Sub-1 GHz RF-based Energy-efficient Sensor Node for Secure Communication in Low-power IoT and Embedded Applications


Cite item

Full Text

Abstract

Background:The Internet of Things (IoT) devices consist of a microcontroller unit for data processing, a low-power wireless radio module for data transmission, and various sensors for data collection. The sensor nodes and processing devices used in the Internet of Things are resource-constrained, with power consumption and security being the two most critical parameters.

Objective:This paper addresses the challenges of power consumption and security in IoT scenarios. It presents a low-power and secure heterogeneous multicore sensing architecture designed for low-power IoT and wireless sensor networks. The architecture comprises a sensing and control subsystem, an information processing unit, and a wireless communication module.

Methods:The architecture uses a microcontroller unit based on ARM Cortex M4, a low-power sub-1 GHz RF-compliant communication radio, and a few sensors. The proposed architecture has been implemented and tested using the Contiki Operating System.

Results:The implemented sensor node architecture demonstrated performance efficiency, lower energy consumption, and higher security.

Conclusion:By leveraging efficient power management, data transmission strategies, and cryptographic security, the architecture contributes to developing energy-efficient and secure IoT devices.

About the authors

Ishfaq Sultan

Department of Electronics and Instrumentation Technology, University of Kashmir

Author for correspondence.
Email: info@benthamscience.net

Mohammad Banday

Department of Electronics and Instrumentation Technology, University of Kashmir

Email: info@benthamscience.net

References

  1. Adegbija T, Rogacs A, Patel C, Gordon-Ross A. Microprocessor optimizations for the internet of things: A survey. IEEE T COMPUT AID D 2018; 37(1): 7-20.
  2. Ashaq S, Nazish M, Ali M, Sultan I, Tariq Banday M. FPGA implementation of present block cypher with optimised substitution box. In: 2022 Smart Technologies, Communication and Robotics. Sathyamangalam, India: STCR 2022; pp. 1-6. doi: 10.1109/STCR55312.2022.10009366
  3. Jung J, Kim B, Cho J, Lee B. A secure platform model based on arm platform security architecture for iot devices. IEEE Internet Things J 2022; 9(7): 5548-60. doi: 10.1109/JIOT.2021.3109299
  4. Xu S, Zhang L, Tang Y, Han C, Wu H, Song A. Channel attention for sensor-based activity recognition: embedding features into all frequencies in dct domain. IEEE Trans Knowl Data Eng 2023; 35(12): 12497-512. doi: 10.1109/TKDE.2023.3277839
  5. Huang W, Zhang L, Wu H, Min F, Song A. Channel-equalization-HAR: A light-weight convolutional neural network for wearable sensor based human activity recognition. IEEE Trans Mobile Comput 2022; 22(9): 1. doi: 10.1109/TMC.2022.3174816
  6. Ismael WM, Gao M, Zahary A, Yemeni Z, Ibrahim Y, Hawban A. Edge-based anomaly data detection approach for wireless sensor network-based internet of things 2021 International Conference of Technology, Science and Administration (ICTSA). Taiz, Yemen, 2021; pp. 1-6. doi: 10.1109/ICTSA52017.2021.9406548
  7. Weqar M, Mehfuz S, Gupta D, Urooj S. Adaptive switching based data-communication model for internet of healthcare things networks. IEEE Access 2024; 1-1. doi: 10.1109/ACCESS.2024.3354722
  8. Bu C, Zhang L, Cui H, Yang G, Wu H. Dynamic inference via localizing semantic intervals in sensor data for budget-tunable activity recognition. IEEE Trans Industr Inform 2023; 1-13. doi: 10.1109/TII.2023.3315773
  9. Cheng D, Zhang L, Bu C, Wu H, Song A. Learning hierarchical time series data augmentation invariances via contrastive supervision for human activity recognition. Knowl Base Syst 2023; 276: 110789. doi: 10.1016/j.knosys.2023.110789
  10. Nagajayanthi B. Decades of internet of things towards twenty-first century: A research-based introspective. Wirel Pers Commun 2022; 123(4): 3661-97. doi: 10.1007/s11277-021-09308-z PMID: 34812221
  11. Conner M. Sensors empower the internet of things. EDN. 2010. Available from: https://www.edn.com/sensors-empower-the-internet-of-things/
  12. Almajali S, Salameh HB, Ayyash M, Elgala H. A framework for efficient and secured mobility of IoT devices in mobile edge computing. Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). Barcelona, Spain 23– 26 April 2018; pp. 58-62. doi: 10.1109/FMEC.2018.8364045
  13. Samuel A, Sipes C. Making internet of things real. IEEE Internet Things Mag 2019; 2(1): 10-2. doi: 10.1109/IOTM.2019.1907777
  14. Oliveira D, Costa M, Pinto S, Gomes T. The future of low-end motes in the internet of things: A prospective paper. Electronics 2020; 9(1): 111. doi: 10.3390/electronics9010111
  15. Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J 2017; 4(5): 1125-42. doi: 10.1109/JIOT.2017.2683200
  16. Raza M, Aslam N, Le-Minh H, Hussain S, Cao Y, Khan NM. A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks. IEEE Commun Surv Tutor 2018; 20(1): 39-95. doi: 10.1109/COMST.2017.2759725
  17. Sheng Z, Yang S, Yu Y, Vasilakos A, Mccann J, Leung K. A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wirel Commun 2013; 20(6): 91-8. doi: 10.1109/MWC.2013.6704479
  18. Elnour M, Himeur Y, Fadli F, et al. Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities. Appl Energy 2022; 318: 119153. doi: 10.1016/j.apenergy.2022.119153
  19. Kaur K, Garg S, Aujla GS, Kumar N, Rodrigues JJPC, Guizani M. Edge computing in the industrial internet of things environment: Software-defined-networks-based edge-cloud interplay. IEEE Commun Mag 2018; 56(2): 44-51. doi: 10.1109/MCOM.2018.1700622
  20. Himeur Y, Sayed AN, Alsalemi A, Bensaali F, Amira A. Edge AI for internet of energy: Challenges and perspectives Internet of Things 2024; 25: 101035. doi: 10.1016/j.iot.2023.101035
  21. Pinto S, Garlati C. User Mode Interrupts—A Must for Securing Embedded Systems. Proceedings of the Embedded World Conference 2019. Nuremberg, Germany 26–28 February 2019.
  22. Shaikh FK, Zeadally S, Exposito E. Enabling technologies for green internet of things. IEEE Syst J 2017; 11(2): 983-94. doi: 10.1109/JSYST.2015.2415194
  23. Hamdan S, Ayyash M, Almajali S. Edge-computing architectures for internet of things applications: A survey. Sensors 2020; 20(22): 6441. doi: 10.3390/s20226441 PMID: 33187267
  24. Botta A, de Donato W, Persico V, Pescapé A. Integration of cloud computing and Internet of things: A survey. Future Gener Comput Syst 2016; 56: 684-700. doi: 10.1016/j.future.2015.09.021
  25. Babu SM, Lakshmi AJ, Rao BT. A study on cloud based Internet of Things: CloudIoT. Proceedings of the 2015 Global Conference on Communication Technologies (GCCT). Thuckalay, India 23–24 April 2015; pp. 60-5. doi: 10.1109/GCCT.2015.7342624
  26. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet Things J 2014; 1(1): 22-32. doi: 10.1109/JIOT.2014.2306328
  27. Kuo YW, Li CL, Jhang JH, Lin S. Design of a wireless sensor network-based iot platform for wide area and heterogeneous applications. IEEE Sens J 2018; 18(12): 5187-97. doi: 10.1109/JSEN.2018.2832664
  28. Engel A, Koch A. Heterogeneous wireless sensor nodes that target the internet of things. IEEE Micro 2016; 36(6): 8-15. doi: 10.1109/MM.2016.100
  29. Nyländen T, Boutellier J, Nikunen K, Hannuksela J, Silvén O. Reconfigurable miniature sensor nodes for condition monitoring. 2012 International Conference on Embedded Computer Systems. Samos, Greece. 2012; pp. 113-9. doi: 10.1109/SAMOS.2012.6404164
  30. de la Piedra A, Braeken A, Touhafi A. Sensor systems based on fpgas and their applications: A survey. Sensors 2012; 12(9): 12235-64. doi: 10.3390/s120912235
  31. Sultan I, Banday MT. Ultra-low power microcontroller architectures for the internet of things (IoT) devices. 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli, India 2023; pp. 482-8. doi: 10.1109/ICSSIT55814.2023.10060949
  32. Sultan I, Banday MT. A study of the design architectures of configurable processors for the internet of things. 2018 3rd International Conference on Contemporary Computing and Informatics (IC3I). Gurgaon, India 2018; pp. 320-5. doi: 10.1109/IC3I44769.2018.9007256
  33. Alsharif MH, Kim S, Kuruoğlu N. Energy harvesting techniques for wireless sensor networks/radio-frequency identification: A review. Symmetry 2019; 11(7): 865. doi: 10.3390/sym11070865
  34. Magno M, Aoudia FA, Gautier M, Berder O, Benini L. WULoRa: An energy efficient IoT end-node for energy harvesting and heterogeneous communication Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. Lausanne, Switzerland, 2017; pp. 1528-33. doi: 10.23919/DATE.2017.7927233
  35. Iqbal W, Abbas H, Daneshmand M, Rauf B, Bangash YA. An in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined security. IEEE Internet Things J 2020; 7(10): 10250-76. doi: 10.1109/JIOT.2020.2997651
  36. Meneghello F, Calore M, Zucchetto D, Polese M, Zanella A. IoT: Internet of threats? A survey of practical security vulnerabilities in real iot devices. IEEE Internet Things J 2019; 6(5): 8182-201. doi: 10.1109/JIOT.2019.2935189
  37. Zhou W, Cao C, Huo D, et al. Reviewing IoT security via logic bugs in IoT platforms and systems. IEEE Internet Things J 2021; 8(14): 11621-39. doi: 10.1109/JIOT.2021.3059457
  38. Cheng D, Zhang L, Bu C, Wang X, Wu H, Song A. ProtoHAR: Prototype guided personalized federated learning for human activity recognition. IEEE J Biomed Health Inform 2023; 27(8): 3900-11. doi: 10.1109/JBHI.2023.3275438 PMID: 37167056
  39. Mohanty S, Ganguly M, Pattnaik PK. CIA triad for achieving accountability in cloud computing environment. Int J Comput Sci Mob Appl 2018.
  40. Ghadeer H. Cybersecurity issues in internet of things and countermeasures. 2018 IEEE International Conference on Industrial Internet (ICII). Seattle, WA, USA. 2018; pp. 195-201. doi: 10.1109/ICII.2018.00037
  41. Kaur J, Mozaffari Kermani M, Azarderakhsh R. Hardware constructions for error detection in lightweight authenticated cipher ASCON benchmarked on FPGA. IEEE Trans Circuits Syst II Express Briefs 2022; 69(4): 2276-80. doi: 10.1109/TCSII.2021.3136463
  42. Scripcariu L, Matasaru PD, Diaconu F. Extended DES algorithm to galois fields. 2017 International Symposium on Signals, Circuits and Systems (ISSCS). Iasi, Romania. 2017; pp. 1-4. doi: 10.1109/ISSCS.2017.8034875
  43. Feng J, Wei Y, Zhang F, Pasalic E, Zhou Y. Novel optimized implementations of lightweight cryptographic S-boxes via SAT solvers. IEEE Trans Circuits Syst I Regul Pap 2024; 71(1): 334-47. doi: 10.1109/TCSI.2023.3325559
  44. Riahi Sfar A, Challal Y, Moyal P, Natalizio E. A game theoretic approach for privacy preserving model in iot-based transportation. IEEE Trans Intell Transp Syst 2019; 20(12): 4405-14. doi: 10.1109/TITS.2018.2885054
  45. Karie NM, Sahri NM, Yang W, Valli C, Kebande VR. A review of security standards and frameworks for IoT-based smart environments. IEEE Access 2021; 9: 121975-95. doi: 10.1109/ACCESS.2021.3109886
  46. Kumar J, Ramesh PR. Low cost energy efficient smart security system with information stamping for IoT networks. 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU). Bhimtal, India 2018; pp. 1-5. doi: 10.1109/IoT-SIU.2018.8519875
  47. Wu F, Rüdiger C, Redouté J-M, Yuce MR. WE-Safe: A wearable IoT sensor node for safety applications via LoRa. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). Singapore 2018; pp. 144-8. doi: 10.1109/WF-IoT.2018.8355234
  48. Meli M, Gatt E, Casha O, Grech I, Micallef J. A novel low power and low cost iot wireless sensor node for air quality monitoring. 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Glasgow, UK 2020; pp. 1-4. doi: 10.1109/ICECS49266.2020.9294927
  49. Joris L, Dupont F, Laurent P, Bellier P, Stoukatch S, Redouté J-M. An autonomous sigfox wireless sensor node for environmental monitoring. IEEE Sens Lett 2019; 3(7): 1-4. doi: 10.1109/LSENS.2019.2924058
  50. Zheng K, Zhao S, Yang Z, Xiong X, Xiang W. Design and implementation of LPWA-based air quality monitoring system. IEEE Access. 2016; 4: pp. 3238-45. doi: 10.1109/ACCESS.2016.2582153
  51. Saravanan M, Das A, Iyer V. Smart water grid management using LPWAN IoT technology. Proc. Global Internet Things Summit 2017; pp. 1-6. doi: 10.1109/GIOTS.2017.8016224
  52. Ahmed ST, Annamalai A. On private server implementations and data visualization for LoRaWAN. 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE). Penang, Malaysia, 2023; pp. 342-7. doi: 10.1109/ISCAIE57739.2023.10165109
  53. Valdes Pena MD, Rodriguez-Andina JJ, Manic M. The internet of things: The role of reconfigurable platforms. IEEE Ind Electron Mag 2017; 11(3): 6-19. doi: 10.1109/MIE.2017.2724579
  54. Gomes T, Salgado F, Tavares A, Cabral J. CUTE mote, A customizable and trustable end-device for the internet of things. IEEE Sens J 2017; 17(20): 6816-24. doi: 10.1109/JSEN.2017.2743460
  55. Silva M, Tavares A, Gomes T, Pinto S. ChamelIoT: An agnostic operating system framework for reconfigurable IoT devices. IEEE Internet Things J 2019; 6: 1291-2.
  56. Kaur N, Sood SK. An energy-efficient architecture for the internet of things (IoT). IEEE Syst J 2017; 11(2): 796-805. doi: 10.1109/JSYST.2015.2469676
  57. Stelte B. Toward development of high secure sensor network nodes using an FPGA-based architecture. Proceedings of the 6th International Wireless Communications and Mobile Computing Conference. June; 2010; pp. 539-43. doi: 10.1145/1815396.1815521
  58. Berder O, Sentieys O. PowWow: Power optimized hardware/ software framework for wireless motes. 23th International Conference on Architecture of Computing Systems 2010. Hannover, Germany, 2010; pp. 1-5.
  59. Goursaud C, Gorce J-M. Dedicated networks for IoT: PHY/MAC state of the art and challenges. EAI Endorsed Trans Internet Things 2015; 1(1): 150597. doi: 10.4108/eai.26-10-2015.150597
  60. Rosello V, Portilla J, Riesgo T. Ultra low power FPGA-based architecture for wake-up radio in wireless sensor networks. IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society. Melbourne, VIC, Australia, 2011; pp. 3826-31. doi: 10.1109/IECON.2011.6119933
  61. Qin H, Zhang W. Zigbee-assisted power saving management for mobile devices. IEEE Trans Mobile Comput 2014; 13(12): 2933-47. doi: 10.1109/TMC.2013.67
  62. Zhou R, Xiong Y, Xing G, Sun L, Ma J. ZiFi: Wireless LAN discovery via ZigBee interference signatures. Annual International Conference on Mobile Computing and Networking. September; 2010; pp. 49-60. doi: 10.1145/1859995.1860002
  63. Pering T, Raghunathan V, Want R. Exploiting radio hierarchies for power-efficient wireless device discovery and connection setup. 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design. Kolkata, India 2005; pp. 774-9. doi: 10.1109/ICVD.2005.97
  64. Tuset-Peir’o P, Vilajosana X, Watteyne T. OpenMote+: A range- agile multi-radio mote. Proceedings of the International Conference on Embedded Wireless Systems and Networks. February ; 2016; pp. 333-4.
  65. Magno M, Marinkovic S, Brunelli D, Popovici E, O’Flynn B, Benini L. Smart power unit with ultra low power radio trigger capabilities for wireless sensor networks 2012 Design. Automation & Test in Europe Conference & Exhibition, . Dresden, Germany 2012; pp. 75-80. doi: 10.1109/DATE.2012.6176436
  66. Vera-Salas LA, Moreno-Tapia SV, Osornio-Rios RA. Reconfigurable node processing unit for a low-power wireless sensor network. 2010 International Conference on Reconfigurable Computing and FPGAs. Cancun, Mexico. 2010; pp. 173-8.
  67. LoRaWAN™, Specification v1.0, LoRa Alliance, Inc. 2400 Camino Ramon, Suite 375 San Ramon, CA 94583 (2015). LoRa Alliance, Tech Rep 2015.
  68. Nucleo-F401RE. STMicroelectronics. Available from: https://www.st.com/en/evaluation-tools/nucleo-f401re.html Accessed: 17-Jan-2023.
  69. X-NUCLEO-IDS01A5 STMicroelectronics. Available from: https://www.st.com/en/ecosystems/x-nucleo-ids01a5.html Accessed: 17-Jan-2023.
  70. X-NUCLEO-IKS01A2 STMicroelectronics. Available from: https://www.st.com/en/ecosystems/x-nucleo-iks01a2.html Accessed: 17-Jan-2023
  71. Bui DH, Puschini D, Bacles-Min S, Beigne E, Tran XT. Ultra lowpower and low-energy 32-bit datapath AES architecture for IoT applications. 2016 International Conference on IC Design and Technology (ICICDT). Ho Chi Minh City, Vietnam 2016; pp. 1-4. doi: 10.1109/ICICDT.2016.7542076
  72. Yu W, Kose S. A lightweight masked AES implementation for securing IoT against CPA attacks. IEEE Trans Circuits Syst I Regul Pap 2017; 64(11): 2934-44. doi: 10.1109/TCSI.2017.2702098

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers