Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017-2022)
- Авторы: Narayan A.1, Patel S.2, Baile S.2, Jain S.3, Sharma S.4
-
Учреждения:
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University
- B. Pharmacy College Rampura-kakanpur, Gujarat Technological University
- Amity Institute of Pharmacy,, Amity University
- Выпуск: Том 24, № 8 (2024)
- Раздел: Medicine
- URL: https://gynecology.orscience.ru/1871-5265/article/view/645762
- DOI: https://doi.org/10.2174/0118715265274067240223040333
- ID: 645762
Цитировать
Полный текст
Аннотация
Background:Regarding scientific research, Imidazo[1,2-a] pyridine derivatives are constantly being developed due to the scaffolds intriguing chemical structure and varied bio-logical activity. They are distinctive organic nitrogen-bridged heterocyclic compounds that have several uses in medicines, organometallics and natural products. It has become a vital tool for medicinal chemists.
Methods:In order to gather scientific information on Imidazo[1,2-a] pyridines derivative, Google, PubMed, Scopus, Google Scholar, and other databases were searched. In the current study, the medicinal value and therapeutic effect of Imidazo[1,2-a] pyridines were investigated using above mentioned databases. The current study analyzed the detailed pharmacological ac-tivities of Imidazo[1,2-a] pyridine analogs through literature from diverse scientific research works.
Results:Due to its wide range of biological activities, including antiulcer, anticonvulsant, anti-protozoal, anthelmintic, antiepileptic, antifungal, antibacterial, analgesic, antiviral, anticancer, anti-inflammatory, antituberculosis, and antitumor properties, imidazopyridine is one of the most significant structural skeletons in the field of natural and pharmaceutical products. An imidazopyridine scaffold serves as the basis for a number of therapeutically utilized medica-tions, including zolpidem, alpidem, olprinone, zolimidine, and necopidem.
Conclusion:This comprehensive study covers the period of the last five years, and it sheds light on the developments and emerging pharmacological actions of Imidazo[1,2-a] pyridines. Additionally, the structure-activity relationship and molecular docking studies are carefully documented throughout the paper, providing medicinal chemists with a clear picture for devel-oping new drugs.
Об авторах
Aditya Narayan
Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford
Email: info@benthamscience.net
Shivkant Patel
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University
Email: info@benthamscience.net
Sunil Baile
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University
Email: info@benthamscience.net
Surabhi Jain
B. Pharmacy College Rampura-kakanpur, Gujarat Technological University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Smriti Sharma
Amity Institute of Pharmacy,, Amity University
Email: info@benthamscience.net
Список литературы
- Bagdi AK, Mitra S, Ghosh M, Hajra A. Iodine-catalyzed regioselective thiolation of imidazo1,2-apyridines using sulfonyl hydrazides as a thiol surrogate. Org Biomol Chem 2015; 13(11): 3314-20. doi: 10.1039/C5OB00033E PMID: 25644749
- Kang S, Kim YM, Kim RY, et al. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur J Med Chem 2017; 125: 807-15. doi: 10.1016/j.ejmech.2016.09.082 PMID: 27750198
- Cook GM, Hards K, Dunn E, et al. Oxidative phosphorylation as a target space for tuberculosis: Success, caution, and future directions. Microbiol Spectr 2017; 5(3): 5.3.14. doi: 10.1128/microbiolspec.TBTB2-0014-2016 PMID: 28597820
- de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a new antituberculosis agent. N Engl J Med 2020; 382(13): 1280-1. doi: 10.1056/NEJMc1913327 PMID: 32212527
- Lv K, Li L, Wang B, et al. Design, synthesis and antimycobacterial activity of novel imidazo1,2- apyridine-3-carboxamide derivatives. Eur J Med Chem 2017; 137: 117-25. doi: 10.1016/j.ejmech.2017.05.044 PMID: 28577507
- Tantry SJ, Markad SD, Shinde V, et al. Discovery of imidazo1,2- apyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 2017; 60(4): 1379-99. doi: 10.1021/acs.jmedchem.6b01358 PMID: 28075132
- a) García-González MC, Hernández-Vázquez E, Gordillo-Cruz RE, Miranda LD. Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles. Chem Commun 2015; 51(58): 11669-72. doi: 10.1039/C5CC02927A PMID: 26102372; b) Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020; 25(8): 1909. doi: 10.3390/molecules25081909 PMID: 32326131; c) Mishra S, Monir K, Mitra S, Hajra A. FeCl3/ZnI2-catalyzed synthesis of benzodimidazo2,1-bthiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone. Org Lett 2014; 16(23): 6084-7. doi: 10.1021/ol5028893 PMID: 25393913
- a) Rawat R, Verma SM. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo1,2-apyridines: An update of the decade. Synth Commun 2020; 50(23): 3507-34. doi: 10.1080/00397911.2020.1803915; b) Ghosh P, Samanta S, Ghosh S, Jana S, Hajra A. Aminomethylation of imidazopyridines using N,N-dimethylformamide as an aminomethylating reagent under Cu(II)-catalysis. Tetrahedron Lett 2020; 61(49): 152581. doi: 10.1016/j.tetlet.2020.152581; c) Kundu D, Kundu SK, Majee A, Hajra A. A facile synthesis of 2,2,4‐trisubstituted‐1,2‐dihydroquinolines catalyzed by zinc triflate under solvent‐free conditions. J Chin Chem Soc 2008; 55(5): 1186-90. doi: 10.1002/jccs.200800175
- Reen GK, Kumar A, Sharma P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage. Beilstein J Org Chem 2019; 15: 1612-704. doi: 10.3762/bjoc.15.165 PMID: 31435443
- Ghosh D, Ghosh S, Hajra A. Electrochemical functionalization of imidazopyridine and indazole: An overview. Adv Synth Catal 2021; 363(22): 5047-71. doi: 10.1002/adsc.202100981
- Kurteva V. Recent progress in metal-free direct synthesis of imidazo1,2- apyridines. ACS Omega 2021; 6(51): 35173-85. doi: 10.1021/acsomega.1c03476 PMID: 34984250
- National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 78960, Imidazo1,2-apyridine. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Imidazo_1_2-a_pyridine (Retrieved July 30, 2023).
- Ismail MA, Brun R, Wenzler T, Tanious FA, Wilson WD, Boykin DW. Novel dicationic imidazo1,2-apyridines and 5,6,7,8-tetrahydro-imidazo1,2-apyridines as antiprotozoal agents. J Med Chem 2004; 47(14): 3658-64. doi: 10.1021/jm0400092 PMID: 15214792
- Almirante L, Polo L, Mugnaini A, et al. Derivatives of imidazole. I. Synthesis and reactions of imidazo1,2-αpyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J Med Chem 1965; 8(3): 305-12. doi: 10.1021/jm00327a007 PMID: 14329509
- Biftu T, Feng D, Fisher M, et al. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents. Bioorg Med Chem Lett 2006; 16(9): 2479-83. doi: 10.1016/j.bmcl.2006.01.092 PMID: 16464591
- Zhou S, Chen G, Huang G. Design, synthesis and biological evaluation of imidazo1,2‐apyridine analogues or derivatives as anti‐helmintic drug. Chem Biol Drug Des 2019; 93(4): 503-10. doi: 10.1111/cbdd.13441 PMID: 30427117
- Ulloora S, Adhikari AV, Shabaraya R. Synthesis and antiepileptic studies of new imidazo1,2-apyridine derivatives. Chin Chem Lett 2013; 24(9): 853-6. doi: 10.1016/j.cclet.2013.05.030
- Kaplancikli ZA, Turan-Zitouni G, Özdemr A, Revial G. Synthesis and anticandidal activity of some imidazopyridine derivatives. J Enzyme Inhib Med Chem 2008; 23(6): 866-70. doi: 10.1080/14756360701811114 PMID: 18608774
- Srinivas Rao N, Kistareddy C. Synthesis and antibacterial activity of novel imidazo1,2-apyrimidine and imidazo1,2-apyridine chalcones derivatives. Pharma Chem 2012; 4(6): 2408-15.
- Lacerda RB, de Lima CKF, da Silva LL, et al. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo1,2-apyridine symbiotic prototypes. Bioorg Med Chem 2009; 17(1): 74-84. doi: 10.1016/j.bmc.2008.11.018 PMID: 19059783
- Gudmundsson KS, Johns BA. Imidazo1,2-apyridines with potent activity against herpesviruses. Bioorg Med Chem Lett 2007; 17(10): 2735-9. doi: 10.1016/j.bmcl.2007.02.079 PMID: 17368024
- Wang J, Wu H, Song G, et al. A novel imidazopyridine derivative exerts anticancer activity by inducing mitochondrial pathway-mediated apoptosis. BioMed Res Int 2020; 2020: 1-9. doi: 10.1155/2020/4929053 PMID: 32908894
- Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo 1,2-apyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem Lett 2016; 26(8): 2068-71. doi: 10.1016/j.bmcl.2016.02.076 PMID: 26951749
- Hranjec M, Kralj M, Piantanida I, et al. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo1,2-aquinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J Med Chem 2007; 50(23): 5696-711. doi: 10.1021/jm070876h PMID: 17935309
- Ravi C, Adimurthy S. Synthesis of imidazo1,2‐apyridines: c‐h functionalization in the direction of C‐S bond formation. Chem Rec 2017; 17(10): 1019-38. doi: 10.1002/tcr.201600146 PMID: 28318093
- Volkova Y, Gevorgyan V. Synthesis of functionalyzed imidazo1,2-apyridines via domino A3-coupling/cycloisomerization approach. Chem Heterocycl Compd 2017; 53(4): 409-12. doi: 10.1007/s10593-017-2066-0
- Rawal T, Butani S. Combating tuberculosis infection: A forbidding challenge. Indian J Pharm Sci 2016; 78(1): 8-16. doi: 10.4103/0250-474X.180243 PMID: 27168676
- Foley AM. Imidazopyridine derivatives as il-17 modulators. WO Patent 2020261141-A1 2020.
- Foley AM. Imidazopyridine derivatives as il-17 modulators E.P. Patent 3990459-A1 2020.
- Foley AM. Imidazopyridine derivatives as il-17 modulators. US Patent 2022227764-A1 2020.
- Pan J, Roach J. Imidazopyridazine and imidazopyridine compounds and uses thereof. US Patent 2020199131-A1 2020.
- Pan J, Roach J. Imidazopyridazine and imidazopyridine compounds and uses thereof W.O. Patent 2020132197-A1 2020.
- Cheng X, Wolfl S. Application of Imidazopyridine Derivatives in Regenerative Medicine. US Patent 2020062719-A1 2021.
- Saunthararajah Y, Ng KP. Antitumor derivatives for differentiation therapy. US Patent 9926316-B2 2020.
- Kadow JF, Naidu BN. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication. EP PAtent 3334741-A1 2020.
- Kadow JF, Naidu BN. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication U.S. Patent 10138253-B2 2020.
- Sirgel FA, Tait M, Warren RM, et al. Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist 2012; 18(2): 193-7. doi: 10.1089/mdr.2011.0063 PMID: 21732736
- van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: A review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 2014; 69(9): 2310-8. doi: 10.1093/jac/dku171 PMID: 24860154
- Jain S, Sharma S, Sen DJ, Pandya SS. Enoyl-Acyl Carrier Protein Reductase (INHA): A remarkable target to exterminate tuberculosis. Antiinfect Agents 2021; 19(3): 252-66. doi: 10.2174/2211352518999201201114426
- Jain A, Mondal R. Extensively drug-resistant tuberculosis: Current challenges and threats. FEMS Immunol Med Microbiol 2008; 53(2): 145-50. doi: 10.1111/j.1574-695X.2008.00400.x PMID: 18479439
- Bald D, Villellas C, Lu P, Koul A. Targeting energy metabolism in mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. MBio 2017; 8(2): e00272-17. doi: 10.1128/mBio.00272-17 PMID: 28400527
- Foo CSY, Pethe K, Lupien A. Oxidative phosphorylation-an update on a new, essential target space for drug discovery in mycobacterium tuberculosis. Appl Sci 2020; 10(7): 2339. doi: 10.3390/app10072339
- Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 2020; 382(24): 2376-7. doi: 10.1056/NEJMc2009939
- Gandhi K, Patel M. Collocating novel targets for Tuberculosis (TB) drug discovery. Curr Drug Discov Technol 2021; 18(2): 307-16. doi: 10.2174/1570163817666200121143036 PMID: 31987022
- Beites T, OBrien K, Tiwari D, et al. Plasticity of the mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10(1): 4970. doi: 10.1038/s41467-019-12956-2 PMID: 31672993
- Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic inhibitors: antibiotic efficacy and mechanisms of action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10: 611683. doi: 10.3389/fcimb.2020.611683 PMID: 33505923
- Lu P, Asseri AH, Kremer M, et al. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci Rep 2018; 8(1): 2625. doi: 10.1038/s41598-018-20989-8 PMID: 29422632
- A phase 2 study to evaluate early bactericidal activity, safety, tolerability, and pharmacokinetics of multiple oral doses of telacebec (Q203).. NCT03563599, 2019.
- Wang J, Jing W, Shi J, et al. Bipolar distribution of minimum inhibitory concentration of q203 across Mycobacterial species. Microb Drug Resist 2021; 27(8): 1013-7. doi: 10.1089/mdr.2020.0239 PMID: 33646044
- Exploration of indolo-imidazo1,2-apyridine compounds as anti-tubercular agents through docking, ADMET and drug likeliness studies. Lett Appl NanoBioSci 2021; 11(2): 3350-61. doi: 10.33263/LIANBS112.33503361
- Karale UB, Shinde AU, Babar DA, et al. 3‐Aryl‐substituted imidazo1,2‐ apyridines as antituberculosis agents. Arch Pharm 2021; 354(10): 2000419. doi: 10.1002/ardp.202000419 PMID: 34185337
- Khetmalis YM, Chitti S, Umarani Wunnava A, et al. Design, synthesis and anti-mycobacterial evaluation of imidazo1,2- apyridine analogues. RSC Med Chem 2022; 13(3): 327-42. doi: 10.1039/D1MD00367D PMID: 35434623
- WHO Cancer 2018.
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Lee H, Kim SJ, Jung KH, et al. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol Rep 2013; 30(2): 863-9. doi: 10.3892/or.2013.2499 PMID: 23708425
- Yun SM, Jung KH, Lee H, et al. Synergistic anticancer activity of HS-173, a novel PI3K inhibitor in combination with Sorafenib against pancreatic cancer cells. Cancer Lett 2013; 331(2): 250-61. doi: 10.1016/j.canlet.2013.01.007 PMID: 23340175
- Hieke M, Rödl CB, Wisniewska JM, et al. SAR-study on a new class of imidazo1,2-apyridine-based inhibitors of 5-lipoxygenase. Bioorg Med Chem Lett 2012; 22(5): 1969-75. doi: 10.1016/j.bmcl.2012.01.038 PMID: 22326163
- Almeida GM, Rafique J, Saba S, et al. Novel selenylated imidazo1,2-apyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Biophys Res Commun 2018; 503(3): 1291-7. doi: 10.1016/j.bbrc.2018.07.039 PMID: 30017191
- Zheng X, Bauer P, Baumeister T, et al. Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. J Med Chem 2013; 56(16): 6413-33. doi: 10.1021/jm4008664 PMID: 23859118
- Aliwaini S, Awadallah A, Morjan R, et al. Novel imidazo1,2 apyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol Lett 2019; 18(1): 830-7. doi: 10.3892/ol.2019.10341 PMID: 31289560
- Li GY, Jung KH, Lee H, et al. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett 2013; 329(1): 59-67. doi: 10.1016/j.canlet.2012.10.013 PMID: 23085493
- Ducray R, Jones CD, Jung FH, Simpson I, Curwen J, Pass M. Novel imidazo1,2-apyridine based inhibitors of the IGF-1 receptor tyrosine kinase: Optimization of the aniline. Bioorg Med Chem Lett 2011; 21(16): 4702-4. doi: 10.1016/j.bmcl.2011.06.090 PMID: 21764307
- Altaher MH. Imidazo1,2-apyridine based compounds: The hopeful anti-cancer therapy. Syst Rev Pharma 2021; 12(4): 79-85.
- Neogi S, Kumar Ghosh A, Mandal S, Ghosh D, Ghosh S, Hajra A. Three-component carbosilylation of alkenes by merging iron and visible-light photocatalysis. Org Lett 2021; 23(16): 6510-4. doi: 10.1021/acs.orglett.1c02322 PMID: 34379426
- Endoori S, Gulipalli KC, Bodige S, Ravula P, Seelam N. Design, synthesis, anticancer activity, and in silico studies of novel imidazo1,2‐ apyridine based 1 H ‐1,2,3‐triazole derivatives. J Heterocycl Chem 2021; 58(6): 1311-20. doi: 10.1002/jhet.4259
- Singh D, Yodun T, Kumar G, et al. Synthesis of 3-N-/O-/S-methyl-imidazo1,2-a pyridine derivatives for caspase-3 mediated apoptosis induced anticancer activity. Bioorg Chem 2022; 125: 105882. doi: 10.1016/j.bioorg.2022.105882 PMID: 35660838
- Ramarao S, Pothireddy M, Venkateshwarlu R, et al. Sonochemical synthesis and in silico evaluation of imidazo1,2- apyridine derivatives as potential inhibitors of sirtuins. Polycycl Aromat Compd 2023; 43(4): 3741-60. doi: 10.1080/10406638.2022.2077774
- Güçlü D, Kuzu B, Tozlu İ, et al. Synthesis of novel imidazopyridines and their biological evaluation as potent anticancer agents: A promising candidate for glioblastoma. Bioorg Med Chem Lett 2018; 28(15): 2647-51. doi: 10.1016/j.bmcl.2018.06.033 PMID: 30042044
- Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136(Pt A): 10-22. doi: 10.1016/j.neuropharm.2018.01.036 PMID: 294072192
- Volkova YA, Rassokhina IV, Kondrakhin EA, et al. Synthesis and evaluation of avermectin-imidazo1,2-apyridine hybrids as potent GABAA receptor modulators. Bioorg Chem 2022; 127: 105904. doi: 10.1016/j.bioorg.2022.105904 PMID: 35716646
- Sanapalli BKR, Ashames A, Sigalapalli DK, Shaik AB, Bhandare RR, Yele V. Synthetic imidazopyridine-based derivatives as potential inhibitors against multi-drug resistant bacterial infections: A review. Antibiotics 2022; 11(12): 1680. doi: 10.3390/antibiotics11121680 PMID: 36551338
- Ablo E, Coulibali S, Touré D, et al. Synthesis and antibacterial activity in vitro of 2-benzylthioimidazo1,2-apyridine derivatives against pathogenic bacterial. Synth Commun 2022; 52(3): 462-9. doi: 10.1080/00397911.2022.2032175
- Mishra NP, Mohapatra S, Sahoo CR, et al. Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo1,2-apyridine derivatives as potent peptide deformylase inhibitors. J Mol Struct 2021; 1246: 131183. doi: 10.1016/j.molstruc.2021.131183
- Althagafi I, Abdel-Latif E. Synthesis and antibacterial activity of new imidazo1,2- apyridines festooned with pyridine, thiazole or pyrazole moiety. Polycycl Aromat Compd 2022; 42(7): 4487-500. doi: 10.1080/10406638.2021.1894185
- Thakur A, Pereira G, Patel C, Chauhan V, Dhaked RK, Sharma A. Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles. J Mol Struct 2020; 1206: 127686. doi: 10.1016/j.molstruc.2020.127686
- Ebenezer O, Awolade P, Koorbanally N, Singh P. New library of pyrazoleimidazo1,2‐αpyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chem Biol Drug Des 2020; 95(1): 162-73. doi: 10.1111/cbdd.13632 PMID: 31580533
- Salhi L, Achouche-Bouzroura S, Nechak R, et al. Synthesis of functionalized dihydroimidazo1,2- Apyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. Synth Commun 2020; 50(3): 412-22. doi: 10.1080/00397911.2019.1699933
- Devi N, Jana AK, Singh V. Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. Karbala Int J Mod Sci 2018; 4(1): 164-70. doi: 10.1016/j.kijoms.2018.01.003
- Yoshikawa Y, Hirata R, Yasui H, Sakurai H. Alpha-glucosidase inhibitory effect of anti-diabetic metal ions and their complexes. Biochimie 2009; 91(10): 1339-41. doi: 10.1016/j.biochi.2009.06.005 PMID: 19539008
- Bischoff H. Pharmacology of alpha-glucosidase-inhibitors. Drugs in development: Alpha-glucosidase inhibition: Potential use in diabetes. Neva Press 1993.
- Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293(3): 781-8. doi: 10.1042/bj2930781 PMID: 8352747
- Padmaja P, Reddy PN, Subba Reddy BV, et al. Design, synthesis, in vitro α-glucosidase inhibitory, antioxidant activity and molecular docking studies of novel pyridine linked imidazo1,2-apyridine derivatives. J Mol Struct 2023; 1273: 134238. doi: 10.1016/j.molstruc.2022.134238
Дополнительные файлы
