Huang, P.; Du, J.; Cao, L.; Wang, Y.; Xiao, Q.; Tang, H.; Chen, S. Mild cognitive impairment has similar alterations as Alzheimers disease in gut microbiota. Alzheimers Dement., 2019, 15(10), 1357-1366. doi: 10.1016/j.jalz.2019.07.002 PMID: 31434623
- Guo, M.; Peng, J.; Huang, X.; Xiao, L.; Huang, F.; Zuo, Z. Gut microbiome features of chinese patients newly diagnosed with Alzheimers disease or mild cognitive impairment. J. Alzheimers Dis., 2021, 80(1), 299-310. doi: 10.3233/JAD-201040 PMID: 33523001
- Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; Chen, J. Genetic correlations between Alzheimers disease and gut microbiome genera. Sci. Rep., 2023, 13(1), 5258. doi: 10.1038/s41598-023-31730-5 PMID: 37002253
- Laske, C.; Müller, S.; Preische, O.; Ruschil, V.; Munk, M.H.J.; Honold, I.; Peter, S.; Schoppmeier, U.; Willmann, M. Signature of Alzheimers disease in intestinal microbiome: Results from the AlzBiom study. Front. Neurosci., 2022, 16, 792996. doi: 10.3389/fnins.2022.792996 PMID: 35516807
- Jeong, S.; Huang, L.K.; Tsai, M.J.; Liao, Y.T.; Lin, Y.S.; Chang, C.; Chi, W-K.; Hu, C-J.; Hsu, Y-H. Whole genome shotgun metagenomic sequencing to identify differential abundant microbiome features between dementia and mild cognitive impairment (MCI) in AD subjects. Alzheimers Dement., 2021, 17(S5), e051914. doi: 10.1002/alz.051914
- Marizzoni, M.; Cattaneo, A.; Mirabelli, P.; Festari, C.; Lopizzo, N.; Nicolosi, V.; Mombelli, E.; Mazzelli, M.; Luongo, D.; Naviglio, D.; Coppola, L.; Salvatore, M.; Frisoni, G.B. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimers disease. J. Alzheimers Dis., 2020, 78(2), 683-697. doi: 10.3233/JAD-200306 PMID: 33074224
- Ning, J.; Huang, S.Y.; Chen, S.D.; Zhang, Y.R.; Huang, Y.Y.; Yu, J.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study. J. Alzheimers Dis., 2022, 87(1), 211-222. doi: 10.3233/JAD-215411 PMID: 35275534
- Vogt, N.M.; Romano, K.A.; Darst, B.F.; Engelman, C.D.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Blennow, K.; Zetterberg, H.; Bendlin, B.B.; Rey, F.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimers disease. Alzheimers Res. Ther., 2018, 10(1), 124. doi: 10.1186/s13195-018-0451-2 PMID: 30579367
- Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimers disease patients. Adv. Med. Sci., 2010, 55(2), 204-211. doi: 10.2478/v10039-010-0023-6 PMID: 20639188
- Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimers disease hippocampus. Neuropathol. Appl. Neurobiol., 2005, 31(4), 395-404. doi: 10.1111/j.1365-2990.2005.00655.x PMID: 16008823
- Kaddurah-Daouk, R.; Zhu, H.; Sharma, S.; Bogdanov, M.; Rozen, S.G.; Matson, W.; Oki, N.O.; Motsinger-Reif, A.A.; Churchill, E.; Lei, Z.; Appleby, D.; Kling, M.A.; Trojanowski, J.Q.; Doraiswamy, P.M.; Arnold, S.E. Alterations in metabolic pathways and networks in Alzheimers disease. Transl. Psychiatry, 2013, 3(4), e244. doi: 10.1038/tp.2013.18 PMID: 23571809
- Ferreiro, A.L.; Choi, J.; Ryou, J.; Newcomer, E.P.; Thompson, R.; Bollinger, R.M.; Hall-Moore, C.; Ndao, I.M.; Sax, L.; Benzinger, T.L.S.; Stark, S.L.; Holtzman, D.M.; Fagan, A.M.; Schindler, S.E.; Cruchaga, C.; Butt, O.H.; Morris, J.C.; Tarr, P.I.; Ances, B.M.; Dantas, G. Gut microbiome composition may be an indicator of preclinical Alzheimers disease. Sci. Transl. Med., 2023, 15(700), eabo2984. doi: 10.1126/scitranslmed.abo2984 PMID: 37315112
- Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimers disease pathophysiology. Pharmacol. Res., 2021, 164, 105314. doi: 10.1016/j.phrs.2020.105314 PMID: 33246175
- Fröhlich, E.E.; Farzi, A.; Mayerhofer, R.; Reichmann, F.; Jačan, A.; Wagner, B.; Zinser, E.; Bordag, N.; Magnes, C.; Fröhlich, E.; Kashofer, K.; Gorkiewicz, G.; Holzer, P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun., 2016, 56, 140-155. doi: 10.1016/j.bbi.2016.02.020 PMID: 26923630
- Minter, M.R.; Zhang, C.; Leone, V.; Ringus, D.L.; Zhang, X.; Oyler-Castrillo, P.; Musch, M.W.; Liao, F.; Ward, J.F.; Holtzman, D.M.; Chang, E.B.; Tanzi, R.E.; Sisodia, S.S. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimers disease. Sci. Rep., 2016, 6(1), 30028. doi: 10.1038/srep30028 PMID: 27443609
- Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes, 2015, 6(5), 707-717. doi: 10.3920/BM2014.0177 PMID: 25869281
- Ravelli, K.G.; Rosário, B.A.; Camarini, R.; Hernandes, M.S.; Britto, L.R. Intracerebroventricular streptozotocin as a model of Alzheimers disease: Neurochemical and behavioral characterization in mice. Neurotox. Res., 2017, 31(3), 327-333. doi: 10.1007/s12640-016-9684-7 PMID: 27913964
- Desbonnet, L.; Clarke, G.; Traplin, A.; OSullivan, O.; Crispie, F.; Moloney, R.D.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav. Immun., 2015, 48, 165-173. doi: 10.1016/j.bbi.2015.04.004 PMID: 25866195
- Payne, L.E.; Gagnon, D.J.; Riker, R.R.; Seder, D.B.; Glisic, E.K.; Morris, J.G.; Fraser, G.L. Cefepime-induced neurotoxicity: A systematic review. Crit. Care, 2017, 21(1), 276. doi: 10.1186/s13054-017-1856-1 PMID: 29137682
- Mehta, R.S.; Lochhead, P.; Wang, Y.; Ma, W.; Nguyen, L.H.; Kochar, B.; Huttenhower, C.; Grodstein, F.; Chan, A.T. Association of midlife antibiotic use with subsequent cognitive function in women. PLoS One, 2022, 17(3), e0264649. doi: 10.1371/journal.pone.0264649 PMID: 35320274
- Umeda, T.; Ono, K.; Sakai, A.; Yamashita, M.; Mizuguchi, M.; Klein, W.L.; Yamada, M.; Mori, H.; Tomiyama, T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain, 2016, 139(5), 1568-1586. doi: 10.1093/brain/aww042 PMID: 27020329
- Tucker, S.; Ahl, M.; Bush, A.; Westaway, D.; Huang, X.; Rogers, J. Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimers APP 5′ untranslated region. Curr. Alzheimer Res., 2005, 2(2), 249-254. doi: 10.2174/1567205053585855 PMID: 15974925
- Parachikova, A.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M.; Green, K.N. Reductions in amyloid-beta-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J. Alzheimers Dis., 2010, 21(2), 527-542. doi: 10.3233/JAD-2010-100204 PMID: 20555131
- Kountouras, J.; Boziki, M.; Gavalas, E.; Zavos, C.; Grigoriadis, N.; Deretzi, G.; Tzilves, D.; Katsinelos, P.; Tsolaki, M.; Chatzopoulos, D.; Venizelos, I. Eradication of helicobacter pylori may be beneficial in the management of Alzheimers disease. J. Neurol., 2009, 256(5), 758-767. doi: 10.1007/s00415-009-5011-z PMID: 19240960
- Loeb, M.B.; Molloy, D.W.; Smieja, M.; Standish, T.; Goldsmith, C.H.; Mahony, J.; Smith, S.; Borrie, M.; Decoteau, E.; Davidson, W.; Mcdougall, A.; Gnarpe, J.; Odonnell, M.; Chernesky, M. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimers disease. J. Am. Geriatr. Soc., 2004, 52(3), 381-387. doi: 10.1111/j.1532-5415.2004.52109.x PMID: 14962152
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563. doi: 10.1038/nature12820 PMID: 24336217
- Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; Pascale, A. The potential role of gut microbiota in Alzheimers disease: From diagnosis to treatment. Nutrients, 2022, 14(3), 668. doi: 10.3390/nu14030668 PMID: 35277027
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The mediterranean diet and cardiovascular health. Circ. Res., 2019, 124(5), 779-798. doi: 10.1161/CIRCRESAHA.118.313348 PMID: 30817261
- Wu, L.; Sun, D. Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies. Sci. Rep., 2017, 7(1), 41317. doi: 10.1038/srep41317 PMID: 28112268
- Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The impact of the mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Adv. Nutr., 2017, 8(4), 571-586. doi: 10.3945/an.117.015495 PMID: 28710144
- Keenan, T.D.; Agrón, E.; Mares, J.A.; Clemons, T.E.; van Asten, F.; Swaroop, A.; Chew, E.Y. Adherence to a mediterranean diet and cognitive function in the age‐related eye disease studies 1 & 2. Alzheimers Dement., 2020, 16(6), 831-842. doi: 10.1002/alz.12077 PMID: 32285590
- Mantzorou, M.; Vadikolias, K.; Pavlidou, E.; Tryfonos, C.; Vasios, G.; Serdari, A.; Giaginis, C. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population. Aging Clin. Exp. Res., 2021, 33(4), 1033-1040. doi: 10.1007/s40520-020-01608-x PMID: 32488472
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.D.; Murphy, K.J. A mediterranean diet with fresh, lean pork improves processing speed and mood: Cognitive findings from the MedPork randomised controlled trial. Nutrients, 2019, 11(7), 1521. doi: 10.3390/nu11071521 PMID: 31277446
- Wade, A.T.; Elias, M.F.; Murphy, K.J. Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: Findings from the Maine-Syracuse Longitudinal Study. Nutr. Neurosci., 2021, 24(7), 542-553. doi: 10.1080/1028415X.2019.1655201 PMID: 31432770
- Knight, A.; Bryan, J.; Wilson, C.; Hodgson, J.; Davis, C.; Murphy, K. The mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: The medley study. Nutrients, 2016, 8(9), 579. doi: 10.3390/nu8090579 PMID: 27657119
- Wardle, J.; Rogers, P.; Judd, P.; Taylor, M.A.; Rapoport, L.; Green, M.; Nicholson Perry, K. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. Am. J. Med., 2000, 108(7), 547-553. doi: 10.1016/S0002-9343(00)00330-2 PMID: 10806283
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; Zoetendal, E.G.; Hermes, G.D.A.; Elodie, C.; Meunier, N.; Brugere, C.M.; Pujos-Guillot, E.; Berendsen, A.M.; De Groot, L.C.P.G.M.; Feskins, E.J.M.; Kaluza, J.; Pietruszka, B.; Bielak, M.J.; Comte, B.; Maijo-Ferre, M.; Nicoletti, C.; De Vos, W.M.; Fairweather-Tait, S.; Cassidy, A.; Brigidi, P.; Franceschi, C.; OToole, P.W. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69(7), 1218-1228. doi: 10.1136/gutjnl-2019-319654 PMID: 32066625
- Bailey, M.A.; Holscher, H.D. Microbiome-Mediated effects of the Mediterranean diet on inflammation. Adv. Nutr., 2018, 9(3), 193-206. doi: 10.1093/advances/nmy013 PMID: 29767701
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean diet on human gut microbiota. Nutrients, 2020, 13(1), 7. doi: 10.3390/nu13010007 PMID: 33375042
- Ho, L.; Ono, K.; Tsuji, M.; Mazzola, P.; Singh, R.; Pasinetti, G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimers disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother., 2018, 18(1), 83-90. doi: 10.1080/14737175.2018.1400909 PMID: 29095058
- Levitan, E.B.; Wolk, A.; Mittleman, M.A. Consistency with the DASH diet and incidence of heart failure. Arch. Intern. Med., 2009, 169(9), 851-857. doi: 10.1001/archinternmed.2009.56 PMID: 19433696
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; Lin, P.H.; Karanja, N.; Simons-Morton, D.; McCullough, M.; Swain, J.; Steele, P.; Evans, M.A.; Miller, E.R.; Harsha, D.W. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med., 1997, 336(16), 1117-1124. doi: 10.1056/NEJM199704173361601 PMID: 9099655
- Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective study of dietary approaches to stop hypertension- and mediterranean-style dietary patterns and age-related cognitive change: The cache county study on memory, health and aging. Am. J. Clin. Nutr., 2013, 98(5), 1263-1271. doi: 10.3945/ajcn.112.051276 PMID: 24047922
- Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M.; Burke, J.R.; Sherwood, A. Lifestyle and neurocognition in older adults with cognitive impairments. Neurology, 2019, 92(3), e212-e223. doi: 10.1212/WNL.0000000000006784 PMID: 30568005
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimers disease. Alzheimers Dement., 2015, 11(9), 1007-1014. doi: 10.1016/j.jalz.2014.11.009 PMID: 25681666
- Kheirouri, S.; Alizadeh, M. MIND diet and cognitive performance in older adults: A systematic review. Crit. Rev. Food Sci. Nutr., 2022, 62(29), 8059-8077. doi: 10.1080/10408398.2021.1925220 PMID: 33989093
- McEvoy, C.T.; Guyer, H.; Langa, K.M.; Yaffe, K. Neuroprotective diets are associated with better cognitive function: The health and retirement study. J. Am. Geriatr. Soc., 2017, 65(8), 1857-1862. doi: 10.1111/jgs.14922 PMID: 28440854
- Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12‐year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement., 2019, 15(4), 581-589. doi: 10.1016/j.jalz.2018.12.011 PMID: 30826160
- Chu, C.Q.; Yu, L.; Qi, G.; Mi, Y.S.; Wu, W.Q.; Lee, Y.; Zhai, Q.X.; Tian, F.W.; Chen, W. Can dietary patterns prevent cognitive impairment and reduce Alzheimers disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev., 2022, 135, 104556. doi: 10.1016/j.neubiorev.2022.104556 PMID: 35122783
- Fortier, M.; Castellano, C.A.; St-Pierre, V.; Myette-Côté, É.; Langlois, F.; Roy, M.; Morin, M.C.; Bocti, C.; Fulop, T.; Godin, J.P.; Delannoy, C.; Cuenoud, B.; Cunnane, S.C. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6‐month RCT. Alzheimers Dement., 2021, 17(3), 543-552. doi: 10.1002/alz.12206 PMID: 33103819
- Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; Kunugi, H. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimers disease. Neurosci. Lett., 2019, 690, 232-236. doi: 10.1016/j.neulet.2018.10.048 PMID: 30367958
- Ota, M.; Matsuo, J.; Ishida, I.; Hattori, K.; Teraishi, T.; Tonouchi, H.; Ashida, K.; Takahashi, T.; Kunugi, H. Effect of a ketogenic meal on cognitive function in elderly adults: Potential for cognitive enhancement. Psychopharmacology (Berl.), 2016, 233(21-22), 3797-3802. doi: 10.1007/s00213-016-4414-7 PMID: 27568199
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimers disease markers in subjects with mild cognitive impairment. EBioMedicine, 2019, 47, 529-542. doi: 10.1016/j.ebiom.2019.08.032 PMID: 31477562
- Nicco, C.; Paule, A.; Konturek, P.; Edeas, M. From Donor to Patient: Collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases, 2020, 8(2), 9. doi: 10.3390/diseases8020009 PMID: 32326509
- Dailey, F.E.; Turse, E.P.; Daglilar, E.; Tahan, V. The dirty aspects of fecal microbiota transplantation: A review of its adverse effects and complications. Curr. Opin. Pharmacol., 2019, 49, 29-33. doi: 10.1016/j.coph.2019.04.008 PMID: 31103793
- Craig-Schapiro, R.; Fagan, A.M.; Holtzman, D.M. Biomarkers of Alzheimers disease. Neurobiol. Dis., 2009, 35(2), 128-140. doi: 10.1016/j.nbd.2008.10.003 PMID: 19010417
- Hazan, S. Rapid improvement in Alzheimers disease symptoms following fecal microbiota transplantation: A case report. J. Int. Med. Res., 2020, 48(6) doi: 10.1177/0300060520925930 PMID: 32600151
- Park, S.H.; Lee, J.H.; Shin, J.; Kim, J.S.; Cha, B.; Lee, S.; Kwon, K.S.; Shin, Y.W.; Choi, S.H. Cognitive function improvement after fecal microbiota transplantation in Alzheimers dementia patient: A case report. Curr. Med. Res. Opin., 2021, 37(10), 1739-1744. doi: 10.1080/03007995.2021.1957807 PMID: 34289768
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; Guarner, F.; Respondek, F.; Whelan, K.; Coxam, V.; Davicco, M.J.; Léotoing, L.; Wittrant, Y.; Delzenne, N.M.; Cani, P.D.; Neyrinck, A.M.; Meheust, A. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr., 2010, 104(S2)(Suppl. 2), S1-S63. doi: 10.1017/S0007114510003363 PMID: 20920376
- McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2017, 106(3), 930-945. doi: 10.3945/ajcn.117.156265 PMID: 28793992
- Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The role of prebiotics in cognition, anxiety, and depression. Eur. Neuropsychopharmacol., 2020, 34, 1-18. doi: 10.1016/j.euroneuro.2020.03.006 PMID: 32241688
- Gu, Y.; Nishikawa, M.; Brickman, A.M.; Manly, J.J.; Schupf, N.; Mayeux, R.P. Association of dietary prebiotic consumption with reduced risk of Alzheimers disease in a multiethnic population. Curr. Alzheimer Res., 2021, 18(12), 984-992. doi: 10.2174/1567205019666211222115142 PMID: 34951365
- Alfa, M.J.; Strang, D.; Tappia, P.S.; Graham, M.; Van Domselaar, G.; Forbes, J.D.; Laminman, V.; Olson, N.; DeGagne, P.; Bray, D.; Murray, B.L.; Dufault, B.; Lix, L.M. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin. Nutr., 2018, 37(3), 797-807. doi: 10.1016/j.clnu.2017.03.025 PMID: 28410921
- Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr., 2015, 114(4), 586-595. doi: 10.1017/S0007114515001889 PMID: 26218845
- Walton, G.E.; van den Heuvel, E.G.H.M.; Kosters, M.H.W.; Rastall, R.A.; Tuohy, K.M.; Gibson, G.R. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br. J. Nutr., 2012, 107(10), 1466-1475. doi: 10.1017/S0007114511004697 PMID: 21910949
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277. doi: 10.3389/fimmu.2019.00277 PMID: 30915065
- Larroya-García, A.; Navas-Carrillo, D.; Orenes-Piñero, E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3102-3116. doi: 10.1080/10408398.2018.1484340 PMID: 29870270
- Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimers disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci., 2016, 8, 256. doi: 10.3389/fnagi.2016.00256 PMID: 27891089
- Agahi, A.; Hamidi, G.A.; Daneshvar, R.; Hamdieh, M.; Soheili, M.; Alinaghipour, A.; Esmaeili, T.S.M.; Salami, M. Does severity of Alzheimers disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front. Neurol., 2018, 9, 662. doi: 10.3389/fneur.2018.00662 PMID: 30158897
- Leblhuber, F.; Steiner, K.; Schuetz, B.; Fuchs, D.; Gostner, J.M. Probiotic supplementation in patients with Alzheimers dementia - An explorative intervention study. Curr. Alzheimer Res., 2018, 15(12), 1106-1113. doi: 10.2174/1389200219666180813144834 PMID: 30101706
- Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimers disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575. doi: 10.1016/j.clnu.2018.11.034 PMID: 30642737
Қосымша файлдар
