Lipidomics and Metabolomics in Infant Atopic Dermatitis: What’s the Correlation with Early Nutrition?


Cite item

Full Text

Abstract

To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk.

:In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.

About the authors

Angelica Dessì

Department of Surgical Sciences, Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliero-Universitaria Cagliari

Author for correspondence.
Email: info@benthamscience.net

Camilla Di Maria

Neonatal Intensive Care Unit, University of Cagliari

Email: info@benthamscience.net

Roberta Pintus

Department of Surgical Sciences, Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliero-Universitaria Cagliari

Email: info@benthamscience.net

Vassilios Fanos

Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliero-Universitaria Cagliari

Email: info@benthamscience.net

Alice Bosco

Department of Surgical Sciences, Neonatal Intensive Care Unit,, Azienda Ospedaliero-Universitaria Cagliari

Email: info@benthamscience.net

References

  1. Bylund S, Kobyletzki L, Svalstedt M. Svensson. Prevalence and incidence of atopic dermatitis: A systematic review. Acta Derm Venereol 2020; 100(12): adv00160. doi: 10.2340/00015555-3510 PMID: 32412646
  2. Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J Invest Dermatol 2014; 134(6): 1527-34. doi: 10.1038/jid.2013.446 PMID: 24166134
  3. Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet 2020; 396(10247): 345-60. doi: 10.1016/S0140-6736(20)31286-1 PMID: 32738956
  4. Nedoszytko B, Reszka E, Gutowska-Owsiak D, et al. Genetic and epigenetic aspects of atopic dermatitis. Int J Mol Sci 2020; 21(18): 6484. doi: 10.3390/ijms21186484 PMID: 32899887
  5. Drucker AM. Atopic dermatitis: Burden of illness, quality of life, and associated complications. Allergy Asthma Proc 2017; 38(1): 3-8. doi: 10.2500/aap.2017.38.4005 PMID: 28052794
  6. Feld M, Garcia R, Buddenkotte J, et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol 2016; 138(2): 500-508.e24. doi: 10.1016/j.jaci.2016.02.020 PMID: 27212086
  7. Li S, Ganguli-Indra G, Indra AK. Lipidomic analysis of epidermal lipids: A tool to predict progression of inflammatory skin disease in humans. Expert Rev Proteomics 2016; 13(5): 451-6. doi: 10.1080/14789450.2016.1177462 PMID: 27121756
  8. Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered "omics" data for atopic dermatitis: A road map to precision medicine. Front Immunol 2018; 9: 2727. doi: 10.3389/fimmu.2018.02727 PMID: 30631320
  9. Schjødt MS, Gürdeniz G, Chawes B. The metabolomics of childhood atopic diseases: A comprehensive pathway-specific review. Metabolites 2020; 10(12): 511. doi: 10.3390/metabo10120511 PMID: 33339279
  10. Gruber F, Kremslehner C, Narzt MS. The impact of recent advances in lipidomics and redox lipidomics on dermatological research. Free Radic Biol Med 2019; 144: 256-65. doi: 10.1016/j.freeradbiomed.2019.04.019 PMID: 31004751
  11. Jia Y, Gan Y, He C, Chen Z, Zhou C. The mechanism of skin lipids influencing skin status. J Dermatol Sci 2018; 89(2): 112-9. doi: 10.1016/j.jdermsci.2017.11.006 PMID: 29174114
  12. Kendall AC, Koszyczarek MM, Jones EA, et al. Lipidomics for translational skin research: A primer for the uninitiated. Exp Dermatol 2018; 27(7): 721-8. doi: 10.1111/exd.13558 PMID: 29654617
  13. Murphy SA, Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res 2013; 57(8): 1336-46. doi: 10.1002/mnfr.201200863 PMID: 23729171
  14. Montecchiani V, Fanos V. Human microbiome and allergy. Pediatr Allergy Immunol 2020; 31(S26): 5-7. doi: 10.1111/pai.13360 PMID: 33236419
  15. Mussap M, Antonucci R, Noto A, Fanos V. The role of metabolomics in neonatal and pediatric laboratory medicine. Clin Chim Acta 2013; 426: 127-38. doi: 10.1016/j.cca.2013.08.020 PMID: 24035970
  16. McLean WH. Filaggrin failure - from ichthyosis vulgaris to atopic eczema and beyond. Br J Dermatol 2016; 175(S2): 4-7. doi: 10.1111/bjd.14997
  17. Brown SJ, Kroboth K, Sandilands A, et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol 2012; 132(1): 98-104. doi: 10.1038/jid.2011.342 PMID: 22071473
  18. Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: From basic mechanisms to clinical applications. Epigenomics 2017; 9(4): 539-71. doi: 10.2217/epi-2016-0162 PMID: 28322581
  19. Martin MJ, Estravís M, García-Sánchez A, Dávila I, Isidoro-García M, Sanz C. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes 2020; 11(4): 442. doi: 10.3390/genes11040442 PMID: 32325630
  20. Schübeler D. Function and information content of DNA methylation. Nature 2015; 517(7534): 321-6. doi: 10.1038/nature14192 PMID: 25592537
  21. Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet 2017; 49(12): 1752-7. doi: 10.1038/ng.3985 PMID: 29083406
  22. Boorgula MP, Taub MA, Rafaels N, et al. Replicated methylation changes associated with eczema herpeticum and allergic response. Clin Epigenetics 2019; 11(1): 122. doi: 10.1186/s13148-019-0714-1 PMID: 31443688
  23. Kumar D, Puan KJ, Andiappan AK, et al. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med 2017; 9(1): 18. doi: 10.1186/s13073-017-0404-6 PMID: 28219444
  24. Stevens ML, Zhang Z, Johansson E, et al. Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun 2020; 11(1): 4092. doi: 10.1038/s41467-020-17895-x PMID: 32796837
  25. Thürmann L, Grützmann K, Klös M, et al. Early-onset childhood atopic dermatitis is related to NLRP2 repression. J Allergy Clin Immunol 2018; 141(4): 1482-1485.e16. doi: 10.1016/j.jaci.2017.11.018 PMID: 29233739
  26. Rossi MN, Pascarella A, Licursi V, et al. NLRP2 regulates proinflammatory and antiapoptotic responses in proximal tubular epithelial cells. Front Cell Dev Biol 2019; 7: 252. doi: 10.3389/fcell.2019.00252 PMID: 31709256
  27. Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol 2014; 39(1): 48-53. doi: 10.1111/ced.12206 PMID: 24341479
  28. Liang Y, Wang P, Zhao M, et al. Demethylation of the FCER1G promoter leads to FcεRI overexpression on monocytes of patients with atopic dermatitis. Allergy 2012; 67(3): 424-30. doi: 10.1111/j.1398-9995.2011.02760.x PMID: 22150093
  29. Ziyab AH, Karmaus W, Holloway JW, Zhang H, Ewart S, Arshad SH. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol 2013; 27(3): e420-3. doi: 10.1111/jdv.12000 PMID: 23003573
  30. Tonacci A, Bagnato G, Pandolfo G, et al. MicroRNA cross involvement in autism spectrum disorders and atopic dermatitis: A literature review. J Clin Med 2019; 8(1): 88. doi: 10.3390/jcm8010088 PMID: 30646527
  31. Rebane A, Runnel T, Aab A, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 2014; 134(4): 836-847.e11. doi: 10.1016/j.jaci.2014.05.022 PMID: 24996260
  32. Lv Y, Qi R, Xu J, et al. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One 2014; 9(12): e115448. doi: 10.1371/journal.pone.0115448 PMID: 25531302
  33. Bikle DD, Xie Z, Tu CL. Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 2012; 7(4): 461-72. doi: 10.1586/eem.12.34 PMID: 23144648
  34. Yamanishi H, Soma T, Kishimoto J, Hibino T, Ishida-Yamamoto A. Marked changes in lamellar granule and trans-golgi network structure occur during epidermal keratinocyte differentiation. J Invest Dermatol 2019; 139(2): 352-9. doi: 10.1016/j.jid.2018.07.043 PMID: 30240698
  35. Candi E, Schmidt R, Melino G. The cornified envelope: A model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6(4): 328-40. doi: 10.1038/nrm1619 PMID: 15803139
  36. Mahanty S, Setty SRG. Epidermal lamellar body biogenesis: Insight into the roles of golgi and lysosomes. Front Cell Dev Biol 2021; 9: 701950. doi: 10.3389/fcell.2021.701950 PMID: 34458262
  37. Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta Biomembr 2006; 1758(12): 2080-95. doi: 10.1016/j.bbamem.2006.06.021 PMID: 16945325
  38. Feingold KR. Thematic review series: Skin Lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007; 48(12): 2531-46. doi: 10.1194/jlr.R700013-JLR200 PMID: 17872588
  39. Elias PM, Choi EH. Interactions among stratum corneum defensive functions. Exp Dermatol 2005; 14(10): 719-26. doi: 10.1111/j.1600-0625.2005.00363.x PMID: 16176279
  40. Madison KC. Barrier function of the skin: "La raison d’être" of the epidermis. J Invest Dermatol 2003; 121(2): 231-41. doi: 10.1046/j.1523-1747.2003.12359.x PMID: 12880413
  41. Masukawa Y, Narita H, Sato H, et al. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009; 50(8): 1708-19. doi: 10.1194/jlr.D800055-JLR200 PMID: 19349641
  42. van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 2011; 52(6): 1211-21. doi: 10.1194/jlr.M014456 PMID: 21444759
  43. Ziboh VA, Miller CC, Cho Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin Nutr 2000; 71(S1): 361-6. doi: 10.1093/ajcn/71.1.361S PMID: 10617998
  44. Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang CM. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol 2010; 130(4): 985-94. doi: 10.1038/jid.2009.384 PMID: 20032992
  45. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: Skin lipids. antimicrobial lipids at the skin surface. J Lipid Res 2008; 49(1): 4-11. doi: 10.1194/jlr.R700016-JLR200 PMID: 17906220
  46. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science 2014; 346(6212): 954-9. doi: 10.1126/science.1260144 PMID: 25414304
  47. Scharschmidt TC, Fischbach MA. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech 2013; 10(3-4): e83-9. doi: 10.1016/j.ddmec.2012.12.003 PMID: 24273587
  48. Dréno B, Araviiskaia E, Berardesca E, et al. Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 2016; 30(12): 2038-47. doi: 10.1111/jdv.13965 PMID: 27735094
  49. Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota. Genome Res 2008; 18(7): 1043-50. doi: 10.1101/gr.075549.107 PMID: 18502944
  50. Mukherjee S, Mitra R, Maitra A, et al. Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome. Sci Rep 2016; 6(1): 36062. doi: 10.1038/srep36062 PMID: 27786295
  51. Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: A study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol 1995; 75(6): 429-33. PMID: 8651017
  52. Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 2010; 65(7): 911-8. doi: 10.1111/j.1398-9995.2010.02326.x PMID: 20132155
  53. Nemoto-Hasebe I, Akiyama M, Nomura T, Sandilands A, Irwin McLean WH, Shimizu H. Clinical severity correlates with impaired barrier in filaggrin-related eczema. J Invest Dermatol 2009; 129(3): 682-9. doi: 10.1038/jid.2008.280 PMID: 18818676
  54. Stemmler S, Hoffjan S. Trying to understand the genetics of atopic dermatitis. Mol Cell Probes 2016; 30(6): 374-85. doi: 10.1016/j.mcp.2016.10.004 PMID: 27725295
  55. Bonamonte D, Filoni A, Vestita M, Romita P, Foti C, Angelini G. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis. BioMed Res Int 2019; 2019: 1-11. doi: 10.1155/2019/2450605 PMID: 31119157
  56. Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol 2013; 132(1): 15-26. doi: 10.1016/j.jaci.2013.04.011 PMID: 23726263
  57. Totté JEE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of S taphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br J Dermatol 2016; 175(4): 687-95. doi: 10.1111/bjd.14566 PMID: 26994362
  58. Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C. Atopic dermatitis: The skin barrier and beyond. Br J Dermatol 2019; 180(3): 464-74. doi: 10.1111/bjd.16934 PMID: 29969827
  59. Baurecht H, Rühlemann MC, Rodríguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol 2018; 141(5): 1668-1676.e16. doi: 10.1016/j.jaci.2018.01.019 PMID: 29421277
  60. Kennedy EA, Connolly J, Hourihane JOB, et al. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol 2017; 139(1): 166-72. doi: 10.1016/j.jaci.2016.07.029 PMID: 27609659
  61. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 2012; 22(5): 850-9. doi: 10.1101/gr.131029.111 PMID: 22310478
  62. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol 2018; 26(6): 484-97. doi: 10.1016/j.tim.2017.11.008 PMID: 29233606
  63. Brodská P, Panzner P, Pizinger K, Schmid-Grendelmeier P. IgE-mediated sensitization to malassezia in atopic dermatitis: More common in male patients and in head and neck type. Dermatitis 2014; 25(3): 120-6. doi: 10.1097/DER.0000000000000040 PMID: 24819285
  64. Glatz M, Buchner M, Bartenwerffer W, et al. Malassezia spp.-specific immunoglobulin E level is a marker for severity of atopic dermatitis in adults. Acta Derm Venereol 2015; 95(2): 191-6. doi: 10.2340/00015555-1864 PMID: 24696225
  65. Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013; 210(13): 2939-50. doi: 10.1084/jem.20130351 PMID: 24323357
  66. Saunders SP, Moran T, Floudas A, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol 2016; 137(2): 482-91. doi: 10.1016/j.jaci.2015.06.045 PMID: 26299987
  67. Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 2016; 15(1): 35-50. doi: 10.1038/nrd4624 PMID: 26471366
  68. Yoshida K, Kubo A, Fujita H, et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol 2014; 134(4): 856-64. doi: 10.1016/j.jaci.2014.08.001 PMID: 25282566
  69. Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007; 120(1): 150-5. doi: 10.1016/j.jaci.2007.04.031 PMID: 17512043
  70. Kezic S, O’Regan GM, Yau N, et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy 2011; 66(7): 934-40. doi: 10.1111/j.1398-9995.2010.02540.x PMID: 21261659
  71. Tsoi LC, Rodriguez E, Stölzl D, et al. Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. J Allergy Clin Immunol 2020; 145(5): 1406-15. doi: 10.1016/j.jaci.2019.11.047 PMID: 31891686
  72. Assfalg M, Bortoletti E, D’Onofrio M, et al. An exploratory 1 H‐nuclear magnetic resonance metabolomics study reveals altered urine spectral profiles in infants with atopic dermatitis. Br J Dermatol 2012; 166(5): 1123-5. doi: 10.1111/j.1365-2133.2011.10711.x PMID: 22032695
  73. Huang Y, Chen G, Liu X, et al. Serum metabolomics study and eicosanoid analysis of childhood atopic dermatitis based on liquid chromatography-mass spectrometry. J Proteome Res 2014; 13(12): 5715-23. doi: 10.1021/pr5007069 PMID: 25316199
  74. Park YM, Lee SY, Kang MJ, et al. Imbalance of gut Streptococcus, Clostridium, and Akkermansia determines the natural course of atopic dermatitis in infant. Allergy Asthma Immunol Res 2020; 12(2): 322-37. doi: 10.4168/aair.2020.12.2.322 PMID: 32009325
  75. Ta LDH, Chan JCY, Yap GC, et al. A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes 2020; 12(1): 1801964. doi: 10.1080/19490976.2020.1801964 PMID: 33023370
  76. Trompette A, Pernot J, Perdijk O, et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol 2022; 15(5): 908-26. doi: 10.1038/s41385-022-00524-9 PMID: 35672452
  77. Shen CP, Zhao MT, Jia ZX, Zhang JL, Jiao L, Ma L. Skin ceramide profile in children with atopic dermatitis. Dermatitis 2018; 29(4): 219-22. doi: 10.1097/DER.0000000000000392 PMID: 29939855
  78. Wang H, Cui L, Jia Y, Gao Y, Zhang G, He C. Application of lipidomics to reveal differences of facial skin surface lipids between atopic dermatitis and healthy infants. J Cosmet Dermatol 2020; 19(6): 1528-34. doi: 10.1111/jocd.13188 PMID: 31617666
  79. Hoji A, Kumar R, Gern JE, Bendixsen CG, Seroogy CM, Cook-Mills JM. Cord blood sphingolipids are associated with atopic dermatitis and wheeze in the first year of life. J Allergy Clin Immunol 2022; 1(3): 162-71. doi: 10.1016/j.jacig.2022.03.002 PMID: 36117517
  80. Eigenmann PA, Beyer K, Lack G, et al. Are avoidance diets still warranted in children with atopic dermatitis? Pediatr Allergy Immunol 2020; 31(1): 19-26. doi: 10.1111/pai.13104 PMID: 31273833
  81. Martin PE, Eckert JK, Koplin JJ, et al. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy 2015; 45(1): 255-64. doi: 10.1111/cea.12406 PMID: 25210971
  82. Lloyd-Lavery A, Solman L, Grindlay DJC, Rogers NK, Thomas KS, Harman KE. What’s new in atopic eczema? An analysis of systematic reviews published in 2016. Part 2: Epidemiology, aetiology and risk factors. Clin Exp Dermatol 2019; 44(4): 370-5. doi: 10.1111/ced.13853 PMID: 30706503
  83. Savage J, Sicherer S, Wood R. The natural history of food allergy. J Allergy Clin Immunol Pract 2016; 4(2): 196-203. doi: 10.1016/j.jaip.2015.11.024 PMID: 26968958
  84. di Mauro G, Bernardini R, Barberi S, et al. Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics. World Allergy Organ J 2016; 9: 28. doi: 10.1186/s40413-016-0111-6 PMID: 27583103
  85. Schütte O, Bachmann L, Shivappa N, et al. Pro-inflammatory diet pictured in children with atopic dermatitis or food allergy: Nutritional data of the LiNA cohort. Front Nutr 2022; 9: 868872. doi: 10.3389/fnut.2022.868872 PMID: 35464023
  86. Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA. Primary prevention of allergic disease through nutritional interventions. J Allergy Clin Immunol Pract 2013; 1(1): 29-36. doi: 10.1016/j.jaip.2012.09.003 PMID: 24229819
  87. Earp E, Tsianou Z, Grindlay DJC, Rogers NK, Olabi B. What’s new in atopic eczema? An analysis of systematic reviews published in 2019. Part 1: Risk factors and prevention. Clin Exp Dermatol 2021; 46(7): 1205-10. doi: 10.1111/ced.14788 PMID: 34080217
  88. Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunity 2017; 47(1): 32-50. doi: 10.1016/j.immuni.2017.07.004 PMID: 28723552
  89. Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest 1993; 92(3): 1374-80. doi: 10.1172/JCI116711 PMID: 7690780
  90. Ong PY. Association between egg and staphylococcal superantigen IgE sensitizations in atopic dermatitis. Allergy Asthma Proc 2014; 35(4): 346-8. doi: 10.2500/aap.2014.35.3757 PMID: 24992554
  91. Lee SY, Lee E, Park YM, Hong SJ. Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol Res 2018; 10(4): 354-62. doi: 10.4168/aair.2018.10.4.354 PMID: 29949831
  92. Kim J, Kim H. Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J Clin Med 2019; 8(4): 444. doi: 10.3390/jcm8040444 PMID: 30987008
  93. Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. Microbial–host molecular exchange and its functional consequences in early mammalian life. Science 2020; 368(6491): 604-7. doi: 10.1126/science.aba0478 PMID: 32381716
  94. Foisy M, Boyle RJ, Chalmers JR, Simpson EL, Williams HC. The prevention of eczema in infants and children: An overview of Cochrane and non-Cochrane reviews. Evid Based Child Health 2011; 6(5): 1322-39. doi: 10.1002/ebch.827 PMID: 22822349
  95. Trikamjee T, Comberiati P, D’Auria E, Peroni D, Zuccotti GV. Nutritional factors in the prevention of atopic dermatitis in children. Front Pediatr 2021; 8: 577413. doi: 10.3389/fped.2020.577413 PMID: 33585361
  96. Güngör D, Nadaud P, LaPergola CC, et al. Infant milk-feeding practices and food allergies, allergic rhinitis, atopic dermatitis, and asthma throughout the life span: A systematic review. Am J Clin Nutr 2019; 109 (Suppl. 7): S772-99. doi: 10.1093/ajcn/nqy283 PMID: 30982870
  97. Lin B, Dai R, Lu L, Fan X, Yu Y. Breastfeeding and atopic dermatitis risk: A systematic review and meta-analysis of prospective cohort studies. Dermatology 2020; 236(4): 345-60. doi: 10.1159/000503781 PMID: 31694017
  98. Khaleva E, Gridneva Z, Geddes DT, et al. Transforming growth factor beta in human milk and allergic outcomes in children: A systematic review. Clin Exp Allergy 2019; 49(9): 1201-13. doi: 10.1111/cea.13409 PMID: 31058363
  99. Amalia N, Orchard D, Francis KL, King E. Systematic review and meta‐analysis on the use of probiotic supplementation in pregnant mother, breastfeeding mother and infant for the prevention of atopic dermatitis in children. Australas J Dermatol 2020; 61(2): e158-73. doi: 10.1111/ajd.13186 PMID: 31721162
  100. Yin DG, He Z, Duan XY, Fan FX, Liao XB, Wang QC. Effect of probiotic supplementation during pregnancy and infancy in preventing atopic dermatitis in children: A Meta analysis. Zhongguo Dang Dai Er Ke Za Zhi 2019; 21(1): 82-8. PMID: 30675869
  101. Fanfaret I, Boda D, Ion L, et al. Probiotics and prebiotics in atopic dermatitis: Pros and cons (Review). Exp Ther Med 2021; 22(6): 1376. doi: 10.3892/etm.2021.10811 PMID: 34650624
  102. Zhao Y, Qi C, Li X, et al. Prevention of atopic dermatitis in mice by Lactobacillus Reuteri Fn041 through induction of regulatory T cells and modulation of the gut microbiota. Mol Nutr Food Res 2022; 66(6): 2100699. doi: 10.1002/mnfr.202100699 PMID: 34825773
  103. Łoś-Rycharska E, Gołębiewski M, Sikora M, et al. A combined analysis of gut and skin microbiota in infants with food allergy and atopic dermatitis: A pilot study. Nutrients 2021; 13(5): 1682. doi: 10.3390/nu13051682 PMID: 34063398
  104. Gołębiewski M, Łoś-Rycharska E, Sikora M, Grzybowski T, Gorzkiewicz M, Krogulska A. Mother’s milk microbiome shaping fecal and skin microbiota in infants with food allergy and atopic dermatitis: A pilot analysis. Nutrients 2021; 13(10): 3600. doi: 10.3390/nu13103600 PMID: 34684601
  105. Wu Y, Zhou X, Zhang X, et al. Breast milk flora plays an important role in infantile eczema: Cohort study in Northeast China. J Appl Microbiol 2021; 131(6): 2981-93. doi: 10.1111/jam.15076 PMID: 33735474
  106. Penders J, Stobberingh EE, Thijs C, et al. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin Exp Allergy 2006; 36(12): 1602-8. doi: 10.1111/j.1365-2222.2006.02599.x PMID: 17177684
  107. Amorim NCM, Silva AGCL, Rebouças AS, et al. Dietary share of ultra-processed foods and its association with vitamin E biomarkers in Brazilian lactating women. Br J Nutr 2022; 127(8): 1224-31. doi: 10.1017/S0007114521001963 PMID: 34103111
  108. Kong WS, Tsuyama N, Inoue H, et al. Long-chain saturated fatty acids in breast milk are associated with the pathogenesis of atopic der-matitis via induction of inflammatory ILC3s. Sci Rep 2021; 11(1): 13109. doi: 10.1038/s41598-021-92282-0 PMID: 34162906
  109. Teo CWL, Tay SHY, Tey HL, Ung YW, Yap WN. Vitamin E in atopic dermatitis: From preclinical to clinical studies. Dermatology 2021; 237(4): 553-64. doi: 10.1159/000510653 PMID: 33070130

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers