Морфология и физико-химические свойства композиционных материалов на основе полиолефинов и хитозана

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Введение гидрофильных наполнителей в матрицу гидрофобных термопластичных полимеров является сложной задачей, обусловленной термодинамической несовместимостью компонентов и низкими адгезионными характеристиками. Особенно ярко данные проблемы проявляются, если наполнитель представляет собой гидрофильный полимер, не способный к плавлению без разложения, как это свойственно полисахаридам. Для получения композитов на основе полиолефинов в работе использовали метод безрастворной экструзии как для модифицирования химической структуры хитозана с целью придания ему амфифильных свойств, так и для смешения полученных производных с полиэтиленом. Исследовано влияние параметров проведения процессов, наличия пластификатора и содержания наполнителя на термические и механические свойства композитных пленочных материалов, а также на их морфологию. Обнаружено, что введение гидрофобных фрагментов в структуру хитозана незначительно улучшает механические свойства материалов по сравнению с немодифицированным полисахаридом. Гораздо больший эффект оказывает одновременное введение пластификатора, приводящее к материалам с однородной морфологией и улучшенной пластичностью.

全文:

受限制的访问

作者简介

Т. Попырина

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук; Институт физико-органической химии и углехимии им. Л.М. Литвиненко

编辑信件的主要联系方式.
Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, Профсоюзная ул., 70; 283050, Донецк, ул. Розы Люксембург, 70

М. Хавпачев

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук; Институт физико-органической химии и углехимии им. Л.М. Литвиненко

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70; 283050, Донецк, ул. Розы Люксембург, 70

П. Иванов

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70

К. Монахова

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70

И. Кучкина

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70

Ю. Евтушенко

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70

Г. Гончарук

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70

А. Зеленецкий

Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Email: tanjapopyrina@yandex.ru
俄罗斯联邦, 117393, Москва, ул. Профсоюзная, 70

参考

  1. Dey A., Dhumal C.V., Sengupta P., Kumar A., Pramanik N.K., Alam T. // J. Food Sci. Technol. 2021. V. 58. P. 3251.
  2. Rajalekshmy G.P., Lekshmi Devi L., Joseph J., Rekha M.R. Functional Polysaccharides for Biomedical Applications. United Kingdom: Woodhead Publ. Inc., 2019. P. 33.
  3. Dutta P.K., Tripathi S., Mehrotra G.K., Dutta J. // Food Chem. 2009. V. 114. P. 1173.
  4. Bakshi P.S., Selvakumar D., Kadirvelu K., Kumar N.S. // Int. J. Biol. Macromol. 2020. V. 150. P. 1072.
  5. Alavi M. In Nanotechnology in Skin, Soft Tissue, and Bone Infections. United Kingdom: Springer Cham. Inc., 2020.
  6. Budiarso I.J., Rini N.D.W., Tsalsabila A., Birowosuto M.D., Wibowo A. // ACS Biomater. Sci. Eng. 2023. V. P. 3084.
  7. Notario-Pérez F., Martín-Illana A., Cazorla-Luna R., Ruiz-Caro R., Veiga M.D. // Marine Drugs. 2022. V. 20. P. 396.
  8. Sirajudheen P., Poovathumkuzhi N.C., Vigneshwaran S., Chelaveettil B.M., Meenakshi S. // Carbohydr. Polymers. 2021. V. 273. P. 118604.
  9. Sarode S., Upadhyay P., Khosa M.A. // Int. J. Biol. Macromol. 2019. V. 121. P. 1086.
  10. Saheed I.O., Da O.W., Suah F.B.M. // J. Hazardous Mater. 2021. V. 408. P. 124889.
  11. La Mantia F.P., Morreale M. // Polym. Eng. Sci. 2006. V. 46. P. 1131.
  12. Ashori A., Nourbakhsh A. // Bioresour. Technol. 2010. V. 101. P. 2515.
  13. Jose E.T., Joseph A., Skrifvars M., Thomas S., Joseph K. // Polym. Compos. 2010. V. 31. P. 1487.
  14. Yu J., Ai F., Dufresne A., Gao S., Huang J., Chang P.R. // Macromol. Mater. Eng. 2008. V. 293. P. 763.
  15. Rahman M.R., Huque M.M., Islam M.N., Hasan M. // Compos. Part A. Appl. Sci. Manuf. 2009. V. 40. № 4. P. 511.
  16. Mir S., Yasin T., Halley P.J., Siddiqi H.M., Nicholson T. // Carbohydr. Polym. 2011. V. 83. № 2. P. 414.
  17. Salmah H., Azieyanti A.N. // J. Reinf. Plast. Compos. 2011. V. 30. № 3. P. 195.
  18. Faisal A., Salmah H., Kamarudin H. // J. Thermoplastic Composite Materials. 2013. V. 26. № 7. P. 878.
  19. Salmah H., Faisal A., Kamarudin H. // Int. J. Polymeric Mater. Polymeric Biomater. 2011. V. 60. № 7.
  20. Akopova T. A., Popyrina T. N., Demina T. S. // Int. J. Molec. Sci. 2022. V. 23. № 18. P. 10458.
  21. Akopova T. // Materials Today: Proc. 2019. V. 12. P. 86.
  22. Акопова Т.А. Хитозан. М.: Центр “Биоинженерия” РАН. 2013. С. 185.
  23. Озерин А.Н., Зеленецкий А.Н., Акопова Т.А., Зеленецкий С.Н., Владимиров Л.В., Жорин В.А., Могилевская Е.Л., Чернышенко А.О., Вихорева Г.А. Пат. RU 2292354 C1. М.: Стандартинформ. 2007.
  24. Akopova T.A., Vladimirov L.V., Zhorin V.A., Zelenetskii A.N. // Polymer Science B. 2009. V. 51. №. 3–4. P. 124.
  25. Akopova T. A., Demina T. S., Khavpachev M. A. Popyrina T.N., Grachev A.V., Ivanov P.L., Zelenetskii A.N. // Polymers. 2021. V. 13. № 16. P. 2807.
  26. Акопова Т.А., Роговина С.З., Вихорева Г.А., Зеленецкий С.Н., Гальбрайх Л.С., Ениколопов Н.С. // Высокомолек. соед. Б. 1991. Т. 32. № 10. С.735.
  27. Akopova T.A., Zelenetskii A.N., Ozerin A.N. Focus on Chitosan Research. New York: Nova Science Publ. Inc., 2011. Ch. 8. P. 223.
  28. Corazzari I., Nisticò R., Turci F., Faga M.G., Franzoso F., Tabasso S., Magnacca G. // Polym. Degrad. Stab. 2015. V. 112. P. 1.
  29. de Britto D., Campana-Filho S.P. // Thermochim. Acta. 2007. V. 465. № 1–2. P. 73.
  30. Amri F., Husseinsyah S., Hussin K. // Composites A. 2013. V. 46. P. 89.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. DSC (a) and TGA (b) curves for GE-C22, chitosan (ChTZ) and ChTZ-C22. The atmosphere is air. Colour figures can be viewed in the electronic version.

下载 (27KB)
3. Fig. 2. Dependence of the enthalpy of fusion ΔHpl of composites based on alkylated chitosan and HDPE on the mass fraction w X-C22.

下载 (12KB)
4. Fig. 3. DSC (a) and TGA (b) curves for HDPE/chitosan 30/70 sample obtained in air and argon.

下载 (26KB)
5. Fig. 4. Dependence of PTR190 (a), peak melting temperature (b) and enthalpy of melting (c) of the composites on the mass fraction w X-C22 in the HDPE matrix.

下载 (24KB)
6. Fig. 5. Optical micrographs of HDPE and X-C22 based composite films (10% (a), 10% after solid phase extrusion (b)).

下载 (18KB)
7. ig. 6. Dynamometric curves obtained during uniaxial deformation of HDPE/chitosan 80/20 (1), HDPE/X-C22 80/20 (2), HDPE/X-C22 80/20 + 5% Vaseline oil (3) and HDPE/X-C22 80/20 + 10% Vaseline oil (4) composite films. The insets show SEM micrographs of spalls obtained from HDPE/X-C22 films without vaseline oil (a) and with 10 wt% vaseline oil (b).

下载 (19KB)

版权所有 © Russian Academy of Sciences, 2024