Enthalpy of Interaction of Lithiated Nafion Membrane with Aqueous Solutions of Alcohols and Polar Aprotic Solvents
- Authors: Chernyuk S.D.1,2, Safronov A.P.1,3, Bushkova O.V.2
-
Affiliations:
- Ural Federal University
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
- Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 14, No 5 (2024)
- Pages: 378-386
- Section: Articles
- URL: https://gynecology.orscience.ru/2218-1172/article/view/677872
- DOI: https://doi.org/10.31857/S2218117224050047
- EDN: https://elibrary.ru/MYDSPU
- ID: 677872
Cite item
Abstract
The swelling degree of the lithiated form of the polyperfluorosulfone membrane Nafion (Li-Nafion) in alcohols (ethanol, 2-propanol), water-alcohol mixtures and in highly polar aprotic solvents (N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP)), as well as the thermodynamics of the interaction of the membrane with solvents were studied by the microcalorimetry method. It was shown that the values of the equilibrium swelling degree of the membrane correlate with the donor number of the solvent, as well as with the values of the enthalpy of swelling of the polymer. The swelling enthalpy of the Li-Nafion membrane in the solvents takes negative values, which indicates solvation of the polymer. The concentration dependences of the enthalpy of swelling and mixing of Li-Nafion in DMF and NMP were studied in more detail. Negative values of the swelling enthalpy of the polymer over the entire concentration range of solvents indicate good thermodynamic compatibility of the membrane with the solvent and the advantage of using these solvents to obtain Nafion dispersions due to their high solvating effect.
Full Text

About the authors
S. D. Chernyuk
Ural Federal University; Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: univerekb@mail.ru
Russian Federation, Ekaterinburg, 19, Mir St., 620020; Ekaterinburg, 91, Pervomayskaya St., 620049
A. P. Safronov
Ural Federal University; Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Email: univerekb@mail.ru
Russian Federation, Ekaterinburg, 19, Mir St., 620020; Ekaterinburg, 106, Amundsen St., 620016
O. V. Bushkova
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: univerekb@mail.ru
Russian Federation, Ekaterinburg, 91, Pervomayskaya St., 620049
References
- Pivovar B.S. // Polymer. 2006. V. 47. № 11. P. 4194.
- Kim Y.S., Lee K.S. // Polym. Rev. 2015. V. 55. № 2. P. 330.
- Mathias M.F., Makharia R., Gasteiger H.A., et al. // Electrochem. Soc. Interface. 2005. V. 14. № 3. P. 24.
- Ng W.W., Thiam H.S., Pang Y.L., Chong K.C., Lai S.O. // Membranes. 2022. V. 12. № 5. P. 506.
- Tucker M.C., Cho K.T., Spingler F.B., Weber A.Z., Lin G.Y. // J. Power Sources. 2015. V. 284. P. 212.
- Weber A.Z., Mench M.M., Meyers J.P., Ross P.N., Gostick J.T., Liu Q.H. // J. Appl. Electrochem. 2011. V. 41. № 10. P.1137.
- Perry M. L., Weber A.Z. // J. Electrochem. Soc. 2016. V. 163. № 1. P. 5064.
- Chan C.K., Lai C.Y., Wang C.C. // Catalysts. 2021. V. 11. № 8. P. 877.
- Harmer M.A., Sun Q. // Applied Catalysis A: General. 2001. V. 221. № 1-2. P. 45.
- Xie T. // Nature. 2010. V. 464. № 7286. P.267.
- Zhang F., Zhang Z., Liu Y., Leng J. // Fibers and Polymers. 2014. V. 15. P.534.
- Guo J.H., Sun W.Y. // Applied Catalysis B: Environmental. 2020. V. 275. P. 119154.
- Millet P. Handbook of Membrane Reactors. Woodhead Publishing, 2013. pp. 384-415.
- Mohammadi F., Rabiee A. // J. Appl. Polym. Sci. 2011. V. 120. № 6. P. 3469.
- Carvela M., Lobato J., Rodrigo M.A. // Electrochim. Acta. 2021. V. 387. P. 138542.
- Kayumov R.R., Shmygleva L.V., Evshchik E.Y., Sanginov E.A., Popov N.A., Bushkova, O.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2021. V. 57. P. 911.
- Istomina A.S., Yaroslavtseva T.V., Reznitskikh O.G., Kayumov R.R., Shmygleva L.V., Sanginov E.A., Bushkova O.V. // Polymers. 2021. V. 13. № 7. P. 1150.
- Oh K., Kwon O., Son B., Lee D.H., Shanmugam S. // J. Membr. Sc. 2019. V. 583. P.103.
- Adjemian K.T., Srinivasan S., Benziger J., Bocarsly A.B. // J. Power Sources. 2002. V. 109. № 2. P. 356.
- Santiago E.I., Isidoro R.A., Dresch M.A., Matos B.R., Linardi M., Fonseca F.C. // Electrochim. Acta. 2009. V. 54. № 16. P. 4111.
- Choi J., Yeon J.H., Yook S.H., Shin S., Kim J.Y., Choi M., Jang S. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 1. P. 806.
- Sasikumar G., Ihm J.W., Ryu H. // Electrochim. Acta. 2004. V. 50. № 2-3. P. 601.
- Evshchik E.Y., Sanginov E.A., Kayumov R.R., Zhuravlev V.D., Bushkova O.V., Dobrovolsky Y.A. // Int. J. Electrochem. Sci. 2020. V. 15. № 3. P. 2216.
- Wang H., Qin N., Li Y., Li Z., Zhang F., Luo W., Cheng H. // Carbon. 2023. V. 205. P. 435.
- Walle K.Z., Wu Y.S., Wu S.H., Chang J.K., Jose R., Yang C.C. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 13. P. 15259.
- Garsuch R.R., Le D.B., Garsuch A., Li J., Wang S., Farooq A., Dahn J.R. // J. Electrochem. Soc. 2008. V. 155. № 10. P. 721.
- Xu J., Zhang Q., Cheng Y.T. // J. Electrochem. Soc. 2015. V. 163. № 3. P. 401.
- Li Z., Zhang Y., Liu T., Gao X., Li S., Ling M., Lin Z. // Adv. Energy Mater. 2020. V. 10. № 20. P. 1903110.
- Tang Q., Shan Z., Wang L., Qin X., Zhu K., Tian J., Liu X. // J. Power Sources. 2014. V. 246. P. 253.
- Gao J., Sun C., Xu L., Chen J., Wang C., Guo D., Chen H. // J. Power Sources. 2018. V. 382. P.179.
- Li G., Cai W., Liu B., Li Z. // Journal of Power Sources. 2015. V. 294. P. 187.
- Li Z., Hou L.P., Zhang X.Q., Li B.Q., Huang J.Q., Chen C.M., Zhang Q. // Battery Energy. 2022. V. 1. № 3. P. 20220006.
- Huang B., Hua H., Lai P., Shen X., Li R., He Z., Zhao J. // ChemElectroChem. 2022. V. 9. № 14. P. e202200416.
- Berlinger S.A., Dudenas P.J., Bird A., Chen X., Freychet G., McCloskey B.D., Weber A. Z. // ACS Appl. Polym. Mater. 2020. V. 2. № 12. P. 5824.
- Welch C., Labouriau A., Hjelm R., Orler B., Johnston C., Kim Y.S. // ACS Macro Letters. 2012. V. 1. № 12. P. 1403.
- Safronova E.Y., Voropaeva D.Y., Safronov D.V., Stretton N., Parshina A.V., Yaroslavtsev A.B. // Membranes. 2022. V. 13. № 1. P. 13.
- Yeo R.S. // Polymer. 1980. V. 21. № 4. P. 432.
- Gebel G., Aldebert P., Pineri M. // Polymer. 1993. V. 34. № 2. P. 333.
- Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Membr. Sci. 2001. V. 184. № 2. P. 257.
- Mauritz K.A., Moore R.B. // Chem. Rev. 2004. V. 104. № 10. P. 4535.
- Choi S., Parameswaran S., Choi J.H. // Phys. Chem. Chem. Phys. 2020. V. 22. № 30. P. 17181.
- Wakisaka A., Ohki T. // Faraday Discuss. 2005. V. 129. P. 231.
- Chernyuk S.D., Safronov A.P., Adamova L.V., Bushkova O.V. // Polymer Science, Series A. 2023. V. 65. № 2. P. 119.
- Тагер А.А. Физикохимия полимеров. Издание 4-е. М.: Научный мир, 2007. 576 с.
- Сафронов А.П., Тагер А.А. // Высокомолекулярные соединения. Серия А. 1991. Т. 33. № 10. С. 2198.
- Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. № 3. P. 987.
Supplementary files
