Impact of Increased Helium Recovery Requirements from Natural Gas on Capital and Operational Performance of Two-Stage Membrane Equipment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article discusses consequences of increased requirements for the degree of helium recovery from helium-containing natural gas on the efficiency of two-stage membrane system are considered on the example of composition gas of the Kovykta field. With an increase in the degree of helium recovery ≥ 95%, there is a disproportionate increase in capital and operating costs. At the same time, methane losses in the composition of the “helium concentrate” are increasing. With a low influence of nonlinear effects, it is recommended to use a pressure 0.11–0.15 MPa abs. of the permeate gas. Use of two successive steps of gas separation at the second stage with different use of two permeated streams is a more effective technological solution for all basic characteristics than the version with a single-stage membrane block.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Solomakhin

API-Technology LLC

Хат алмасуға жауапты Автор.
Email: svi@api-tech.ru
Ресей, Moscow, 17, Nauchny Ave., Sect. 1, Office 14-4, 117246

Әдебиет тізімі

  1. Якуцени В.П. Сырьевая база гелия в мире и перспективы развития гелиевой промышленности // Нефтегазовая геология. Теория и практика. 2009 (4). С.1–24.
  2. Голубева И.А., Настин А.Н., Соломахин В.И., Павловский В.В. Гелий в России сегодня: проблемы и пути решения // Газовая промышленность. 2021. № 4 (815). С. 70–78.
  3. Голубева И.А., Настин А.Н., Соломахин В.И., Павловский В.В. Мембранные технологии извлечения гелия из природных газов, перспективы развития Российской гелиевой промышленности // Газовая промышленность. 2021. № 5 (816). С. 20–26.
  4. Дытнерский Ю.И., Брыков В.П., Каграманов Г.Г. Мембранное разделение газов. М.: Химия, 1991. C. 344
  5. Richard W. Baker. Membrane technology and applications. Wiley; 3rd edition, 2012 – 590 p.
  6. US Patent 3 324 626 A. Grant 1967/06/13, Priority 1964/12/03. T. Dresser and al. Process for recovery of Helium.
  7. Соломахин В.И. Технологический способ оптимизации интегрального ресурсо- и энергосберегающего фактора в задаче мембранного извлечения гелия из подготовленного природного газа высокого давления // Мембраны и мембранные технологии. 2019. Т. 9. № 1. С. 38–46. doi: 10.1134/S2218117218060081.
  8. Патент № 145348 Российская Федерация, МПК B01D 63/00 (2006.01), B01D 53/22 (2006.01). Установка мембранного разделения газовой смеси высокого давления: № 2014122480/05: заявл. 04.06.2014 г.: опубл. 20.09.2014 г. / Соломахин В.И.; заявитель ДОАО ЦКБН ОАО “Газпром”.
  9. Лагунцов Н.И., Курчатов И.М., Карасева М.Д., Соломахин В.И. Оценка эффективности применения мембранных технологий для извлечения гелия из природного газа при повышенных давлениях // Мембраны и мембранные технологии. 2014. Т. 4. №4, С. 272-279. https://doi.org/10.1134/S2218117214040051
  10. Каграманов Г.Г., Гуркин В.Н., Фарносова Е.Н. Влияние растворимости газов на эффективность мембранных процессов, на примере разделения смесей Не/СН4 и СО2/СН4 // Мембраны и мембранные технологии. 2020. Т. 10. № 4, С. 249–256. https://doi.org/10.1134/S2218117220040069
  11. Патент № 114423 Российская Федерация, МПК B01D 53/00 (2006.01), B01D 63/02 (2006.01). Установка очистки природного газа высокого давления от гелия: № 2011145825/05: заявл.11.11.2011г.: опубл. 27.03.2012г. / Гулянский М.А., Докучаев Н.Л., Котенко А.А. и др.; заявители: ЗАО “Грасис”, ООО “Газпром развитие”.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Principal two-stage membrane scheme of helium extraction and concentration in accordance with the Russian patent [8], where 1 - the pipeline for supply of GPG at working pressure, satisfying TU STO Gazprom 089-2010 and thoroughly filtered from mechanical impurities; 2 - one-stage membrane unit MB-1 from parallel operating ME; 3 - pipeline for withdrawal of retentate from MB-1 with low residual helium content; 4 - pipeline for low pressure permeate from MB-1 with extracted gases; 5 - pipeline for withdrawal of combined two gas streams (3 and 13) at working pressure (from the first and second stages) and with low residual helium content as one of the final results of membrane gas separation - Product 1; 6 - gas supply pipeline to the CW-1 inlet, after combining two low-pressure permeate streams from MB-1 and from MB-3 in order to compress them to working pressure; 7 - multistage compressor station CW-1 with auxiliary equipment; 8 - pipeline for withdrawal of the compressed gas stream from CW-1 for further gas separation; 9 - one-stage membrane unit MB-2 for realisation of the first stage of gas separation at the second stage of the membrane unit; 10 - retentate withdrawal pipeline from MB-2 and its supply to MB-3 for the subsequent stage of gas separation as part of the second stage; 11 - pipeline for withdrawal of permeate from MB-2 to form Product 2, which can be conditionally called ‘helium concentrate’; 12 - one-stage membrane unit MB-3 to realise the final stage of gas separation to achieve the required final results from the second stage; 13 - pipeline for withdrawal of retentate from MB-3 with low residual helium content with its concentration as in retentate from MB-1 to combine these two streams; 14 - pipeline of withdrawal of circulating low-pressure permeate from MB-3 for further supply together with permeate from MB-1 to the inlet of CW-1; 15 - multistage compressor station CW-2 in order to restore the initial working pressure of permeate stream from MB-2 for correct estimation of total specific energy consumption of all processes in the two-stage membrane plant; 16 - pipeline of withdrawal of helium concentrate with working pressure as the second final product - Product 2 for decision-making on its further use.

Жүктеу (182KB)
3. Fig. 2. The most typical dependences of the consequences of increased helium recovery requirements for MB-1 at the first stage of the plant, where a) the graph of reduction of the extracted helium concentration in the MB-1 permeate stream due to the increase in the fraction of penetrated/lost methane when the requirement to increase the helium recovery degree exceeds 90% and, moreover, when the requirement exceeds 95%; b) the graphs of relative performance (normalised to values at 85% helium recovery degree) in increasing the MB-1 permeate flow rate and in increasing the capital investment in the required amount of DOE.

Жүктеу (199KB)
4. Fig. 3. Graphs of dependences on changes in the ratio of pressures on MPE in MB-1 composition at providing the same degree of helium recovery in 90%, where a) graph of reduction of extracted helium concentration in the MB-1 permeate stream due to increase in the share of penetrated/lost methane; b) graphs of relative indicators (normalised to values at 0.15 MPa abs. permeate pressure) on the effect on the value of permeate share θ1 and on similar changes in capital investments in the amount of MPE for MB-1.

Жүктеу (211KB)
5. Fig. 4. Principal two-stage scheme of membrane helium extraction and concentration with ‘truncated’ execution of the second stage [11].

Жүктеу (190KB)

© Russian Academy of Sciences, 2024