Separation of water-oil emulsion by polyamide membranes treated with corona plasma

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Studies were carried out on the separation of the water-oil emulsion by polyamide membranes with a pore size of 0.2 μm treated with corona discharge plasma at a voltage of 5–25 kV and a time of 1–5 minutes. An increase in the productivity and efficiency of the separation of the water-oil emulsion by corona-treated polyamide membranes was revealed. Increase of roughness and change of chemical structure of modified membranes are shown.

Texto integral

Acesso é fechado

Sobre autores

V. Dryakhlov

Kazan National Research Technological University

Autor responsável pela correspondência
Email: vladisloved@mail.ru
Rússia, Kazan, Karl Marx St., 68

I. Shaikhiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
Rússia, Kazan, Karl Marx St., 68

D. Fazullin

Kazan (Volga Region) Federal University

Email: vladisloved@mail.ru

Naberezhnye Chelny Institute

Rússia, Naberezhnye Chelny, ave. Mira, 68/19

I. Nizameev

Kazan National Research Technical University named after A.N. Tupolev

Email: vladisloved@mail.ru
Rússia, Kazan, Karl Marx St., 10

M. Galikhanov

Institute of Applied Research, Tatarstan Academy of Sciences

Email: vladisloved@mail.ru
Rússia, Kazan, Bauman str., 20

I. Mukhamadiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
Rússia, Kazan, Karl Marx St., 68

Bibliografia

  1. McCay D.F., Rowe J.J., Whittier N., Sankaranarayanan S., Etkin D.S. // J. Hazardous Materials. 2004. V. 107. P. 11.
  2. Pak A., Mohammadi T. // Desalination. 2008. V. 222. P. 249.
  3. Nassar N.N., Hassan A., Carbognani L., Lopez- F., Pereira-Almao P. // Fuel. 2012. V. 95. P. 257.
  4. Haruna A., Merican Z.M.A., Musa S.G. // J. Industrial and Engineering Chemistry. 2022. V. 112. P. 20.
  5. Deng S., Wang Z., Gu Q., Meng F., Li J., Wang H. // Fuel Processing Technology. 2011. V. 92(5). P. 1062.
  6. Peng B., Yao Z., Wang X., Crombeen M., Sweeney D.G., Tam K.C. // Green Energy & Environment. 2020 V. 5(1). P. 37.
  7. Albatrni H., Qiblawey H., Almomani F., Adham S., Khraisheh M. // Chemosphere. 2019. V. 233. P. 809.
  8. Varjani S., Joshi R., Srivastava V.K., Ngo H.H., Guo W. // Environmental Science and Pollution Research. 2020. V. 27. P. 27172.
  9. Mohammadi L., Rahdar A., Bazrafshan E., Dahmardeh H., Susan M.A.B.H., Kyzas G.Z. // Processes. 2020. V. 8(4). № 447.
  10. Dmitrieva E.S., Anokhina T.S., Novitsky E.G., Volkov V.V., Borisov I.L., Volkov A.V. // Polymers. 2022. V. 14(5). № 980.
  11. Muthukumar K., Kaleekkal N.J., Lakshmi D.S., et all. // J. Appl. Polym. Sci. 2019. № 24. P. 1–10.
  12. Fazullin D.D., Mavrin G.V. // Chemical and Petroleum Engineering. 2020. № 56. P. 215222.
  13. Шайхиев И.Г., Галиханов М.Ф., Дряхлов В.О., Алексеева М.Ю., Фазуллин Д.Д. // Вода: Химия и Экология. 2019. № 1–2 (118). С. 77–82.
  14. Алексеева М.Ю., Дряхлов В.О., Галиханов М.Ф., Низамеев И.Р., Шайхиев И.Г. // Мембраны И Мембранные Технологии. 2018. Т. 8. № 1. С. 59–65.
  15. Fedotova A.V., Shaikhiev I.G., Dryakhlov V.O., Nizameev. I.R., Abdullin I.S. // Petroleum Chemistry. 2017. V. 57. P. 159.
  16. Fedotova A.V., Dryakhlov V.O., Shaikhiev I.G., Nizameev I.R., Garaeva G.F. // Surface Engineering and Applied Electrochemistry. 2018. V. 54. P. 174.
  17. Shaikhiev I.G., Dryakhlov V.O., Galikhanov M.F., Fazullin D.D., Mavrin G.V // Inorganic Materials: Applied Research. 2020. V. 11. № 5. P. 1160–1164.
  18. Тарасов А.В., Федотов Ю.А., Лепешин С.А., Панов Ю.Т., Окулов К.В., Вдовина А.И. // Известия Самарского научного центра РАН. 2012. № 14 (1–9). С. 2372.
  19. Панов Ю.Т., Тарасов А.В., Лепешин С.А., Ермолаева Е.В. // Современные наукоемкие технологии. 2015. № 12–2. С. 258.
  20. Tusek L., Nitschke M., Werner C. //Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2001. V. 195. P. 81–95.
  21. Yang Z., Guo H., Tang Y.C. // Journal of membrane science. 2019. V. 590. P. 117297.
  22. Ridgway H.F., Orbell J., Gray S. // J. Membrane Science. 2017. V. 524. P. 436.
  23. Shao S., Zeng F., Long L., Zhu X., Peng L.E., Wang F., Yang Z. Tang C.Y. // Environmental Science & Technology. 2022. V. 56(18). P. 12811.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Corona device diagram: 1 – high voltage source, 2 – grounded electrode, 3 – corona electrode, 4 – membrane sample.

Baixar (45KB)
3. Fig. 2. Performance of separation of oil emulsion by PA membranes treated with corona discharge at: a) U = 5 kV; b) U = 15 kV; c) U = 25 kV.

Baixar (269KB)
4. Fig. 3. Graph of the dependence of particle sizes and VNE intensity before and after corona treatment.

Baixar (77KB)
5. Fig. 4. Diffraction pattern of the original and treated PA membrane with a pore size of 0.2 µm.

Baixar (76KB)
6. Fig. 5. IR spectrum of the original and corona-treated PA membranes with a pore size of 0.2 µm.

Baixar (79KB)
7. Fig. 6. Images of the surface with corresponding topographic histograms of the PA membrane: a) original; b) corona-treated.

Baixar (878KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024