Prospects of Identifying Alternative Splicing Events from Single-Cell RNA Sequencing Data
- Authors: Wang J.1, Yuan L.2
-
Affiliations:
- Department of Hepatobiliary Surgery, Quzhou People's Hospital
- Department of Hepatobiliary Surgery, Quzhou City People's Hospital
- Issue: Vol 19, No 9 (2024)
- Pages: 845-850
- Section: Life Sciences
- URL: https://gynecology.orscience.ru/1574-8936/article/view/644073
- DOI: https://doi.org/10.2174/0115748936279561231214072041
- ID: 644073
Cite item
Full Text
Abstract
Background:The advent of single-cell RNA sequencing (scRNA-seq) technology has offered unprecedented opportunities to unravel cellular heterogeneity and functions. Yet, despite its success in unraveling gene expression heterogeneity, accurately identifying and interpreting alternative splicing events from scRNA-seq data remains a formidable challenge. With advancing technology and algorithmic innovations, the prospect of accurately identifying alternative splicing events from scRNA-seq data is becoming increasingly promising.
Objective:This perspective aims to uncover the intricacies of splicing at the single-cell level and their potential implications for health and disease. It seeks to harness scRNA-seq's transformative power in revealing cell-specific alternative splicing dynamics and aims to propel our understanding of gene regulation within individual cells to new heights.
Methods:The perspective grounds its method on recent literature along with the experimental protocols of single-cell RNA-seq and methods to identify and quantify the alternative splicing events from scRNA-seq data.
Results:This perspective outlines the promising potential, challenges, and methodologies for leveraging different scRNA-seq technologies to identify and study alternative splicing events, with a focus on advancing our understanding of gene regulation at the single-cell level.
Conclusion:This perspective explores the prospects of utilizing scRNA-seq data to identify and study alternative splicing events, highlighting their potential, challenges, methodologies, biological insights, and future directions.
About the authors
Jiacheng Wang
Department of Hepatobiliary Surgery, Quzhou People's Hospital
Author for correspondence.
Email: info@benthamscience.net
Lei Yuan
Department of Hepatobiliary Surgery, Quzhou City People's Hospital
Email: info@benthamscience.net
References
- Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302(5653): 2141-4. doi: 10.1126/science.1090100 PMID: 14684825
- Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40(12): 1413-5. doi: 10.1038/ng.259 PMID: 18978789
- Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921. doi: 10.1038/35057062 PMID: 11237011
- Blencowe BJ. Alternative splicing: New insights from global analyses. Cell 2006; 126(1): 37-47. doi: 10.1016/j.cell.2006.06.023 PMID: 16839875
- Arzalluz-Luque Á, Conesa A. Single-cell RNAseq for the study of isoformshow is that possible? Genome Biol 2018; 19(1): 110. doi: 10.1186/s13059-018-1496-z PMID: 30097058
- Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456(7221): 470-6. doi: 10.1038/nature07509 PMID: 18978772
- Pan Q, Shai O, Misquitta C, et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 2004; 16(6): 929-41. doi: 10.1016/j.molcel.2004.12.004 PMID: 15610736
- Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: Recent insights into mechanisms and functional roles. Neuron 2015; 87(1): 14-27. doi: 10.1016/j.neuron.2015.05.004 PMID: 26139367
- Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 2010; 7(12): 1009-15. doi: 10.1038/nmeth.1528 PMID: 21057496
- Barbosa-Morais NL, Irimia M, Pan Q, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 2012; 338(6114): 1587-93. doi: 10.1126/science.1230612 PMID: 23258890
- Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 2012; 338(6114): 1593-9. doi: 10.1126/science.1228186 PMID: 23258891
- Paronetto MP, Passacantilli I, Sette C. Alternative splicing and cell survival: From tissue homeostasis to disease. Cell Death Differ 2016; 23(12): 1919-29. doi: 10.1038/cdd.2016.91 PMID: 27689872
- Vaquero-Garcia J, Barrera A, Gazzara MR, et al. A new view of transcriptome complexity and regulation through the lens of local splicing variations. eLife 2016; 5: e11752. doi: 10.7554/eLife.11752 PMID: 26829591
- Song Y, Botvinnik OB, Lovci MT, et al. Single-cell alternative splicing analysis with expedition reveals splicing dynamics during neuron differentiation. Mol Cell 2017; 67(1): 148-161.e5. doi: 10.1016/j.molcel.2017.06.003 PMID: 28673540
- Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods 2017; 14(3): 309-15. doi: 10.1038/nmeth.4150 PMID: 28114287
- Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 2014; 11(2): 163-6. doi: 10.1038/nmeth.2772 PMID: 24363023
- Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014; 9(1): 171-81. doi: 10.1038/nprot.2014.006 PMID: 24385147
- Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 2012; 30(8): 777-82. doi: 10.1038/nbt.2282 PMID: 22820318
- Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 2013; 10(11): 1096-8. doi: 10.1038/nmeth.2639 PMID: 24056875
- Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct comparative analyses of 10X genomics chromium and smart-seq2. Genomics Proteomics Bioinformatics 2021; 19(2): 253-66. doi: 10.1016/j.gpb.2020.02.005 PMID: 33662621
- Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 2017; 8(1): 16027. doi: 10.1038/ncomms16027 PMID: 28722025
- Buen Abad Najar CF, Burra P, Yosef N, Lareau LF. Identifying cell stateassociated alternative splicing events and their coregulation. Genome Res 2022; 32(7): 1385-97. doi: 10.1101/gr.276109.121 PMID: 35858747
- Lebrigand K, Magnone V, Barbry P, Waldmann R. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat Commun 2020; 11(1): 4025. doi: 10.1038/s41467-020-17800-6 PMID: 32788667
- Welch JD, Hu Y, Prins JF. Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res 2016; 44(8): e73-3. doi: 10.1093/nar/gkv1525 PMID: 26740580
- Huang Y, Sanguinetti G. BRIE: transcriptome-wide splicing quantification in single cells. Genome Biol 2017; 18(1): 123. doi: 10.1186/s13059-017-1248-5 PMID: 28655331
- Hu Y, Wang K, Li M. Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers. PLOS Comput Biol 2020; 16(6): e1007925. doi: 10.1371/journal.pcbi.1007925 PMID: 32502143
- Li H, Handsaker B, Wysoker A, et al. The sequence alignment/Map format and SAMtools. Bioinformatics 2009; 25(16): 2078-9. doi: 10.1093/bioinformatics/btp352 PMID: 19505943
- Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841-2. doi: 10.1093/bioinformatics/btq033 PMID: 20110278
- Mehmood A, Laiho A, Venäläinen MS, McGlinchey AJ, Wang N, Elo LL. Systematic evaluation of differential splicing tools for RNA-seq studies. Brief Bioinform 2020; 21(6): 2052-65. doi: 10.1093/bib/bbz126 PMID: 31802105
- Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21. doi: 10.1093/bioinformatics/bts635 PMID: 23104886
- Wang K, Singh D, Zeng Z, et al. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 2010; 38(18): e178-8. doi: 10.1093/nar/gkq622 PMID: 20802226
- Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25(9): 1105-11. doi: 10.1093/bioinformatics/btp120 PMID: 19289445
- Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 2017; 14(10): 979-82. doi: 10.1038/nmeth.4402 PMID: 28825705
- Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049. doi: 10.1038/ncomms14049 PMID: 28091601
Supplementary files
