Application of Network Pharmacology and Molecular Docking to Explore the Mechanism of Danggui Liuhuang Tang against Hyperthyroidism
- Autores: Song D.1, Yang B.2, Bao W.3, Wang J.4
-
Afiliações:
- School of Information Science and Engineeringing, Zaozhuang University
- School of Information Science and Engineering, Zaozhuang University
- School of Information and Electrical Engineering, Xuzhou University of Technology
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University
- Edição: Volume 20, Nº 2 (2024)
- Páginas: 183-193
- Seção: Chemistry
- URL: https://gynecology.orscience.ru/1573-4099/article/view/643947
- DOI: https://doi.org/10.2174/1573409919666230504111802
- ID: 643947
Citar
Texto integral
Resumo
Introduction:To investigate the mechanism of Danggui Liuhuang Tang (DGLHT) in the treatment of hyperthyroidism (HT), we explored the multi-component, multi-target, and multi-pathway mechanism based on the network pharmacology method of traditional Chinese medicine.
Objective:Using network pharmacology and molecular docking, the effective components, core targets, and critical pathways of DGLHT in the therapy of HT were investigated. The mechanism of DGLHT in the treatment of HT is discussed in this work, which also offers a scientific foundation for further research into the process.
Methods:To take DGLHT into the blood components as the research object, we used GeneCards, Drungbank, Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), and other databases to predict the potential target of the components. Then, it was integrated with the predicted targets of HT disease to obtain the potential targets of DGLHT in the treatment of HT. We used String database and Cytoscape software for protein-protein interaction network (PPI) construction, and DAVID platform for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, the Cytoscape software was used to construct a \"component-target-pathway\" network; the AutoDock Vina platform was used to conduct molecular docking between the blood entry components and key targets.
Results:According to the analysis, a total of 93 active ingredients, 348 disease-related targets, and 36 potential targets were screened out. Among them, key targets such as MAPK1, CCND1, AKT1, and TNF exert curative effects, and the main pathways are the HIF-1 signaling pathway, FoxO signaling pathway, Chemokine signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, T cell receptor signaling pathway, Jak-STAT signaling pathway, and other pathways. Molecular docking results verified the interaction between active ingredients and key targets, among which rustication and quercetin had high docking affinity with key target proteins MAPK1 and CCND1.
Conclusion:This study preliminary revealed that DGLHT has the characteristics of multi-component, multi-target, and multi-pathway in the treatment of HT, and it established a scientific foundation for a more detailed investigation of DGLHT's molecular mechanism in the treatment of HT.
Sobre autores
Dan Song
School of Information Science and Engineeringing, Zaozhuang University
Email: info@benthamscience.net
Bin Yang
School of Information Science and Engineering, Zaozhuang University
Autor responsável pela correspondência
Email: info@benthamscience.net
Wenzheng Bao
School of Information and Electrical Engineering, Xuzhou University of Technology
Autor responsável pela correspondência
Email: info@benthamscience.net
Jinglong Wang
College of Food Science and Pharmaceutical Engineering, Zaozhuang University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol., 2015, 3(4), 286-295. doi: 10.1016/S2213-8587(14)70225-6 PMID: 25591468
- Taylor, P.N.; Albrecht, D.; Scholz, A.; Gutierrez-Buey, G.; Lazarus, J.H.; Dayan, C.M.; Okosieme, O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol., 2018, 14(5), 301-316. doi: 10.1038/nrendo.2018.18 PMID: 29569622
- Lillevang-Johansen, M.; Abrahamsen, B.; Jørgensen, H.L.; Brix, T.H.; Hegedüs, L. Duration of hyperthyroidism and lack of sufficient treatment are associated with increased cardiovascular risk. Thyroid, 2019, 29(3), 332-340. doi: 10.1089/thy.2018.0320 PMID: 30648498
- Khan, R.; Sikanderkhel, S.; Gui, J.; Adeniyi, A.R.; ODell, K.; Erickson, M.; Malpartida, J.; Mufti, Z.; Khan, T.; Mufti, H.; Al-Adwan, S.A.; Alvarez, D.; Davis, J.; Pendley, J.; Patel, D. Thyroid and cardiovascular disease: A focused review on the impact of hyperthyroidism in heart failure. Cardiol. Res., 2020, 11(2), 68-75. doi: 10.14740/cr1034 PMID: 32256913
- Ramadan, H.M.; Taha, N.A.; Ahmed, H.H. Melatonin enhances antioxidant defenses but could not ameliorate the reproductive disorders in induced hyperthyroidism model in male rats. Environ. Sci. Pollut. Res. Int., 2021, 28(4), 4790-4804. doi: 10.1007/s11356-020-10682-7 PMID: 32951169
- Zygmunt, A.; Krawczyk-Rusiecka, K.; Skowrońska-Jóźwiak, E.; Wojciechowska-Durczyńska, K.; Głowacka, E.; Adamczewski, Z.; Lewiński, A. The effect of recombinant human TSH on sclerostin and other selected bone markers in patients after total thyroidectomy for differentiated thyroid cancer. J. Clin. Med., 2021, 10(21), 4905. doi: 10.3390/jcm10214905 PMID: 34768424
- Scappaticcio, L.; Longo, M.; Maiorino, M.I.; Pernice, V.; Caruso, P.; Esposito, K.; Bellastella, G. Abnormal liver blood tests in patients with hyperthyroidism: Systematic review and meta-analysis. Thyroid, 2021, 31(6), 884-894. doi: 10.1089/thy.2020.0715 PMID: 33327837
- Shen, X.; Yang, R.; An, J.; Zhong, X. Analysis of the molecular mechanisms of the effects of prunella vulgaris against subacute thyroiditis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020(8), 1-13. doi: 10.1155/2020/9810709 PMID: 33273957
- Zhou, M.; Hong, Y.; Lin, X.; Shen, L.; Feng, Y. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. J. Ethnopharmacol., 2017, 206, 363-375. doi: 10.1016/j.jep.2017.06.007 PMID: 28606807
- Deng, C.; Li, J.; Tanf, X.Z. Observation of the short-term effects and long-term recurrence rate of chaihu shugan san in the treatment of hyperthyroidism thyroid function. Liaoning Zhongyiyao Daxue Xuebao, 2017, 19(6), 107-110.
- Xu, N.; He, X.J.; Gang, X.L.; Fu, L.P. Huangqi suanzaoren decoction in treatment of hyperthyroidism. Acta. Chinese. Med., 2019, 34(249), 375-378.
- Guo, J.L. 50 Cases with hyperthyroidism treated by sour jujube decoction combined with minor bupleurum decoction. Henan Traditional Chinese Medicine, 2015, 35(2), 234-236.
- Yang, K.; Guo, K.Q.; Wu, H.Y.; Ye, L.X.; Xia, H. Clinical effect of prunrllae oral solution in treating hyperthyrea. Z red fruit Z red medicine za value, 2007, 32(16), 1706-1708. PMID: 18027674
- Sun, F.; Ruan, Z.H. Therapeutic effect of danggui liuhuang decoction on hyperthyroidism of phlegm and blood stasis type. J. Trad. Chin. Med., 2019, 33(10), 27-29.
- Xu, Y.J. Application of danggui liuhuang decoction in diabetes complications. Liaoning J Trad Chinese Med, 2011, 38(9), 1889-1890.
- Zhang, Y. Clinical observation of danggui liuhuang decoction in the treatment of perimenopausal syndrome. J North Pharm, 2018, 15(3), 57.
- Li, J.W.; Wang, D.C.; Wu, H.B.; Lin, J.W.; Song, X.R.; Cheng, B.M. Systematic evaluation and meta-analysis of modified danggui liuhuang decoction combined with antithyroid drugs in the treatment of hyperthyroidism. J Guangzhou Uni Trad Chinese Med, 2021, 38(02), 426.
- Ruan, D.Y.; Guo, X.X. Effect of modified dangguiliuhuang decoction combined with methimazole on patients with yin deficiency and fire hyperthyroidism. Pract Clin J Trad Chin Med, 2021, 21(16), 17.
- Lu, W.F. 30 Cases of yin deficiency and fire hyperthyroidism treated by danggui liuhuang decoction combined with propyl thiouracil. Chin J Ethnomed Ethnopharm, 2018, 07(09), 83.
- Zen, X.X.; Yuan, Y.; Liu, Y.; Wu, T.X.; Han, S. Chinese herbal medicines for hyperthyroidism. Cochrane Database Syst. Rev., 2007, 2007(2), CD005450. PMID: 17443591
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10. doi: 10.1016/j.addr.2015.01.009 PMID: 25666163
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled proteinprotein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368. doi: 10.1093/nar/gkw937 PMID: 27924014
- Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs, 2020, 18(11), 545. doi: 10.3390/md18110545 PMID: 33143025
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922. doi: 10.1371/journal.pone.0083922 PMID: 24391846
- Qian, H.; Jin, Q.; Liu, Y.; Wang, N.; Chu, Y.; Liu, B.; Liu, Y.; Jiang, W.; Song, Y. Study on the multitarget mechanism of sanmiao pill on gouty arthritis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11. doi: 10.1155/2020/9873739 PMID: 32831884
- Panda, S.; Kar, A. Annona squamosa seed extract in the regulation of hyperthyroidism and lipid-peroxidation in mice: Possible involvement of quercetin. Phytomedicine, 2007, 14(12), 799-805. doi: 10.1016/j.phymed.2006.12.001 PMID: 17291737
- Zhao, P.; Hu, Z.; Ma, W.; Zang, L.; Tian, Z.; Hou, Q. Quercetin alleviates hyperthyroidism‐induced liver damage via Nrf2 Signaling pathway. Biofactors, 2020, 46(4), 608-619. doi: 10.1002/biof.1626 PMID: 32078205
- Araujo, A.S.R.; Schenkel, P.; Enzveiler, A.T.; Fernandes, T.R.G.; Partata, W.A.; Llesuy, S.; Ribeiro, M F M.; Khaper, N.; Singal, P.K.; Belló-Klein, A. The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J. Mol. Endocrinol., 2008, 41(6), 423-430. doi: 10.1677/JME-08-0024 PMID: 18787053
- Díez, J.J.; Hernanz, A.; Medina, S.; Bayón, C.; Iglesias, P. Serum concentrations of tumour necrosis factor-alpha (TNF-α) and soluble TNF-α receptor p55 in patients with hypothyroidism and hyperthyroidism before and after normalization of thyroid function. Clin. Endocrinol., 2002, 57(4), 515-521. doi: 10.1046/j.1365-2265.2002.01629.x PMID: 12354134
- Leal, A.L.R.C.; Pantaleão, T.U.; Moreira, D.G.; Marassi, M.P.; Pereira, V.S.; Rosenthal, D.; Corrêa da Costa, V.M. Hypothyroidism and hyperthyroidism modulates Ras-MAPK intracellular pathway in rat thyroids. Endocrine, 2007, 31(2), 174-178. doi: 10.1007/s12020-007-0029-4 PMID: 17873330
- Wang, Q.H. Research on professor Lin Lans clinical experience in the treatment of hyperthyroidism and the mechanism of JiaKangning capsule in regulating of ERK pathway in FRTL-5 cells; Chinese Academy of Traditional Chinese Medicine, 2016.
- Agretti, P.; De Marco, G.; Ferrarini, E.; Di Cosmo, C.; Montanelli, L.; Bagattini, B.; Chiovato, L.; Tonacchera, M. Gene expression profile in functioning and non-functioning nodules of autonomous multinodular goiter from an area of iodine deficiency: Unexpected common characteristics between the two entities. J. Endocrinol. Invest., 2022, 45(2), 399-411. doi: 10.1007/s40618-021-01660-y PMID: 34405392
- Polak, A.; Grywalska, E.; Klatka, J.; Roliński, J.; Matyjaszek-Matuszek, B.; Klatka, M. Toll-Like Receptors-2 and -4 in graves disease-key players or bystanders? Int. J. Mol. Sci., 2019, 20(19), 4732. doi: 10.3390/ijms20194732 PMID: 31554206
- Aktaş, T.; Celik, S.K.; Genc, G.C.; Arpaci, D.; Can, M.; Dursun, A. Higher levels of serum TLR2 and TLR4 in patients with hashimotos thyroiditis. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 118-126. doi: 10.2174/1871530319666190329114621 PMID: 30924423
- Fallahi, P.; Ferrari, S.M.; Elia, G.; Ragusa, F.; Paparo, S.R.; Patrizio, A.; Camastra, S.; Miccoli, M.; Cavallini, G.; Benvenga, S.; Antonelli, A. Cytokines as targets of novel therapies for graves ophthalmopathy. Front. Endocrinol., 2021, 12, 654473. doi: 10.3389/fendo.2021.654473 PMID: 33935970
- Wei, Y.H.; Liao, S.L.; Wang, C.C.; Wang, S.H.; Tang, W.C.; Yang, C.H. Simvastatin inhibits CYR61 expression in orbital fibroblasts in graves ophthalmopathy through the regulation of FoxO3a signaling. Mediators Inflamm., 2021, 2021, 1-12. doi: 10.1155/2021/8888913 PMID: 33542676
- Taglieri, L.; Nardo, T.; Vicinanza, R.; Ross, J.M.; Scarpa, S.; Coppotelli, G. Thyroid hormone regulates fibronectin expression through the activation of the hypoxia inducible factor 1. Biochem. Biophys. Res. Commun., 2017, 493(3), 1304-1310. doi: 10.1016/j.bbrc.2017.09.169 PMID: 28974422
- Endo, T. Thyrotropin receptor-structure, autoantibody and signal transduction. Jpn. J. Clin. Med., 2006, 64(12), 2203-2207. PMID: 17154079
- Cui, X.; Huang, M.; Wang, S.; Zhao, N.; Huang, T.; Wang, Z.; Qiao, J.; Wang, S.; Shan, Z.; Teng, W.; Li, Y. Circulating exosomes from patients with graves disease induce an inflammatory immune response. Endocrinology, 2021, 162(3), bqaa236. doi: 10.1210/endocr/bqaa236 PMID: 33367747
Arquivos suplementares
