The Influence of Phytoconstituents for the Management of Antipsoriatic Activity in Various Animal Models


Citar

Texto integral

Resumo

:It is possible for psoriasis to manifest at any point in a person's life, regardless of their age, gender, or geographic location. It is a chronic immune-linked inflammatory skin ill-ness that affects individuals of various racial and ethnic origins. It is recognized to be a long-lasting condition. Because of the significant contribution that natural products have made, there has been a significant advancement in the treatment of skin illnesses such as psoriasis. The biggest number of phytochemicals derived from a wide range of plants and herbs are now being used in a variety of applications throughout the whole world. Additionally, a number of phyto-chemicals, including aloe-emodin, psoralen, curcumin, and others, have been effectively ex-tracted in pure or clear form, and they have shown a great deal of efficacy in the treatment of psoriasis illness. There is evidence that few herbal remedies are effective, and the occurrence of these phytochemicals provides more proof. When synthetic medications are used for chronic therapy, they may cause a variety of adverse consequences; hence, the exploration of natural pharmaceuticals can give a successful natural treatment with a minimal amount of adverse ef-fects. Within the scope of this concise review, a number of plant sources that possess anti-pso-riatic activity are investigated, and the antipsoriatic effects of these plant sources are shown on a number of animal models using particular pathways.

Sobre autores

Ravina Yadav

Department of Pharmacology, School of Pharmaceutical Sciences, RIMT University

Email: info@benthamscience.net

Tejpal Yadav

Amity Institute of Pharmacy, Amity University Rajasthan

Autor responsável pela correspondência
Email: info@benthamscience.net

Ashutosh Upadhayay

Adesh Institute of Pharmacy & Biomedical Sciences, Adesh University

Email: info@benthamscience.net

Md. Alam

Department of Pharmaceutics, SGT College of Pharmacy, SGT University

Email: info@benthamscience.net

Gaurav Dubey

Department of Pharmacognosy, NIMS Institute of Pharmacy, NIMS University Rajasthan

Email: info@benthamscience.net

Vikram Kumar

Amity Institute of Pharmacy, Amity University Rajasthan

Email: info@benthamscience.net

Adarsh Sahu

Amity Institute of Pharmacy, Amity University Rajasthan

Email: info@benthamscience.net

Bibliografia

  1. Honma, M.; Hayashi, K. Psoriasis: Recent progress in molecular‐targeted therapies. J. Dermatol., 2021, 48(6), 761-777. doi: 10.1111/1346-8138.15727 PMID: 33404109
  2. Kamiya, K.; Kishimoto, M.; Sugai, J.; Komine, M.; Ohtsuki, M. Risk factors for the development of psoriasis. Int. J. Mol. Sci., 2019, 20(18), 4347. doi: 10.3390/ijms20184347 PMID: 31491865
  3. Di Salvo, E.; Gangemi, S.; Genovese, C.; Cicero, N.; Casciaro, M. Polyphenols from mediterranean plants: Biological activities for skin photoprotection in atopic dermatitis, psoriasis, and chronic urticaria. Plants, 2023, 12(20), 3579. doi: 10.3390/plants12203579 PMID: 37896042
  4. Sarac, G.; Koca, T.T.; Baglan, T. A brief summary of clinical types of psoriasis. North. Clin. Istanb., 2016, 3(1), 79-82. PMID: 28058392
  5. Langley, R.G.B.; Krueger, G.G.; Griffiths, C.E. Psoriasis: Epidemiology, clinical features, and quality of life. Ann. Rheum. Dis., 2005, 64(Suppl 2)(Suppl. 2), ii18-ii23. doi: 10.1136/ard.2004.033217 PMID: 15708928
  6. Baker, H. Psoriasis-clinical features. BMJ, 1971, 3(5768), 231-233. doi: 10.1136/bmj.3.5768.231 PMID: 4934376
  7. Chalmers, R.J.G.; O’Sullivan, T.; Owen, C.M.; Griffiths, C.E.M. A systematic review of treatments for guttate psoriasis. Br. J. Dermatol., 2001, 145(6), 891-894. doi: 10.1046/j.1365-2133.2001.04505.x PMID: 11899141
  8. Ko, H.C.; Jwa, S.W.; Song, M.; Kim, M.B.; Kwon, K.S. Clinical course of guttate psoriasis: Long‐term follow‐up study. J. Dermatol., 2010, 37(10), 894-899. doi: 10.1111/j.1346-8138.2010.00871.x PMID: 20860740
  9. Engin, B.; Aşkın, Ö.; Tüzün, Y. Palmoplantar psoriasis. Clin. Dermatol., 2017, 35(1), 19-27. doi: 10.1016/j.clindermatol.2016.09.004 PMID: 27938808
  10. Carrasquillo, O.Y.; Pabón-Cartagena, G.; Falto-Aizpurua, L.A.; Santiago-Vázquez, M.; Cancel-Artau, K.J.; Arias-Berrios, G.; Martín-García, R.F. Treatment of erythrodermic psoriasis with biologics: A systematic review. J. Am. Acad. Dermatol., 2020, 83(1), 151-158. doi: 10.1016/j.jaad.2020.03.073 PMID: 32247872
  11. Pasch, M.C. Nail psoriasis: A review of treatment options. Drugs, 2016, 76(6), 675-705. doi: 10.1007/s40265-016-0564-5 PMID: 27041288
  12. Ortonne, J.P.; Chimenti, S.; Luger, T.; Puig, L.; Reid, F.; Trüeb, R.M. Scalp psoriasis: European consensus on grading and treatment algorithm. J. Eur. Acad. Dermatol. Venereol., 2009, 23(12), 1435-1444. doi: 10.1111/j.1468-3083.2009.03372.x PMID: 19614856
  13. Premkumar, B. A review on allopathic and herbal remedies for psoriasis. Int J Front Sci Tech., 2017, 5(4), 1-15.
  14. Nestle, F.O.; Nickoloff, B.J. Animal models of psoriasis: A brief update. J. Eur. Acad. Dermatol. Venereol., 2006, 20(s2), 24-27. doi: 10.1111/j.1468-3083.2006.01769.x
  15. Singh, K.K.; Tripathy, S. Natural treatment alternative for psoriasis: A review on herbal resources. J. Appl. Pharm. Sci., 2014, 4(11), 114-121.
  16. Georgescu, S.R.; Tampa, M.; Caruntu, C.; Sarbu, M.I.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Constantin, C.; Neagu, M. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci., 2019, 20(3), 739. doi: 10.3390/ijms20030739 PMID: 30744173
  17. Hugh, J.M.; Newman, M.D.; Weinberg, J.M. The pathophysiology of psoriasis. In: Advances in Psoriasis: A Multisystemic Guide; Weinberg, J.M.; Lebwohl, M., Eds.; Springer: London, 2014, pp. 9-19. doi: 10.1007/978-1-4471-4432-8_2
  18. Reich, K. The concept of psoriasis as a systemic inflammation: Implications for disease management. J. Eur. Acad. Dermatol. Venereol., 2012, 26(s2)(Suppl. 2), 3-11. doi: 10.1111/j.1468-3083.2011.04410.x PMID: 22356630
  19. Grozdev, I.; Korman, N.; Tsankov, N. Psoriasis as a systemic disease. Clin. Dermatol., 2014, 32(3), 343-350. doi: 10.1016/j.clindermatol.2013.11.001 PMID: 24767182
  20. Omosa, L.K.; Midiwo, J.O.; Kuete, V. Curcuma longa. In: Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press, 2017, pp. 425-435. doi: 10.1016/B978-0-12-809286-6.00019-4
  21. Liu, H.; Danthi, S.J.; Enyeart, J.J. Curcumin potently blocks Kv1.4 potassium channels. Biochem. Biophys. Res. Commun., 2006, 344(4), 1161-1165. doi: 10.1016/j.bbrc.2006.04.020 PMID: 16647042
  22. Kang, D.; Li, B.; Luo, L.; Jiang, W.; Lu, Q.; Rong, M.; Lai, R. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie, 2016, 123, 73-80. doi: 10.1016/j.biochi.2016.01.013 PMID: 26826458
  23. Geetha, M. Pharmacognostic and phytochemical investigation of Givotia Rottleriformis Griff. Ex wight bark. J. Pharmacogn. Phytochem., 2013, 2(3), 188-194.
  24. Vismaya, W. Extraction and recovery of karanjin: A value addition to karanja (Pongamia pinnata) seed oil. Ind. Crops Prod., 2010, 32(2), 118-122. doi: 10.1016/j.indcrop.2010.03.011
  25. Siddiqui, L.; Tyagi, Y. Rao ngr. To evaluate the role of herbal drugs in the management of psoriasis: A review article. World J. Pharm. Res., 9(5), 14.
  26. Sebök, B.; Bonnekoh, B.; Kerényi, M.; Gollnick, H. Tazarotene induces epidermal cell differentiation in the mouse tail test used as an animal model for psoriasis. Skin Pharmacol. Physiol., 2000, 13(5), 285-291. doi: 10.1159/000029935 PMID: 10940819
  27. V, A. Anti-psoriatic activity of flavonoids from the bark of Givotia Rottleriformis Griff. Ex wight. Iran J Pharm Sci., 2014, 10(3), 81-94.
  28. Schön, M.P. Advances in psoriasis treatment. Lancet, 2005, 366(9494), 1333-1335. doi: 10.1016/S0140-6736(05)67542-3 PMID: 16226595
  29. Vijayalakshmi, A.; Geetha, M. Anti-psoriatic activity of Givotia Rottleriformis in rats. Indian J. Pharmacol., 2014, 46(4), 386-390. doi: 10.4103/0253-7613.135949 PMID: 25097275
  30. Reddy, Y.S.R.; Venkatesh, S.; Ravichandran, T.; Subburaju, T.; Suresh, B. Pharmacognostical studies on Wrightia tinctoria Bark. Pharm. Biol., 1999, 37(4), 291-295. doi: 10.1076/phbi.37.4.291.5798
  31. Chandrashekar, R. Wrightia tinctoria: An overview. J. Drug Deliv. Ther., 2013, 3(2)
  32. S, S.; Hari, A.; Pattam, S.; Nihal, P.; Athira, A. An Updated Review on Wrightia tinctoria (Roxb). R Br. J. Pharm. Res. Int., 2021, 234-244. doi: 10.9734/jpri/2021/v33i56A33906
  33. Billiau, A.; Matthys, P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol., 2001, 70(6), 849-860. doi: 10.1189/jlb.70.6.849 PMID: 11739546
  34. Srivastava, A.; Nagar, H.; Chandel, H.; Ranawat, M. Antipsoriatic activity of ethanolic extract of Woodfordia fruticosa (L.) Kurz flowers in a novel in vivo screening model. Indian J. Pharmacol., 2016, 48(5), 531-536. doi: 10.4103/0253-7613.190740 PMID: 27721539
  35. Sundarrajan, S.; Lulu, S.; Arumugam, M. Deciphering the mechanism of action of Wrightia tinctoria for psoriasis based on systems pharmacology approach. J. Altern. Complement. Med., 2017, 23(11), 866-878. doi: 10.1089/acm.2016.0248 PMID: 28604055
  36. S, V.T.; S, F.; B, H.M.; D, M.S. A review on therapeutic potential of Nigella sativa (kalonji) seeds. J. Med. Plants Res., 2014, 8(3), 167-177. doi: 10.5897/JMPR10.737
  37. Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res., 2003, 17(4), 299-305. doi: 10.1002/ptr.1309 PMID: 12722128
  38. Amin, B; Hosseinzadeh, H. Black Cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med., 2015, 82(01/02), 8-16.
  39. Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352. doi: 10.1016/S2221-1691(13)60075-1 PMID: 23646296
  40. Palaniswamy, D.; Nithyanantham, M.; Raghu, P.S.; Dwarampudi, L.P. Antipsoriatic activity and cytotoxicity of ethanolic extract of Nigella sativa seeds. Pharmacogn. Mag., 2012, 8(32), 268-272. doi: 10.4103/0973-1296.103650 PMID: 24082629
  41. Zhao, Q.; Chen, X.Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. , 2016, 61(18), 1391-1398. doi: 10.1007/s11434-016-1136-5 PMID: 27730005
  42. Wang, P.W.; Lin, T.Y.; Yang, P.M.; Fang, J.Y.; Li, W.T.; Pan, T.L. Therapeutic efficacy of Scutellaria baicalensis Georgi against psoriasis-like lesions via regulating the responses of keratinocyte and macrophage. Biomed. Pharmacother., 2022, 155, 113798. doi: 10.1016/j.biopha.2022.113798 PMID: 36271574
  43. Wu, J.; Li, H.; Li, M. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis. Int. J. Clin. Exp. Med., 2015, 8(2), 2128-2137. PMID: 25932143
  44. Saravanakumar, A.; Venkateshwaran, K.; Vanitha, J.; Ganesh, M.; Vasudevan, M.; Sivakumar, T. Evaluation of antibacterial activity, phenol and flavonoid contents of Thespesia populnea flower extracts. Pak. J. Pharm. Sci., 2009, 22(3), 282-286. PMID: 19553175
  45. Shrivastav, S.; Sindhu, R.; Kumar, S.; Kumar, P. Anti-psoriatic and phytochemical evaluation of Thespesia populnea bark extracts. Int. J. Pharm. Pharm. Sci., 2009, 1, 176-185.
  46. Akbar, S. Smilax china L. (Smilacaceae).In: Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Akbar, S., Ed.; Springer International Publishing : Cham, 2020, pp. 1665-1671. Internet doi: 10.1007/978-3-030-16807-0_172
  47. Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Nirmala, S.; Jayakumari, S. Screening of flavonoid "quercetin" from the rhizome of Smilax china Linn. for anti–psoriatic activity. Asian Pac. J. Trop. Biomed., 2012, 2(4), 269-275. doi: 10.1016/S2221-1691(12)60021-5 PMID: 23569912
  48. Jain, S.; Patil, U.K. Phytochemical and pharmacological profile of Cassia tora Linn., An overview. IJNPR, 2010, 1(4), 430-437.
  49. Vijayalakshmi, A.; Madhira, G. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model. Rev. Bras. Farmacogn., 2014, 24(3), 322-329. doi: 10.1016/j.bjp.2014.07.010
  50. Priya, M.; Elenjikkal, S. Traditional and modern use of Indian Madder (Rubia cordifolia L.): An overview. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 154-164.
  51. Verma, A.; Kumar, B.; Alam, P.; Singh, V.; Gupta, S. Rubia cordifolia – A review on pharmaconosy and phytochemistry. Int. J. Pharm. Sci. Res., 2016, 7, 2720-2731.
  52. Lin, Z.X.; Jiao, B.W.; Che, C.T.; Zuo, Z.; Mok, C.F.; Zhao, M.; Ho, W.K.K.; Tse, W.P.; Lam, K.Y.; Fan, R.Q.; Yang, Z.J.; Cheng, C.H.K. Ethyl acetate fraction of the root of Rubia cordifolia L. inhibits keratinocyte proliferation in vitro and promotes keratinocyte differentiation in vivo: Potential application for psoriasis treatment. Phytother. Res., 2010, 24(7), 1056-1064. doi: 10.1002/ptr.3079 PMID: 19960426
  53. Amenta, R.; Camarda, L.; Di Stefano, V.; Lentini, F.; Venza, F. Traditional medicine as a source of new therapeutic agents against psoriasis. Fitoterapia, 2000, 71(Suppl. 1), S13-S20. doi: 10.1016/S0367-326X(00)00172-6 PMID: 10930708
  54. Iversen, L.; Kragballe, K. Arachidonic acid metabolism in skin health and disease. Prostaglandins Other Lipid Mediat., 2000, 63(1-2), 25-42. doi: 10.1016/S0090-6980(00)00095-2 PMID: 11104339
  55. Bader, A.; Martini, F.; Schinella, G.R.; Rios, J.L.; Prieto, J.M. Modulation of Cox-1, 5-, 12- and 15-Lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases. Phytother. Res., 2015, 29(1), 108-113. doi: 10.1002/ptr.5234 PMID: 25278440
  56. Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol., 2006, 108(1), 133-141. doi: 10.1016/j.jep.2006.04.023 PMID: 16730935
  57. Saelee, C.; Thongrakard, V.; Tencomnao, T. Effects of Thai medicinal herb extracts with anti-psoriatic activity on the expression on NF-κB signaling biomarkers in HaCaT keratinocytes. Molecules, 2011, 16(5), 3908-3932. doi: 10.3390/molecules16053908 PMID: 21555979
  58. Bhoir, S.S.; Vishwapathi, V.; Singh, K.K. Antipsoriatic potential of Annona squamosa seed oil: An in vitro and in vivo evaluation. Phytomedicine, 2019, 54, 265-277. doi: 10.1016/j.phymed.2018.07.003 PMID: 30668377
  59. Khushboo, P.S.; Jadhav, V.M.; Kadam, V.J.; Sathe, N.S. Psoralea corylifolia Linn.-"Kushtanashini". Pharmacogn. Rev., 2010, 4(7), 69-76. doi: 10.4103/0973-7847.65331 PMID: 22228944
  60. Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea corylifolia L. (Buguchi) — Folklore to modern evidence.Review Fitoterapia, 2013, 90, 44-56. doi: 10.1016/j.fitote.2013.06.016 PMID: 23831482
  61. Alalaiwe, A.; Hung, C.F.; Leu, Y.L.; Tahara, K.; Chen, H.H.; Hu, K.Y.; Fang, J.Y. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur. J. Pharm. Sci., 2018, 124, 114-126. doi: 10.1016/j.ejps.2018.08.031 PMID: 30153523
  62. Nabatanzi, A.M.; Nkadimeng, S.; Lall, N.; Kabasa, J.D.J.; McGaw, L. Ethnobotany, phytochemistry and pharmacological activity of Kigelia africana (Lam.) Benth. (Bignoniaceae). Plants, 2020, 9(6), 753. doi: 10.3390/plants9060753 PMID: 32549404
  63. Folashade, O.O.; Olufunso, S.B.O. Comparative evaluation of the antipsoriatic activity of Acalypha wilkesiana, Culcasia scandens with Kigelia africana using the mouse tail model. AJPAC, 2017, 11(4), 37-41. doi: 10.5897/AJPAC2017.0717
  64. Oyedeji, F.O.; Bankole-Ojo, O.S. Quantitative evaluation of the antipsoriatic activity of sausage tree (Kigelia africana). Afr J Pure Appl Chem., 2012, 6(13), 214-218.
  65. Epifano, F.; Fiorito, S.; Genovese, S. Phytochemistry and pharmacognosy of the genus Psorospermum. Phytochem. Rev., 2013, 12(4), 673-684. doi: 10.1007/s11101-013-9274-8
  66. Asogwa, F.C.; Ibezim, A.; Ntie-Kang, F.; Asogwa, C.J.; Okoye, C.O.B. Anti-psoriatic and immunomodulatory evaluation of psorospermum febrifugum spach and its phytochemicals. Sci. Am., 2020, 7, e00229. doi: 10.1016/j.sciaf.2019.e00229
  67. Manresa, M.C. Animal Models of Contact Dermatitis: 2,4-Dinitrofluorobenzene-Induced Contact Hypersensitivity. Methods Mol. Biol., 2021, 2223, 87-100. doi: 10.1007/978-1-0716-1001-5_7 PMID: 33226589
  68. Wu, X.; Deng, X.; Wang, J.; Li, Q. Baicalin inhibits cell proliferation and inflammatory cytokines induced by tumor necrosis factor α (TNF-α) in human immortalized keratinocytes (HaCaT) human keratinocytes by inhibiting the STAT3/Nuclear factor kappa B (NF-κB) Signaling pathway. Med. Sci. Monit., 2020, 26, e919392. doi: 10.12659/MSM.919392 PMID: 32321906
  69. Farhan, M. The Promising Role of Polyphenols in Skin disorders. Molecules, 2024, 29(4), 865. doi: 10.3390/molecules29040865 PMID: 38398617
  70. Herman, A.; Herman, A. Topically used herbal products for the treatment of psoriasis – mechanism of action, drug delivery, clinical studies. Planta Med., 2016, 82(17), 1447-1455. doi: 10.1055/s-0042-115177 PMID: 27574899
  71. Biswasroy, P.; Pradhan, D.; Sahu, D.K.; Rai, V.; Halder, J.; Rajwar, T.K.; Bhola, R.K.; Kar, B.; Ghosh, G.; Rath, G. Phytochemical investigation, structural elucidation, in silico study and anti-psoriatic activity of potent bioactive from Betula utilis. J. Biomol. Struct. Dyn., 2023, 41(17), 8093-8108. doi: 10.1080/07391102.2022.2130981 PMID: 36214696
  72. Agrawal, A.; Kulkarni, G.T. Topical application of aerial portion of Acalypha indica Linn ameliorates psoriasis in rodents: Evidences from in vivo and in silico studies. J. Ethnopharmacol., 2023, 315, 116685. doi: 10.1016/j.jep.2023.116685
  73. Sarkar, D.; Gorai, P.; Pramanik, A.; Mondal, A.; Mondal, N.K.; Modak, B.K.; Bhattacharyya, S. Characterization and active component identification of Premna herbacea roxb. root extract reveals anti-inflammatory effect and amelioration of imiquimod induced psoriasis via modulation of macrophage inflammatory response. Phytomedicine, 2023, 119, 155007. doi: 10.1016/j.phymed.2023.155007
  74. Nguyen, L.T.H.; Ahn, S.H.; Shin, H.M.; Yang, I.J. Anti-psoriatic effect of Rheum palmatum L. and its underlying molecular mechanisms. Int. J. Mol. Sci., 2022, 23(24), 16000. doi: 10.3390/ijms232416000 PMID: 36555642
  75. Sadasivan, S.; Latha, P.G.; Sasikumar, J.M.; Rajashekaran, S.; Shyamal, S.; Shine, V.J. Hepatoprotective studies on Hedyotis corymbosa (L.). Lam. J. Ethnopharmacol., 2006, 106(2), 245-249. doi: 10.1016/j.jep.2006.01.002 PMID: 16495024
  76. You, B.J.; Wu, Y.C.; Wu, C.Y.; Bao, B.Y.; Chen, M.Y.; Chang, Y.H.; Lee, H.Z. Proteomics displays cytoskeletal proteins and chaperones involvement in Hedyotis corymbosa-induced photokilling in skin cancer cells. Exp. Dermatol., 2011, 20(8), 653-658. doi: 10.1111/j.1600-0625.2011.01290.x PMID: 21569101
  77. Singh, N.; Shaikh, A.M.; Gupta, P.; Kovács, B.; Abuzinadah, M.F.; Ahmad, A.; Goel, R.; Singh, S.; Vinayak, C. Nanophytosomal gel of Heydotis corymbosa (L.) extract against psoriasis: Characterisation, in vitro and in vivo biological activity. Pharmaceuticals, 2024, 17(2), 213. doi: 10.3390/ph17020213 PMID: 38399427
  78. Shiven, A.; Alam, A.; Dewangan, H.K.; Shah, K.; Alam, P.; Kapoor, D.N. Optimisation and in vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model. J. Microencapsul., 2024, 1-15. doi: 10.1080/02652048.2024.2354249 PMID: 38780157
  79. Dabholkar, N.; Rapalli, V.K.; Singhvi, G. Potential herbal constituents for psoriasis treatment as protective and effective therapy. Phytother. Res., 2021, 35(5), 2429-2444. doi: 10.1002/ptr.6973 PMID: 33277958
  80. Irveti, P.; Gupta, V. Management of Psoriasia. A focus on phytochemicals. Asian J. Pharm. Clin. Res., 2019. doi: 10.22159/ajpcr.2019.v12i6.31060
  81. Na-Bangchang, K.; Teerachaisakul, M.; Muhamad, P.; Kasemnitichok, Y.; Sangnarong, N.; Boonprasert, K.; Tarasuk, M.; Plengsuriyakarn, T. Antiproliferative and anti-inflammatory activities of deprungsith formulation and its bioactive compounds against mild psoriasis and potential of metabolic herb-drug interactions. J. Evid. Based Integr. Med., , 2023, 28, 2515690X231191101. doi: 10.1177/2515690X231191101 PMID: 37553989

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024