STNMDA: A Novel Model for Predicting Potential Microbe-Drug Associations with Structure-Aware Transformer


Citar

Texto integral

Resumo

Introduction:Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches.

Methods:We proposed an efficient computational model, STNMDA, that integrated a StructureAware Transformer (SAT) with a Deep Neural Network (DNN) classifier to infer latent microbedrug associations. The STNMDA began with a "random walk with a restart" approach to construct a heterogeneous network using Gaussian kernel similarity and functional similarity measures for microorganisms and drugs. This heterogeneous network was then fed into the SAT to extract attribute features and graph structures for each drug and microbe node. Finally, the DNN classifier calculated the probability of associations between microbes and drugs.

Results:Extensive experimental results showed that STNMDA surpassed existing state-of-the-art models in performance on the MDAD and aBiofilm databases. In addition, the feasibility of STNMDA in confirming associations between microbes and drugs was demonstrated through case validations.

Conclusion:Hence, STNMDA showed promise as a valuable tool for future prediction of microbedrug associations.

Sobre autores

Liu Fan

College of Computer Science and Technology, Hengyang Normal University

Email: info@benthamscience.net

Xiaoyu Yang

, Changsha University, Big Data Innovation and Entrepreneurship Education Center of Hunan Province

Email: info@benthamscience.net

Lei Wang

, Changsha University, Big Data Innovation and Entrepreneurship Education Center of Hunan Province

Autor responsável pela correspondência
Email: info@benthamscience.net

Xianyou Zhu

, College of Computer Science and Technology, Hengyang Normal University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Ma P, Li C, Rahaman MM, et al. A state-of-the-art survey of object detection techniques in microorganism image analysis: From classical methods to deep learning approaches. Artif Intell Rev 2023; 56(2): 1627-98. doi: 10.1007/s10462-022-10209-1 PMID: 35693000
  2. Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 2005; 3(10): 777-88. doi: 10.1038/nrmicro1273 PMID: 16205711
  3. Frąc M, Hannula ES, Bełka M, Salles JF, Jedryczka M. Soil mycobiome in sustainable agriculture. Front Microbiol 2022; 13: 1033824. doi: 10.3389/fmicb.2022.1033824 PMID: 36519160
  4. Ventura M, O’Flaherty S, Claesson MJ, et al. Genome-scale analyses of health-promoting bacteria: Probiogenomics. Nat Rev Microbiol 2009; 7(1): 61-71. doi: 10.1038/nrmicro2047 PMID: 19029955
  5. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474(7351): 327-36. doi: 10.1038/nature10213 PMID: 21677749
  6. Sommer F, Bäckhed F. The gut microbiota - masters of host development and physiology. Nat Rev Microbiol 2013; 11(4): 227-38. doi: 10.1038/nrmicro2974 PMID: 23435359
  7. Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28(48): 6846-66. doi: 10.3748/wjg.v28.i48.6846 PMID: 36632317
  8. Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 2008; 190(13): 4632-40. doi: 10.1128/JB.00276-08 PMID: 18441055
  9. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci 2009; 106(7): 2365-70. doi: 10.1073/pnas.0812600106 PMID: 19164560
  10. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455(7216): 1109-13. doi: 10.1038/nature07336 PMID: 18806780
  11. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science 2021; 371(6536): eabc4552. doi: 10.1126/science.abc4552 PMID: 33766858
  12. Chen J, Douglass J, Prasath V, et al. The microbiome and breast cancer: A review. Breast Cancer Res Treat 2019; 178(3): 493-6. doi: 10.1007/s10549-019-05407-5 PMID: 31456069
  13. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019; 570(7762): 462-7. doi: 10.1038/s41586-019-1291-3 PMID: 31158845
  14. Ramirez M, Rajaram S, Steininger RJ, et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 2016; 7(1): 10690. doi: 10.1038/ncomms10690 PMID: 26891683
  15. Mann M, Kumar C, Zeng WF, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst 2021; 12(8): 759-70. doi: 10.1016/j.cels.2021.06.006 PMID: 34411543
  16. Dahmen J, Kayaalp ME, Ollivier M, et al. Artificial intelligence bot ChatGPT in medical research: The potential game changer as a double-edged sword. Knee Surg Sports Traumatol Arthrosc 2023; 31(4): 1187-9. doi: 10.1007/s00167-023-07355-6 PMID: 36809511
  17. Kurant DE. Opportunities and challenges with artificial intelligence in genomics. Clin Lab Med 2023; 43(1): 87-97. doi: 10.1016/j.cll.2022.09.007 PMID: 36764810
  18. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
  19. Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021; 373(6557): 871-6. doi: 10.1126/science.abj8754 PMID: 34282049
  20. Guedes IA, Barreto AMS, Marinho D, et al. New machine learning and physics-based scoring functions for drug discovery. Sci Rep 2021; 11(1): 3198. doi: 10.1038/s41598-021-82410-1 PMID: 33542326
  21. Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022; 17(9): 929-47. doi: 10.1080/17460441.2022.2114451 PMID: 35983695
  22. Sun YZ, Zhang DH, Cai SB, Ming Z, Li JQ, Chen X. MDAD: A special resource for microbe-drug associations. Front Cell Infect Microbiol 2018; 8: 424. doi: 10.3389/fcimb.2018.00424 PMID: 30581775
  23. Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900. doi: 10.1093/nar/gkx1157 PMID: 29156005
  24. Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76. doi: 10.1016/j.ijid.2020.02.018 PMID: 32081774
  25. Zhu L, Duan G, Yan C, Wang J. Prediction of microbe-drug associations based on Katz measure. 2019 IEEE international conference on bioinformatics and biomedicine 2019 Nov 18-21; San Diego, CA, USA 2019. doi: 10.1109/BIBM47256.2019.8983209
  26. Cheng X, Qu J, Song S, Bian Z. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ 2022; 10: e13848. doi: 10.7717/peerj.13848 PMID: 35990901
  27. Long Y, Wu M, Liu Y, Kwoh CK, Luo J, Li X. Ensembling graph attention networks for human microbe–drug association prediction. Bioinformatics 2020; 36(S2): i779-86. doi: 10.1093/bioinformatics/btaa891 PMID: 33381844
  28. Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36(19): 4918-27. doi: 10.1093/bioinformatics/btaa598 PMID: 32597948
  29. Deng L, Huang Y, Liu X, Liu H. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe–drug associations. Bioinformatics 2022; 38(4): 1118-25. doi: 10.1093/bioinformatics/btab792 PMID: 34864873
  30. Tan Y, Zou J, Kuang L, et al. GSAMDA: A computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder. BMC Bioinformatics 2022; 23(1): 492. doi: 10.1186/s12859-022-05053-7 PMID: 36401174
  31. Ma Y, Liu Q. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction. Comput Biol Med 2022; 145: 105503. doi: 10.1016/j.compbiomed.2022.105503 PMID: 35427986
  32. Tian Z, Yu Y, Fang H, Xie W, Guo M. Predicting microbe–drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy. Brief Bioinform 2023; 24(2): bbac634. doi: 10.1093/bib/bbac634 PMID: 36715986
  33. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN. Attention is all you need. Adv Neural Inf Process Syst 2017; 30: 5998-6008.
  34. Dosovitskiy A, Beyer L, Kolesnikov A. An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations.
  35. Rives A, Meier J, Sercu T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci 2021; 118(15): e2016239118. doi: 10.1073/pnas.2016239118 PMID: 33876751
  36. Oono K, Suzuki T. Graph neural networks exponentially lose expressive power for node classification. International Conference on Learning Representations. 2020 Apr 26-31; 2021.
  37. Alon U, Yahav E. On the bottleneck of graph neural networks and its practical implications. International Conference on Learning Representations. 2021 May 3-7; 2021.
  38. Liu S, Wang Y, Deng Y, et al. Improved drug–target interaction prediction with intermolecular graph transformer. Brief Bioinform 2022; 23(5): bbac162. doi: 10.1093/bib/bbac162 PMID: 35514186
  39. Yuan Q, Chen S, Rao J, Zheng S, Zhao H, Yang Y. AlphaFold2-aware protein–DNA binding site prediction using graph transformer. Brief Bioinform 2022; 23(2): bbab564. doi: 10.1093/bib/bbab564 PMID: 35039821
  40. Huang K, Xiao C, Glass LM, Sun J. MolTrans: Molecular interaction transformer for drug–target interaction prediction. Bioinformatics 2021; 37(6): 830-6. doi: 10.1093/bioinformatics/btaa880 PMID: 33070179
  41. Zhang P, Wei Z, Che C, Jin B. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction. Comput Biol Med 2022; 142: 105214. doi: 10.1016/j.compbiomed.2022.105214 PMID: 35030496
  42. Zhang R, Wang Z, Wang X, Meng Z, Cui W. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction. Brief Bioinform 2023; 24(2): bbad079. doi: 10.1093/bib/bbad079 PMID: 36892155
  43. Jha K, Saha S, Karmakar S. Prediction of protein-protein interactions using vision transformer and language model. IEEE/ACM Trans Comput Biol Bioinform 2023; 20(5): 3215-25. doi: 10.1109/TCBB.2023.3248797
  44. Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: From biological data to computational models. Brief Bioinform 2022; 23(3): bbac080. doi: 10.1093/bib/bbac080 PMID: 35325024
  45. Zhou Y, Wang X, Yao L, Zhu M. LDAformer: Predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder. Brief Bioinform 2022; 23(6): bbac370. doi: 10.1093/bib/bbac370 PMID: 36094081
  46. Schriml LM, Mitraka E, Munro J, et al. Human disease ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res 2019; 47(D1): D955-62. doi: 10.1093/nar/gky1032 PMID: 30407550
  47. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007; 23(10): 1274-81. doi: 10.1093/bioinformatics/btm087 PMID: 17344234
  48. Wang D, Wang J, Lu M, Song F, Cui Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 2010; 26(13): 1644-50. doi: 10.1093/bioinformatics/btq241 PMID: 20439255
  49. Chen D, O’Bray L, Borgwardt K. Structure-aware transformer for graph representation learning. International Conference on Machine Learning. 2022 June 17-23; Baltimore, Maryland, United States. 2022.
  50. Mialon G, Chen D, Selosse M, Mairal J. Graphit: Encoding graph structure in transformers. arXiv:210605667 2021.
  51. Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? International Conference on Learning Representations. 2019 May 6-9; New Orleans, United States. 2019.
  52. Imran M, Aslam M, Alsagaby SA, et al. Therapeutic application of carvacrol: A comprehensive review. Food Sci Nutr 2022; 10(11): 3544-61. doi: 10.1002/fsn3.2994 PMID: 36348778
  53. Churklam W, Chaturongakul S, Ngamwongsatit B, Aunpad R. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control 2020; 108: 106864. doi: 10.1016/j.foodcont.2019.106864
  54. Arkali G, Aksakal M, Kaya ŞÖ. Protective effects of carvacrol against diabetes‐induced reproductive damage in male rats: Modulation of Nrf2/HO‐1 signalling pathway and inhibition of Nf‐kB‐mediated testicular apoptosis and inflammation. Andrologia 2021; 53(2): e13899. doi: 10.1111/and.13899 PMID: 33242925
  55. Elbe H, Yigitturk G, Cavusoglu T, Baygar T, Ozgul Onal M, Ozturk F. Comparison of ultrastructural changes and the anticarcinogenic effects of thymol and carvacrol on ovarian cancer cells: Which is more effective? Ultrastruct Pathol 2020; 44(2): 193-202. doi: 10.1080/01913123.2020.1740366 PMID: 32183603
  56. Saghrouchni H, Barnossi AE, Mssillou I, et al. Potential of carvacrol as plant growth-promotor and green fungicide against fusarium wilt disease of perennial ryegrass. Front Plant Sci 2023; 14: 973207. doi: 10.3389/fpls.2023.973207 PMID: 36866385
  57. Benbrahim KF, Chraibi M, Farah A, Elamin O, Iraqui HM. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. J Adv Pharm Technol Res 2020; 11(1): 25-9. doi: 10.4103/japtr.JAPTR_74_19 PMID: 32154155
  58. Patel S. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(7): 1049-64. doi: 10.1080/19440049.2015.1040081 PMID: 25893282
  59. Abdelhamid AG, Yousef AE. Carvacrol and thymol combat desiccation resistance mechanisms in Salmonella enterica serovar tennessee. Microorganisms 2021; 10(1): 44. doi: 10.3390/microorganisms10010044 PMID: 35056493
  60. Javed H, Meeran MFN, Jha NK, Ojha S. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Front Plant Sci 2021; 11: 601335. doi: 10.3389/fpls.2020.601335 PMID: 33664752
  61. Wang Y, Hong X, Liu J, Zhu J, Chen J. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiol 2020; 91: 103506. doi: 10.1016/j.fm.2020.103506 PMID: 32539951
  62. McCurdy S, Lawrence L, Quintas M, et al. In vitro activity of delafloxacin and microbiological response against fluoroquinolone-susceptible and nonsusceptible staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2017; 61(9): e00772-17. doi: 10.1128/AAC.00772-17 PMID: 28630189
  63. Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68(1): 1-10. doi: 10.1099/jmm.0.000873 PMID: 30605076
  64. Liu X, Xiang L, Yin Y, Li H, Ma D, Qu Y. Pneumonia caused by Pseudomonas fluorescens: A case report. BMC Pulm Med 2021; 21(1): 212. doi: 10.1186/s12890-021-01573-9 PMID: 34225696
  65. Trinh SA, Gavin HE, Satchell KJF. Efficacy of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy for vibrio vulnificus foodborne septicemia. Antimicrob Agents Chemother 2017; 61(12): e01106-17. doi: 10.1128/AAC.01106-17 PMID: 28971862

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024