Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017-2022)


Цитировать

Полный текст

Аннотация

Background:Regarding scientific research, Imidazo[1,2-a] pyridine derivatives are constantly being developed due to the scaffold’s intriguing chemical structure and varied bio-logical activity. They are distinctive organic nitrogen-bridged heterocyclic compounds that have several uses in medicines, organometallics and natural products. It has become a vital tool for medicinal chemists.

Methods:In order to gather scientific information on Imidazo[1,2-a] pyridines derivative, Google, PubMed, Scopus, Google Scholar, and other databases were searched. In the current study, the medicinal value and therapeutic effect of Imidazo[1,2-a] pyridines were investigated using above mentioned databases. The current study analyzed the detailed pharmacological ac-tivities of Imidazo[1,2-a] pyridine analogs through literature from diverse scientific research works.

Results:Due to its wide range of biological activities, including antiulcer, anticonvulsant, anti-protozoal, anthelmintic, antiepileptic, antifungal, antibacterial, analgesic, antiviral, anticancer, anti-inflammatory, antituberculosis, and antitumor properties, imidazopyridine is one of the most significant structural skeletons in the field of natural and pharmaceutical products. An imidazopyridine scaffold serves as the basis for a number of therapeutically utilized medica-tions, including zolpidem, alpidem, olprinone, zolimidine, and necopidem.

Conclusion:This comprehensive study covers the period of the last five years, and it sheds light on the developments and emerging pharmacological actions of Imidazo[1,2-a] pyridines. Additionally, the structure-activity relationship and molecular docking studies are carefully documented throughout the paper, providing medicinal chemists with a clear picture for devel-oping new drugs.

Об авторах

Aditya Narayan

Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford

Email: info@benthamscience.net

Shivkant Patel

Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University

Email: info@benthamscience.net

Sunil Baile

Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University

Email: info@benthamscience.net

Surabhi Jain

B. Pharmacy College Rampura-kakanpur, Gujarat Technological University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Smriti Sharma

Amity Institute of Pharmacy,, Amity University

Email: info@benthamscience.net

Список литературы

  1. Bagdi AK, Mitra S, Ghosh M, Hajra A. Iodine-catalyzed regioselective thiolation of imidazo1,2-apyridines using sulfonyl hydrazides as a thiol surrogate. Org Biomol Chem 2015; 13(11): 3314-20. doi: 10.1039/C5OB00033E PMID: 25644749
  2. Kang S, Kim YM, Kim RY, et al. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur J Med Chem 2017; 125: 807-15. doi: 10.1016/j.ejmech.2016.09.082 PMID: 27750198
  3. Cook GM, Hards K, Dunn E, et al. Oxidative phosphorylation as a target space for tuberculosis: Success, caution, and future directions. Microbiol Spectr 2017; 5(3): 5.3.14. doi: 10.1128/microbiolspec.TBTB2-0014-2016 PMID: 28597820
  4. de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a new antituberculosis agent. N Engl J Med 2020; 382(13): 1280-1. doi: 10.1056/NEJMc1913327 PMID: 32212527
  5. Lv K, Li L, Wang B, et al. Design, synthesis and antimycobacterial activity of novel imidazo1,2- apyridine-3-carboxamide derivatives. Eur J Med Chem 2017; 137: 117-25. doi: 10.1016/j.ejmech.2017.05.044 PMID: 28577507
  6. Tantry SJ, Markad SD, Shinde V, et al. Discovery of imidazo1,2- apyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 2017; 60(4): 1379-99. doi: 10.1021/acs.jmedchem.6b01358 PMID: 28075132
  7. a) García-González MC, Hernández-Vázquez E, Gordillo-Cruz RE, Miranda LD. Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles. Chem Commun 2015; 51(58): 11669-72. doi: 10.1039/C5CC02927A PMID: 26102372; b) Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020; 25(8): 1909. doi: 10.3390/molecules25081909 PMID: 32326131; c) Mishra S, Monir K, Mitra S, Hajra A. FeCl3/ZnI2-catalyzed synthesis of benzodimidazo2,1-bthiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone. Org Lett 2014; 16(23): 6084-7. doi: 10.1021/ol5028893 PMID: 25393913
  8. a) Rawat R, Verma SM. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo1,2-apyridines: An update of the decade. Synth Commun 2020; 50(23): 3507-34. doi: 10.1080/00397911.2020.1803915; b) Ghosh P, Samanta S, Ghosh S, Jana S, Hajra A. Aminomethylation of imidazopyridines using N,N-dimethylformamide as an aminomethylating reagent under Cu(II)-catalysis. Tetrahedron Lett 2020; 61(49): 152581. doi: 10.1016/j.tetlet.2020.152581; c) Kundu D, Kundu SK, Majee A, Hajra A. A facile synthesis of 2,2,4‐trisubstituted‐1,2‐dihydroquinolines catalyzed by zinc triflate under solvent‐free conditions. J Chin Chem Soc 2008; 55(5): 1186-90. doi: 10.1002/jccs.200800175
  9. Reen GK, Kumar A, Sharma P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage. Beilstein J Org Chem 2019; 15: 1612-704. doi: 10.3762/bjoc.15.165 PMID: 31435443
  10. Ghosh D, Ghosh S, Hajra A. Electrochemical functionalization of imidazopyridine and indazole: An overview. Adv Synth Catal 2021; 363(22): 5047-71. doi: 10.1002/adsc.202100981
  11. Kurteva V. Recent progress in metal-free direct synthesis of imidazo1,2- apyridines. ACS Omega 2021; 6(51): 35173-85. doi: 10.1021/acsomega.1c03476 PMID: 34984250
  12. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 78960, Imidazo1,2-apyridine. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Imidazo_1_2-a_pyridine (Retrieved July 30, 2023).
  13. Ismail MA, Brun R, Wenzler T, Tanious FA, Wilson WD, Boykin DW. Novel dicationic imidazo1,2-apyridines and 5,6,7,8-tetrahydro-imidazo1,2-apyridines as antiprotozoal agents. J Med Chem 2004; 47(14): 3658-64. doi: 10.1021/jm0400092 PMID: 15214792
  14. Almirante L, Polo L, Mugnaini A, et al. Derivatives of imidazole. I. Synthesis and reactions of imidazo1,2-αpyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J Med Chem 1965; 8(3): 305-12. doi: 10.1021/jm00327a007 PMID: 14329509
  15. Biftu T, Feng D, Fisher M, et al. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents. Bioorg Med Chem Lett 2006; 16(9): 2479-83. doi: 10.1016/j.bmcl.2006.01.092 PMID: 16464591
  16. Zhou S, Chen G, Huang G. Design, synthesis and biological evaluation of imidazo1,2‐apyridine analogues or derivatives as anti‐helmintic drug. Chem Biol Drug Des 2019; 93(4): 503-10. doi: 10.1111/cbdd.13441 PMID: 30427117
  17. Ulloora S, Adhikari AV, Shabaraya R. Synthesis and antiepileptic studies of new imidazo1,2-apyridine derivatives. Chin Chem Lett 2013; 24(9): 853-6. doi: 10.1016/j.cclet.2013.05.030
  18. Kaplancikli ZA, Turan-Zitouni G, Özdemr A, Revial G. Synthesis and anticandidal activity of some imidazopyridine derivatives. J Enzyme Inhib Med Chem 2008; 23(6): 866-70. doi: 10.1080/14756360701811114 PMID: 18608774
  19. Srinivas Rao N, Kistareddy C. Synthesis and antibacterial activity of novel imidazo1,2-apyrimidine and imidazo1,2-apyridine chalcones derivatives. Pharma Chem 2012; 4(6): 2408-15.
  20. Lacerda RB, de Lima CKF, da Silva LL, et al. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo1,2-apyridine symbiotic prototypes. Bioorg Med Chem 2009; 17(1): 74-84. doi: 10.1016/j.bmc.2008.11.018 PMID: 19059783
  21. Gudmundsson KS, Johns BA. Imidazo1,2-apyridines with potent activity against herpesviruses. Bioorg Med Chem Lett 2007; 17(10): 2735-9. doi: 10.1016/j.bmcl.2007.02.079 PMID: 17368024
  22. Wang J, Wu H, Song G, et al. A novel imidazopyridine derivative exerts anticancer activity by inducing mitochondrial pathway-mediated apoptosis. BioMed Res Int 2020; 2020: 1-9. doi: 10.1155/2020/4929053 PMID: 32908894
  23. Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo 1,2-apyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem Lett 2016; 26(8): 2068-71. doi: 10.1016/j.bmcl.2016.02.076 PMID: 26951749
  24. Hranjec M, Kralj M, Piantanida I, et al. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo1,2-aquinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J Med Chem 2007; 50(23): 5696-711. doi: 10.1021/jm070876h PMID: 17935309
  25. Ravi C, Adimurthy S. Synthesis of imidazo1,2‐apyridines: c‐h functionalization in the direction of C‐S bond formation. Chem Rec 2017; 17(10): 1019-38. doi: 10.1002/tcr.201600146 PMID: 28318093
  26. Volkova Y, Gevorgyan V. Synthesis of functionalyzed imidazo1,2-apyridines via domino A3-coupling/cycloisomerization approach. Chem Heterocycl Compd 2017; 53(4): 409-12. doi: 10.1007/s10593-017-2066-0
  27. Rawal T, Butani S. Combating tuberculosis infection: A forbidding challenge. Indian J Pharm Sci 2016; 78(1): 8-16. doi: 10.4103/0250-474X.180243 PMID: 27168676
  28. Foley AM. Imidazopyridine derivatives as il-17 modulators. WO Patent 2020261141-A1 2020.
  29. Foley AM. Imidazopyridine derivatives as il-17 modulators E.P. Patent 3990459-A1 2020.
  30. Foley AM. Imidazopyridine derivatives as il-17 modulators. US Patent 2022227764-A1 2020.
  31. Pan J, Roach J. Imidazopyridazine and imidazopyridine compounds and uses thereof. US Patent 2020199131-A1 2020.
  32. Pan J, Roach J. Imidazopyridazine and imidazopyridine compounds and uses thereof W.O. Patent 2020132197-A1 2020.
  33. Cheng X, Wolfl S. Application of Imidazopyridine Derivatives in Regenerative Medicine. US Patent 2020062719-A1 2021.
  34. Saunthararajah Y, Ng KP. Antitumor derivatives for differentiation therapy. US Patent 9926316-B2 2020.
  35. Kadow JF, Naidu BN. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication. EP PAtent 3334741-A1 2020.
  36. Kadow JF, Naidu BN. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication U.S. Patent 10138253-B2 2020.
  37. Sirgel FA, Tait M, Warren RM, et al. Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist 2012; 18(2): 193-7. doi: 10.1089/mdr.2011.0063 PMID: 21732736
  38. van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: A review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 2014; 69(9): 2310-8. doi: 10.1093/jac/dku171 PMID: 24860154
  39. Jain S, Sharma S, Sen DJ, Pandya SS. Enoyl-Acyl Carrier Protein Reductase (INHA): A remarkable target to exterminate tuberculosis. Antiinfect Agents 2021; 19(3): 252-66. doi: 10.2174/2211352518999201201114426
  40. Jain A, Mondal R. Extensively drug-resistant tuberculosis: Current challenges and threats. FEMS Immunol Med Microbiol 2008; 53(2): 145-50. doi: 10.1111/j.1574-695X.2008.00400.x PMID: 18479439
  41. Bald D, Villellas C, Lu P, Koul A. Targeting energy metabolism in mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. MBio 2017; 8(2): e00272-17. doi: 10.1128/mBio.00272-17 PMID: 28400527
  42. Foo CSY, Pethe K, Lupien A. Oxidative phosphorylation-an update on a new, essential target space for drug discovery in mycobacterium tuberculosis. Appl Sci 2020; 10(7): 2339. doi: 10.3390/app10072339
  43. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 2020; 382(24): 2376-7. doi: 10.1056/NEJMc2009939
  44. Gandhi K, Patel M. Collocating novel targets for Tuberculosis (TB) drug discovery. Curr Drug Discov Technol 2021; 18(2): 307-16. doi: 10.2174/1570163817666200121143036 PMID: 31987022
  45. Beites T, O’Brien K, Tiwari D, et al. Plasticity of the mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10(1): 4970. doi: 10.1038/s41467-019-12956-2 PMID: 31672993
  46. Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic inhibitors: antibiotic efficacy and mechanisms of action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10: 611683. doi: 10.3389/fcimb.2020.611683 PMID: 33505923
  47. Lu P, Asseri AH, Kremer M, et al. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci Rep 2018; 8(1): 2625. doi: 10.1038/s41598-018-20989-8 PMID: 29422632
  48. A phase 2 study to evaluate early bactericidal activity, safety, tolerability, and pharmacokinetics of multiple oral doses of telacebec (Q203).. NCT03563599, 2019.
  49. Wang J, Jing W, Shi J, et al. Bipolar distribution of minimum inhibitory concentration of q203 across Mycobacterial species. Microb Drug Resist 2021; 27(8): 1013-7. doi: 10.1089/mdr.2020.0239 PMID: 33646044
  50. Exploration of indolo-imidazo1,2-apyridine compounds as anti-tubercular agents through docking, ADMET and drug likeliness studies. Lett Appl NanoBioSci 2021; 11(2): 3350-61. doi: 10.33263/LIANBS112.33503361
  51. Karale UB, Shinde AU, Babar DA, et al. 3‐Aryl‐substituted imidazo1,2‐ apyridines as antituberculosis agents. Arch Pharm 2021; 354(10): 2000419. doi: 10.1002/ardp.202000419 PMID: 34185337
  52. Khetmalis YM, Chitti S, Umarani Wunnava A, et al. Design, synthesis and anti-mycobacterial evaluation of imidazo1,2- apyridine analogues. RSC Med Chem 2022; 13(3): 327-42. doi: 10.1039/D1MD00367D PMID: 35434623
  53. WHO Cancer 2018.
  54. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  55. Lee H, Kim SJ, Jung KH, et al. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol Rep 2013; 30(2): 863-9. doi: 10.3892/or.2013.2499 PMID: 23708425
  56. Yun SM, Jung KH, Lee H, et al. Synergistic anticancer activity of HS-173, a novel PI3K inhibitor in combination with Sorafenib against pancreatic cancer cells. Cancer Lett 2013; 331(2): 250-61. doi: 10.1016/j.canlet.2013.01.007 PMID: 23340175
  57. Hieke M, Rödl CB, Wisniewska JM, et al. SAR-study on a new class of imidazo1,2-apyridine-based inhibitors of 5-lipoxygenase. Bioorg Med Chem Lett 2012; 22(5): 1969-75. doi: 10.1016/j.bmcl.2012.01.038 PMID: 22326163
  58. Almeida GM, Rafique J, Saba S, et al. Novel selenylated imidazo1,2-apyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Biophys Res Commun 2018; 503(3): 1291-7. doi: 10.1016/j.bbrc.2018.07.039 PMID: 30017191
  59. Zheng X, Bauer P, Baumeister T, et al. Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. J Med Chem 2013; 56(16): 6413-33. doi: 10.1021/jm4008664 PMID: 23859118
  60. Aliwaini S, Awadallah A, Morjan R, et al. Novel imidazo1,2 apyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol Lett 2019; 18(1): 830-7. doi: 10.3892/ol.2019.10341 PMID: 31289560
  61. Li GY, Jung KH, Lee H, et al. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett 2013; 329(1): 59-67. doi: 10.1016/j.canlet.2012.10.013 PMID: 23085493
  62. Ducray R, Jones CD, Jung FH, Simpson I, Curwen J, Pass M. Novel imidazo1,2-apyridine based inhibitors of the IGF-1 receptor tyrosine kinase: Optimization of the aniline. Bioorg Med Chem Lett 2011; 21(16): 4702-4. doi: 10.1016/j.bmcl.2011.06.090 PMID: 21764307
  63. Altaher MH. Imidazo1,2-apyridine based compounds: The hopeful anti-cancer therapy. Syst Rev Pharma 2021; 12(4): 79-85.
  64. Neogi S, Kumar Ghosh A, Mandal S, Ghosh D, Ghosh S, Hajra A. Three-component carbosilylation of alkenes by merging iron and visible-light photocatalysis. Org Lett 2021; 23(16): 6510-4. doi: 10.1021/acs.orglett.1c02322 PMID: 34379426
  65. Endoori S, Gulipalli KC, Bodige S, Ravula P, Seelam N. Design, synthesis, anticancer activity, and in silico studies of novel imidazo1,2‐ apyridine based 1 H ‐1,2,3‐triazole derivatives. J Heterocycl Chem 2021; 58(6): 1311-20. doi: 10.1002/jhet.4259
  66. Singh D, Yodun T, Kumar G, et al. Synthesis of 3-N-/O-/S-methyl-imidazo1,2-a pyridine derivatives for caspase-3 mediated apoptosis induced anticancer activity. Bioorg Chem 2022; 125: 105882. doi: 10.1016/j.bioorg.2022.105882 PMID: 35660838
  67. Ramarao S, Pothireddy M, Venkateshwarlu R, et al. Sonochemical synthesis and in silico evaluation of imidazo1,2- apyridine derivatives as potential inhibitors of sirtuins. Polycycl Aromat Compd 2023; 43(4): 3741-60. doi: 10.1080/10406638.2022.2077774
  68. Güçlü D, Kuzu B, Tozlu İ, et al. Synthesis of novel imidazopyridines and their biological evaluation as potent anticancer agents: A promising candidate for glioblastoma. Bioorg Med Chem Lett 2018; 28(15): 2647-51. doi: 10.1016/j.bmcl.2018.06.033 PMID: 30042044
  69. Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136(Pt A): 10-22. doi: 10.1016/j.neuropharm.2018.01.036 PMID: 294072192
  70. Volkova YA, Rassokhina IV, Kondrakhin EA, et al. Synthesis and evaluation of avermectin-imidazo1,2-apyridine hybrids as potent GABAA receptor modulators. Bioorg Chem 2022; 127: 105904. doi: 10.1016/j.bioorg.2022.105904 PMID: 35716646
  71. Sanapalli BKR, Ashames A, Sigalapalli DK, Shaik AB, Bhandare RR, Yele V. Synthetic imidazopyridine-based derivatives as potential inhibitors against multi-drug resistant bacterial infections: A review. Antibiotics 2022; 11(12): 1680. doi: 10.3390/antibiotics11121680 PMID: 36551338
  72. Ablo E, Coulibali S, Touré D, et al. Synthesis and antibacterial activity in vitro of 2-benzylthioimidazo1,2-apyridine derivatives against pathogenic bacterial. Synth Commun 2022; 52(3): 462-9. doi: 10.1080/00397911.2022.2032175
  73. Mishra NP, Mohapatra S, Sahoo CR, et al. Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo1,2-apyridine derivatives as potent peptide deformylase inhibitors. J Mol Struct 2021; 1246: 131183. doi: 10.1016/j.molstruc.2021.131183
  74. Althagafi I, Abdel-Latif E. Synthesis and antibacterial activity of new imidazo1,2- apyridines festooned with pyridine, thiazole or pyrazole moiety. Polycycl Aromat Compd 2022; 42(7): 4487-500. doi: 10.1080/10406638.2021.1894185
  75. Thakur A, Pereira G, Patel C, Chauhan V, Dhaked RK, Sharma A. Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles. J Mol Struct 2020; 1206: 127686. doi: 10.1016/j.molstruc.2020.127686
  76. Ebenezer O, Awolade P, Koorbanally N, Singh P. New library of pyrazole–imidazo1,2‐αpyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chem Biol Drug Des 2020; 95(1): 162-73. doi: 10.1111/cbdd.13632 PMID: 31580533
  77. Salhi L, Achouche-Bouzroura S, Nechak R, et al. Synthesis of functionalized dihydroimidazo1,2- Apyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. Synth Commun 2020; 50(3): 412-22. doi: 10.1080/00397911.2019.1699933
  78. Devi N, Jana AK, Singh V. Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. Karbala Int J Mod Sci 2018; 4(1): 164-70. doi: 10.1016/j.kijoms.2018.01.003
  79. Yoshikawa Y, Hirata R, Yasui H, Sakurai H. Alpha-glucosidase inhibitory effect of anti-diabetic metal ions and their complexes. Biochimie 2009; 91(10): 1339-41. doi: 10.1016/j.biochi.2009.06.005 PMID: 19539008
  80. Bischoff H. Pharmacology of alpha-glucosidase-inhibitors. Drugs in development: Alpha-glucosidase inhibition: Potential use in diabetes. Neva Press 1993.
  81. Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293(3): 781-8. doi: 10.1042/bj2930781 PMID: 8352747
  82. Padmaja P, Reddy PN, Subba Reddy BV, et al. Design, synthesis, in vitro α-glucosidase inhibitory, antioxidant activity and molecular docking studies of novel pyridine linked imidazo1,2-apyridine derivatives. J Mol Struct 2023; 1273: 134238. doi: 10.1016/j.molstruc.2022.134238

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024