A Step Towards Optimization of Amide-Linked Coumarin Pharmacophore: As an Anti-HIV Agent


Cite item

Full Text

Abstract


The aim of the present investigation is to identify effective anti-HIV drugs through the in-silico virtual screening of the coumarin pharmacophore with or without substituents. Virtual screening started with target identification through computation docking and interactions, binding affinity through molecular dynamics, and the ADMET profile through the use of various enzymes. The target study suggests that the target is involved in various stages of HIV replication and in determining the ways in which non-nucleoside reverse transcriptase inhibitors (RTIs) influence it. The interaction pattern and simulation study conclude the specific affinity of coumarin pharmacophore to the HIV's reverse transcriptase enzyme, especially 3HVT. Moreover, the amide linkage worked as a synergistic bridge to provide more interaction to the pharmacophore. The initial results led to the determination of 83 virtual amide-like molecules, which were screened through docking and MD studies (100 ns) on the best-suited enzyme HIV's reverse transcriptase enzyme, such as PDB ID "3HVT". The virtual screening study revealed the high affinity of compounds 7d and 7e with the lowest IC50 values of 0.729 and 0.658 µM; moreover, their metabolism pattern study, toxicity, and QED values in a range of 0.31-0.40 support a good drug candidate. The two compounds were also synthesized and characterized for future in vitro and in vivo studies. The in silico-based descriptor of compounds 7d and 7e indicates the potential future and provides the best two molecules and their synthetic route for the development of a more effective drug to combat HIV/AIDS epidemics.

About the authors

Harish Joshi

Department of Chemistry, Graphic Era Deemed to be University

Email: info@benthamscience.net

Vikas Kumar

Department of Chemistry, Uttarakhand Technical University

Email: info@benthamscience.net

Priyank Purohit

School of Pharmacy, Graphic Era Hill University

Author for correspondence.
Email: info@benthamscience.net

Indra Pandey

Department of Chemistry Uttarakhand Technical University, Uttarakhand Technical University

Email: info@benthamscience.net

Gaurav Joshi

Department of Pharmaceutical Sciences, HNBGU, (Central University)

Email: info@benthamscience.net

References

  1. Coffin J, Haase A, Levy JA, et al. Human immunodeficiency viruses. Science 1986; 232(4751): 697-7. doi: 10.1126/science.3008335 PMID: 3008335
  2. Kallings LO. The first postmodern pandemic: 25 years of HIV/AIDS. J Intern Med 2008; 263(3): 218-43. doi: 10.1111/j.1365-2796.2007.01910.x PMID: 18205765
  3. van Schalkwyk C, Mahy M, Johnson LF, Imai-Eaton JW. Updated data and methods for the 2023 UNAIDS HIV estimates. J Acquir Immune Defic Syndr 2024; 95(1S): e1-4. doi: 10.1097/QAI.0000000000003344 PMID: 38180734
  4. Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC. Comparing HIV‐1 and HIV‐2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 2013; 23(4): 221-40. doi: 10.1002/rmv.1739 PMID: 23444290
  5. Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984; 312(5996): 763-7. doi: 10.1038/312763a0 PMID: 6096719
  6. Singh SK, Siddhanta A. Whether HIV discordance among couples is getting altered due to the changing discourse of the HIV epidemic in India? Evidence from two rounds of national Family Health survey. J Health Manag 2023; 25(2): 263-71. doi: 10.1177/09720634231175577
  7. Pachuau LN, Tannous C, Chawngthu RL, Agho KE. HIV and its associated factors among people who inject drugs in Mizoram, Northeast India. PLoS One 2023; 18(5): e0286009. doi: 10.1371/journal.pone.0286009 PMID: 37216389
  8. Hemelaar J, Elangovan R, Yun J, et al. Global and regional molecular epidemiology of HIV-1, 1990–2015: A systematic review, global survey, and trend analysis. Lancet Infect Dis 2019; 19(2): 143-55. doi: 10.1016/S1473-3099(18)30647-9 PMID: 30509777
  9. Basoulis D, Mastrogianni E, Voutsinas PM, Psichogiou M. HIV and COVID-19 co-infection: Epidemiology, clinical characteristics, and treatment. Viruses 2023; 15(2): 577. doi: 10.3390/v15020577 PMID: 36851791
  10. Mittal RK, Aggarwal M, Khatana K, Purohit P. Quinoline: Synthesis to application. Med Chem 2022; 19(1): 31-46. PMID: 35240965
  11. Mittal RK, Purohit P. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent. Anticancer Agents Med Chem 2021; 21(13): 1708-16.
  12. Jadhavar PS. Sustainable approaches towards the synthesis of quinoxalines. Green Chem Synth Bioact Heterocycl 2014; 2014: 37-67. doi: 10.1007/978-81-322-1850-0_2
  13. McKee TC, Covington CD, Fuller RW, et al. Pyranocoumarins from tropical species of the genus Calophyllum: A chemotaxonomic study of extracts in the National Cancer Institute collection. J Nat Prod 1998; 61(10): 1252-6. doi: 10.1021/np980140a PMID: 9784162
  14. Buckheit RW Jr, White EL, Fliakas-Boltz V, et al. Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide. Antimicrob Agents Chemother 1999; 43(8): 1827-34. doi: 10.1128/AAC.43.8.1827 PMID: 10428899
  15. Upadhyay RK. Anti-HIV natural products from medicinal plants: A review. Int J Green Pharm 2023; 17(1)
  16. Huang L, Kashiwada Y, Cosentino LM, Fan S, Lee K-H. 3′,4′-Di-o-(−)-camphanoyl-(+)-ciskhellactone and related compounds: A. new class of potent anti-HIV agents. Bioorg Med Chem Lett 1994; 4(4): 593-8. doi: 10.1016/S0960-894X(01)80161-X
  17. Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH. Recent progress in the development of coumarin derivatives as potent anti‐HIV agents. Med Res Rev 2003; 23(3): 322-45. doi: 10.1002/med.10034 PMID: 12647313
  18. Leonard JT, Roy K. Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Eur J Med Chem 2008; 43(1): 81-92. doi: 10.1016/j.ejmech.2007.02.021 PMID: 17452064
  19. Beyer A, Lawtrakul L, Pungpo P, Wolschann P. Structural aspects of non-nucleoside HIV-1 reverse transcriptase inhibition. Curr Computeraided Drug Des 2007; 3(2): 87-100. doi: 10.2174/157340907780809507
  20. Işık A, Çevik UA, Celik I, et al. Synthesis, characterization, molecular docking, dynamics simulations, and in silico absorption, distribution, metabolism, and excretion (ADME) studies of new thiazolylhydrazone derivatives as butyrylcholinesterase inhibitors. Z Naturforsch C J Biosci 2022; 77(11-12): 447-57. doi: 10.1515/znc-2021-0316 PMID: 35599239
  21. Işık A, Acar Çevik U, Karayel A, et al. Synthesis, DFT calculations, in silico studies, and antimicrobial evaluation of benzimidazole-thiadiazole derivatives. ACS Omega 2024; 9(16): 18469-79. doi: 10.1021/acsomega.4c00543 PMID: 38680334
  22. Fuchs DI, Serio LD, Balaji S, Sprenger KG. Investigating how HIV-1 antiretrovirals differentially behave as substrates and inhibitors of P-glycoprotein via molecular dynamics simulations. Comput Struct Biotechnol J 2024; 23: 2669-79. doi: 10.1016/j.csbj.2024.06.025 PMID: 39027651
  23. Kumar V, Pandey IP, Jain J, Tripathi RB. One step towards: The synthesis of optimized coumarin derivatives as an anti-HIV Agent. Indian J Pharmaceut Educat Res 2019; 53(4s): s624-9. doi: 10.5530/ijper.53.4s.158
  24. Maheswara M, Siddaiah V, Damu GLV, Rao YK, Rao CV. A solvent-free synthesis of coumarins via Pechmann condensation using heterogeneous catalyst. J Mol Catal Chem 2006; 255(1-2): 49-52. doi: 10.1016/j.molcata.2006.03.051
  25. Dittmer DC, Li Q, Avilov DV. Synthesis of coumarins, 4-hydroxycoumarins, and 4-hydroxyquinolinones by tellurium-triggered cyclizations. J Org Chem 2005; 70(12): 4682-6. doi: 10.1021/jo050070u PMID: 15932305
  26. Khalymbadzha IA, Fatykhov RF, Butorin II, et al. bioinspired pyrano2,3-fchromen-8-ones: Ring C-opened analogues of calanolide A: Synthesis and anti-HIV-1 evaluation. Biomimetics 2024; 9(1): 44. doi: 10.3390/biomimetics9010044 PMID: 38248618
  27. Zeki NM, Mustafa YF. Coumarin hybrids: a sighting of their roles in drug targeting. Chem Zvesti 2024; 78(10): 5753-72. doi: 10.1007/s11696-024-03498-z
  28. Doucet C, Pochet L, Thierry N, Pirotte B, Delarge J, Reboud-Ravaux M. 6-Substituted 2-oxo-2H-1-benzopyran-3-carboxylic acid as a core structure for specific inhibitors of human leukocyte elastase. J Med Chem 1999; 42(20): 4161-71. doi: 10.1021/jm990070k PMID: 10514286

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers