Bone Marrow Mesenchymal Stem Cell-derived Exosomal microRNA-99b-5p Promotes Cell Growth of High Glucose-treated Human Umbilical Vein Endothelial Cells by Modulating THAP Domain Containing 2 Expression


Цитировать

Полный текст

Аннотация

Introduction:Bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) may function as novel candidates for treating diabetic wounds due to their ability to promote angiogenesis.

Materials and Methods:This study investigated the effects of BMSC-exos on the growth and metastasis of human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG). The exosomes were separated from BMSCs and identified. The cell phenotype was detected by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and 5-ethynyl-2’-deoxyuridine, wound healing, and transwell assays, while the number of tubes was measured via tube formation assay.

Result:The RNA and protein expression levels were studied using reverse transcription-quantitative polymerase chain reaction and western blotting, whereas integration of microRNA-99b-5p (miR-99b-5p) with THAP domain containing 2 (THAP2) was confirmed via dual-luciferase reporter and RNA pull-down assays. Results of transmission electron microscopy, nanoparticle tracking analysis, and laser scanning confocal microscopy revealed that exosomes were successfully separated from BMSCs and endocytosed into the cytoplasm by HUVECs. Similarly, BMSC-exos were found to promote the growth of HG-treated HUVECs, while their growth was inhibited by suppressing miR-99b-5p. THAP2 was found to bind to miR-99b-5p, where THAP2 inhibition reversed the miR-99b-5p-induced effects on cell growth, migration, and tube numbers.

Conclusion:In conclusion, miR-99b-5p in BMSC-exo protects HUVECs by negatively regulating THAP2 expression.

Об авторах

Hongru Ruan

Department of Burn and Plastic Surgery, Zhenjiang First People's Hospital

Email: info@benthamscience.net

Hui Shi

Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University

Email: info@benthamscience.net

Wenkang Luan

Department of Burn and Plastic Surgery, Zhenjiang First People's Hospital

Email: info@benthamscience.net

Sida Pan

Department of Plastic Surgery, Affiliated Huashan Hospital, Fudan University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care, 2018, 41(5), 963-970. doi: 10.2337/dc17-1962 PMID: 29475843
  2. Vaz de Castro, P.A.S.; Bitencourt, L.; de Oliveira Campos, J.L.; Fischer, B.L.; Soares de Brito, S.B.C.; Soares, B.S.; Drummond, J.B.; Simões e Silva, A.C. Nephrogenic diabetes insipidus: A comprehensive overview. J. Pediatr. Endocrinol. Metab., 2022, 35(4), 421-434. doi: 10.1515/jpem-2021-0566 PMID: 35146976
  3. Morris, A. New test for diabetes insipidus. Nat. Rev. Endocrinol., 2019, 15(10), 564-565. PMID: 31367010
  4. Maranda, E.; Rodriguez-Menocal, L.; Badiavas, E. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds. Curr. Stem Cell Res. Ther., 2016, 12(1), 61-70. doi: 10.2174/1574888X11666160714115926 PMID: 27412677
  5. Cho, H.; Blatchley, M.R.; Duh, E.J.; Gerecht, S. Acellular and cellular approaches to improve diabetic wound healing. Adv. Drug Deliv. Rev., 2019, 146, 267-288. doi: 10.1016/j.addr.2018.07.019 PMID: 30075168
  6. Holl, J.; Kowalewski, C.; Zimek, Z.; Fiedor, P.; Kaminski, A.; Oldak, T.; Moniuszko, M.; Eljaszewicz, A. Chronic diabetic wounds and their treatment with skin substitutes. Cells, 2021, 10(3), 655. doi: 10.3390/cells10030655 PMID: 33804192
  7. Sen, C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care, 2021, 10(5), 281-292. doi: 10.1089/wound.2021.0026 PMID: 33733885
  8. Ko, K.; Sculean, A.; Graves, D.T. Diabetic wound healing in soft and hard oral tissues. Transl. Res., 2021, 236, 72-86. doi: 10.1016/j.trsl.2021.05.001 PMID: 33992825
  9. Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610. doi: 10.1007/s12325-017-0478-y PMID: 28108895
  10. Yan, C.; Chen, J.; Wang, C.; Yuan, M.; Kang, Y.; Wu, Z.; Li, W.; Zhang, G.; Machens, H.G.; Rinkevich, Y.; Chen, Z.; Yang, X.; Xu, X. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv., 2022, 29(1), 214-228. doi: 10.1080/10717544.2021.2023699 PMID: 34985397
  11. Chen, X.; Jiang, W.; Liu, Y.; Ma, Z.; Dai, J. Anti-inflammatory action of geniposide promotes wound healing in diabetic rats. Pharm. Biol., 2022, 60(1), 294-299. doi: 10.1080/13880209.2022.2030760 PMID: 35130118
  12. Kunkemoeller, B.; Kyriakides, T.R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxid. Redox Signal., 2017, 27(12), 823-838. doi: 10.1089/ars.2017.7263 PMID: 28699352
  13. Li, Y.; Lin, S.; Xiong, S.; Xie, Q. Recombinant expression of human IL-33 protein and its effect on skin wound healing in diabetic mice. Bioengineering, 2022, 9(12), 734. doi: 10.3390/bioengineering9120734 PMID: 36550940
  14. Shu, X.; Shu, S.; Tang, S.; Yang, L.; Liu, D.; Li, K.; Dong, Z.; Ma, Z.; Zhu, Z.; Din, J. Efficiency of stem cell based therapy in the treatment of diabetic foot ulcer: A meta-analysis. Endocr. J., 2018, 65(4), 403-413. doi: 10.1507/endocrj.EJ17-0424 PMID: 29353870
  15. Lopes, L.; Setia, O.; Aurshina, A.; Liu, S.; Hu, H.; Isaji, T.; Liu, H.; Wang, T.; Ono, S.; Guo, X.; Yatsula, B.; Guo, J.; Gu, Y.; Navarro, T.; Dardik, A. Stem cell therapy for diabetic foot ulcers: A review of preclinical and clinical research. Stem Cell Res. Ther., 2018, 9(1), 188-188. doi: 10.1186/s13287-018-0938-6 PMID: 29996912
  16. Friedenstein, A.J.; Petrakova, K.V.; Kurolesova, A.I.; Frolova, G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, 6(2), 230-247. doi: 10.1097/00007890-196803000-00009 PMID: 5654088
  17. Pixley, J.S. Mesenchymal stem cells to treat type 1 diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165315. doi: 10.1016/j.bbadis.2018.10.033 PMID: 30508575
  18. Li, H.; Fu, X. Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell Tissue Res., 2012, 348(3), 371-377. doi: 10.1007/s00441-012-1393-9 PMID: 22447168
  19. Gnecchi, M.; Zhang, Z.; Ni, A.; Dzau, V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res., 2008, 103(11), 1204-1219. doi: 10.1161/CIRCRESAHA.108.176826 PMID: 19028920
  20. Poltavtseva, R.A.; Poltavtsev, A.V.; Lutsenko, G.V.; Svirshchevskaya, E.V. Myths, reality and future of mesenchymal stem cell therapy. Cell Tissue Res., 2019, 375(3), 563-574. doi: 10.1007/s00441-018-2961-4 PMID: 30456646
  21. Ji, Y.; Ji, J.; Yin, H.; Chen, X.; Zhao, P.; Lu, H.; Wang, T. Exosomes derived from microRNA-129-5p-modified tumor cells selectively enhanced suppressive effect in malignant behaviors of homologous colon cancer cells. Bioengineered, 2021, 12(2), 12148-12156. doi: 10.1080/21655979.2021.2004981 PMID: 34775889
  22. Wang, Z.; Sun, W.; Li, R.; Liu, Y. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4. Bioengineered, 2022, 13(3), 7683-7696. doi: 10.1080/21655979.2021.2023794 PMID: 35291915
  23. Kusuma, G.D.; Barabadi, M.; Tan, J.L.; Morton, D.A.V.; Frith, J.E.; Lim, R. To protect and to preserve: Novel preservation strategies for extracellular vesicles. Front. Pharmacol., 2018, 9, 1199-1199. doi: 10.3389/fphar.2018.01199 PMID: 30420804
  24. Newton, W.C.; Kim, J.W.; Luo, J.Z.Q.; Luo, L. Stem cell-derived exosomes: A novel vector for tissue repair and diabetic therapy. J. Mol. Endocrinol., 2017, 59(4), R155-R165. doi: 10.1530/JME-17-0080 PMID: 28835418
  25. Willis, G.R.; Fernandez-Gonzalez, A.; Anastas, J.; Vitali, S.H.; Liu, X.; Ericsson, M.; Kwong, A.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med., 2018, 197(1), 104-116. doi: 10.1164/rccm.201705-0925OC PMID: 28853608
  26. Ding, J.; Wang, X.; Chen, B.; Zhang, J.; Xu, J. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. BioMed Res. Int., 2019, 2019, 1-12. doi: 10.1155/2019/9742765 PMID: 31192260
  27. Wu, X.; Showiheen, S.A.A.; Sun, A.R.; Crawford, R.; Xiao, Y.; Mao, X.; Prasadam, I. Exosomes extraction and identification. Methods Mol. Biol., 2019, 2054, 81-91. doi: 10.1007/978-1-4939-9769-5_4 PMID: 31482448
  28. Dalby, B.; Cates, S.; Harris, A.; Ohki, E.C.; Tilkins, M.L.; Price, P.J.; Ciccarone, V.C. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods, 2004, 33(2), 95-103. doi: 10.1016/j.ymeth.2003.11.023 PMID: 15121163
  29. Pužar Dominkuš, P.; Stenovec, M.; Sitar, S.; Lasič, E.; Zorec, R.; Plemenitaš, A.; Žagar, E.; Kreft, M.; Lenassi, M. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1350-1361. doi: 10.1016/j.bbamem.2018.03.013 PMID: 29551275
  30. Karakaş, D.; Ari, F.; Ulukaya, E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turk. J. Biol., 2017, 41(6), 919-925. doi: 10.3906/biy-1703-104 PMID: 30814856
  31. Diermeier-Daucher, S.; Clarke, S.T.; Hill, D.; Vollmann-Zwerenz, A.; Bradford, J.A.; Brockhoff, G. Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A, 2009, 75A(6), 535-546. doi: 10.1002/cyto.a.20712 PMID: 19235202
  32. Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol., 2017, 137(2), e11-e16. doi: 10.1016/j.jid.2016.11.020 PMID: 28110712
  33. Omar Zaki, S.S.; Kanesan, L.; Leong, M.Y.D.; Vidyadaran, S. The influence of serum-supplemented culture media in a transwell migration assay. Cell Biol. Int., 2019, 43(10), 1201-1204. doi: 10.1002/cbin.11122 PMID: 30811086
  34. Qiu, N.; Xu, X.; He, Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm. Med., 2020, 20(1), 49. doi: 10.1186/s12890-020-1084-3 PMID: 32087725
  35. Bierhoff, H. Analysis of lncRNA-Protein Interactions by RNA-Protein Pull-Down Assays and RNA Immunoprecipitation (RIP); Springer New York: New York, NY, 2017, pp. 241-250.
  36. Rocha, D.J.P.G. Gene Expression Analysis in Bacteria by RT-qPCR; Springer New York: New York, NY, 2019, pp. 119-137.
  37. Bass, J.J.; Wilkinson, D.J.; Rankin, D.; Phillips, B.E.; Szewczyk, N.J.; Smith, K.; Atherton, P.J. An overview of technical considerations for Western blotting applications to physiological research. Scand. J. Med. Sci. Sports, 2017, 27(1), 4-25. doi: 10.1111/sms.12702 PMID: 27263489
  38. An, J.; Chen, X.; Chen, W.; Liang, R.; Reinach, P.S.; Yan, D.; Tu, L. MicroRNA expression profile and the role of mir-204 in corneal wound healing. Invest. Ophthalmol. Vis. Sci., 2015, 56(6), 3673-3683. doi: 10.1167/iovs.15-16467 PMID: 26047168
  39. Kosaric, N.; Kiwanuka, H.; Gurtner, G.C. Stem cell therapies for wound healing. Expert Opin. Biol. Ther., 2019, 19(6), 575-585. doi: 10.1080/14712598.2019.1596257 PMID: 30900481
  40. Yang, J.; Chen, Z.; Pan, D.; Li, H.; Shen, J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine, 2020, 15, 5911-5926. doi: 10.2147/IJN.S249129 PMID: 32848396
  41. Guo, J.; Hu, H.; Gorecka, J.; Bai, H.; He, H.; Assi, R.; Isaji, T.; Wang, T.; Setia, O.; Lopes, L.; Gu, Y.; Dardik, A. Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells. Am. J. Physiol. Cell Physiol., 2018, 315(6), C885-C896. doi: 10.1152/ajpcell.00120.2018 PMID: 30404559
  42. Jiang, W.; Zhang, J.; Zhang, X.; Fan, C.; Huang, J. VAP-PLGA microspheres (VAP-PLGA) promote adipose-derived stem cells (ADSCs)-induced wound healing in chronic skin ulcers in mice via PI3K/Akt/HIF-1α pathway. Bioengineered, 2021, 12(2), 10264-10284. doi: 10.1080/21655979.2021.1990193 PMID: 34720043
  43. Pittenger Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 2017.
  44. Li, M.; Wang, T.; Tian, H.; Wei, G.; Zhao, L.; Shi, Y. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3793-3803. doi: 10.1080/21691401.2019.1669617 PMID: 31556314
  45. Lu, M.; Peng, L.; Ming, X.; Wang, X.; Cui, A.; Li, Y.; Wang, X.; Meng, D.; Sun, N.; Xiang, M.; Chen, S. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine, 2019, 42, 443-457. doi: 10.1016/j.ebiom.2019.03.011 PMID: 30926422
  46. Shi, Y.; Kang, X.; Wang, Y.; Bian, X.; He, G.; Zhou, M.; Tang, K. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med. Sci. Monit., 2020, 26, e923328-e923328. doi: 10.12659/MSM.923328 PMID: 32369458
  47. Wang, Z.; Zhao, Z.; Yang, Y.; Luo, M.; Zhang, M.; Wang, X.; Liu, L.; Hou, N.; Guo, Q.; Song, T.; Guo, B.; Huang, C. MiR-99b-5p and miR-203a-3p function as tumor suppressors by targeting IGF-1R in gastric cancer. Sci. Rep., 2018, 8(1), 10119-12. doi: 10.1038/s41598-018-27583-y PMID: 29973668
  48. Liu, R.; Chen, Y.; Shou, T.; Hu, J.; Qing, C. miRNA-99b-5p targets FZD8 to inhibit non-small cell lung cancer proliferation, migration and invasion. OncoTargets Ther., 2019, 12, 2615-2621. doi: 10.2147/OTT.S199196 PMID: 31040702
  49. Jiang, S.; Chen, H.; He, K.; Wang, J. Human bone marrow mesenchymal stem cells-derived exosomes attenuated prostate cancer progression via the miR-99b-5p/IGF1R axis. Bioengineered, 2022, 13(2), 2004-2016. doi: 10.1080/21655979.2021.2009416 PMID: 35030978
  50. Kane, N.M.; Howard, L.; Descamps, B.; Meloni, M.; McClure, J.; Lu, R.; McCahill, A.; Breen, C.; Mackenzie, R.M.; Delles, C.; Mountford, J.C.; Milligan, G.; Emanueli, C.; Baker, A.H. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells, 2012, 30(4), 643-654. doi: 10.1002/stem.1026 PMID: 22232059
  51. Macfarlan, T.; Kutney, S.; Altman, B.; Montross, R.; Yu, J.; Chakravarti, D. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J. Biol. Chem., 2005, 280(8), 7346-7358. doi: 10.1074/jbc.M411675200 PMID: 15561719
  52. Dejosez, M.; Krumenacker, J.S.; Zitur, L.J.; Passeri, M.; Chu, L.F.; Songyang, Z.; Thomson, J.A.; Zwaka, T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 2008, 133(7), 1162-1174. doi: 10.1016/j.cell.2008.05.047 PMID: 18585351
  53. Lin, Y.; Khokhlatchev, A.; Figeys, D.; Avruch, J. Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J. Biol. Chem., 2002, 277(50), 47991-48001. doi: 10.1074/jbc.M202630200 PMID: 12384512
  54. Cayrol, C.; Lacroix, C.; Mathe, C.; Ecochard, V.; Ceribelli, M.; Loreau, E.; Lazar, V.; Dessen, P.; Mantovani, R.; Aguilar, L.; Girard, J.P. The THAP–zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood, 2007, 109(2), 584-594. doi: 10.1182/blood-2006-03-012013 PMID: 17003378
  55. Balakrishnan, M.P.; Cilenti, L.; Mashak, Z.; Popat, P.; Alnemri, E.S.; Zervos, A.S. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(2), H643-H653. doi: 10.1152/ajpheart.00234.2009 PMID: 19502560
  56. Majumdar, S.; Singh, A.; Rio, D.C. The human THAP9 gene encodes an active P-element DNA transposase. Science, 2013, 339(6118), 446-448. doi: 10.1126/science.1231789 PMID: 23349291
  57. Gervais, V.; Campagne, S.; Durand, J.; Muller, I.; Milon, A. NMR studies of a new family of DNA binding proteins: The THAP proteins. J. Biomol. NMR, 2013, 56(1), 3-15. doi: 10.1007/s10858-012-9699-1 PMID: 23306615

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024