Self-Organization Initiated by Shear Flow of Mixtures of Polymer Melts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.

About the authors

I. V. Gumennyi

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: alex_malkin@mig.phys.msu.ru
119991, Moscow, Russia

A. Ya. Malkin

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: alex_malkin@mig.phys.msu.ru
119991, Moscow, Russia

V. G. Kulichikhin

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: alex_malkin@mig.phys.msu.ru
119991, Moscow, Russia

References

  1. Plochocki A.P. Polym. Eng. Sci. 1983. V. 23. № 11. P. 618.
  2. Scott C.E., Macosko C.W. Polym. Bull. 1991. V. 26. № 3. P. 341.
  3. Utracki L.A., Kanial M.R. Polym. Eng. Sci. 1982. V. 22. № 2. P. 96.
  4. Isayev A.I., Modic M. Polym. Compos. 1987. V. 8. № 3. P. 158.
  5. Siegmann A., Dagan A., Kenig S. Polymer. 1985. V. 26. № 9. P. 1325.
  6. Isayev A.I., Viswanathan R. Mater. Sci. Eng. 1995. V. 36. № 8. P. 1585.
  7. Lin Q., Jho J., Yee A.F. Polym. Eng. Sci. 1993. V. 33. № 13. P. 789.
  8. Brostow W., Sterzynski T., Triouleyre S. Polymer. 1996. V. 37. № 9. P. 1561.
  9. Turek D., Simon G., Tiu C., Tiek-Siang O., Kosior E. Polymer. 1992. V. 33. № 20. P. 4322.
  10. Rath T., Kumar S., Mahaling R.N., Das C.K., Yadaw S.B. J. Appl. Polym. Sci. 2007. V. 106. № 6. P. 3721.
  11. Pisharath S., Hu X., Wong S.-C. Compos. Sci. Technol. 2006. V. 66. № 15. P. 2971.
  12. Semakov A.V., Kantor G.Ya., Vasil’yeva O.V., Dobrosol I.I., Khodyrev B.S., Kulichikhin V.G. Polym. Sci. U.S.S.R. 1991. V. 33. № 1. P. 160.
  13. Kulichikhin V.G., Platé N.A. Polym. Sci. U.S.S.R. 1991. V. 33. № 1. P. 1.
  14. Kulichikhin V.G., Vasil’eva O.V., Litvinov I.A., Antipov E.M., Parsamyan I.L., Platé N.A. J. Appl. Polym. Sci. 1991. V. 42. № 2. P. 363.
  15. Polymer Blends Handbook, Ed. by L.A. Utracki (Kluwer Academic Publishers, USA, 2003). https://doi.org/10.1007/0-306-48244-4
  16. Sadiku-Agboola O., Sadiku E.R., Adegbola A.T., Biotidara O.F. Mater. Sci. Appl. 2011. V. 02. № 01. P. 30.
  17. Utracki L.A. High Temp. Polym. Blends. 2014. V. 2014. P. 14.
  18. Włoch M., Datta J. in Rheology of Polymer Blends and Nanocomposites, Ed. by S. Thomas, C. Sarathchandran, and N. Chandran (Elsevier Inc., 2020), pp. 19–29.https://doi.org/10.1016/b978-0-12-816957-5.00002-1A
  19. Gumyusenge A., Tran D.T., Luo X., Pitch G.M., Zhao Y., Jenkins K.A., Mei J. Science. 2018. V. 362. № 6419. P. 1131.
  20. Nyamweya N.N. Future J. Pharm. Sci. 2021. V. 7. № 1. P. 18.
  21. Graziano A., Jaffer S., Sain M. J. Elastomers Plast. 2018. V. 51. № 4. P. 291.
  22. Sadiku-Agboola O., Rotimi E.R., Taoreed A.A., Frank B.O. Mater. Sci. Appl. 2011. V. 2. № 1. P. 30.
  23. Vuksanović M.M., Jančić Heinemann R. in Compatibilization of Polymer Blends, Ed. by A.R. Ajitha and S. Thomas (Elsevier Inc., 2020), doi:, pp. 299–330.https://doi.org/10.1016/b978-0-12-816006-0.00010-4
  24. Kulichikhin V.G., Malkin A.Ya. Polymers. 2022. V. 14. P. 1262.
  25. Cookman J., Conroy M., Bangert U. High Resolution Analytical Electron Microscopy of Ceramics and Glasses, in Encyclopedia of Materials: Technical Ceramics and Glasses, Ed. by M. Pomeroy (Vol. 1, Elsevier Inc., 2021), pp. 600–617.https://doi.org/10.1016/B978-0-12-818542-1.00064-3
  26. Yen H.-W. Advanced Characterization of Nanostructure in Steels, in Encyclopedia of Vaterial: Metals and Alloys, Ed. by F. Caballero (Vol. 2, Elsevier Inc., 2022), pp. 250–289.
  27. Saengsuwan S., Bualek-Limcharoen S., Mitchell G.R.l., Olley R.H. Polymer. 2003. V. 44. № 11. P. 3407.
  28. Malkin A.Ya., Gumennyi I.V., Aliev A.D., Chalykh A.E., Kulichikhin V.G. J. Mol. Liq. 2021. V. 344. P. 117919.
  29. Rheological Phenomena in Focus, Ed. by D.V. Boger and K. Walters, (Elsevier, 1993), pp. 53– 68.
  30. Malkin A.Ya., Isayev A.I. Rheology: Concepts, Methods, and Applications (ChemTec. Toronto, 4th ed., 2022).
  31. Minale M. Rheolog. Acta. 2010. V. 49. № 8. P. 789.
  32. Kravchenko I.V., Patlazhan S.A., Sultanov V.G. J. Phys.: Conf. Ser. 2020. V. 1556. P. 012061.
  33. Malkin A.Ya., Adv. Colloid Interface Sci. 2021. V. 290. 102381.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (18KB)
3.

Download (13KB)
4.

Download (1MB)
5.

Download (20KB)
6.

Download (45KB)
7.

Download (1MB)
8.

Download (1MB)
9.

Download (835KB)
10.

Download (1MB)
11.

Download (387KB)

Copyright (c) 2023 И.В. Гуменный, А.Я. Малкин, В.Г. Куличихин