Spider Silk: Biosynthesis, Properties & Bioengineering


Цитировать

Полный текст

Аннотация

Abstract:Due to the remarkable and unique qualities of spider silk, it has much applicability in the coming days. The complicated diversity and structure of spider silk ensure its use in both nature and industry. Based on the uniqueness and distinctive qualities associated with spider silks, advancements in cloning and expression of these silks are a growing area of research and industrial use. The environmentally triggered spider silk assembly and further disassembly, the creation of fibers, films, and novel chimeric composite materials from genetically modified spider silks are interesting areas of research in nanotechnology. In this context, we have discussed the creation of hybrids made of spider silk that combine with organic nanoparticles, both naturally occurring and bioengineered spider silk proteins. The diversity of spider silk, its composition and architecture, the distinctions between spider silk and silkworm silk, and the biosynthesis of natural silk are also discussed. This article describes the current issues and expected outcomes using biochemical data and processes.

Ключевые слова

Об авторах

Shivendra Singh

Department of Applied Chemistry, Amity School of Engineering & Technology, Amity University

Email: info@benthamscience.net

Shivangi Sharma

Department of Applied Chemistry, Amity School of Engineering & Technology,, Amity University

Email: info@benthamscience.net

Snigdha Das

, VBERC, Vidya Bhawan Society

Email: info@benthamscience.net

Amlan Kumar Das

Department of Chemistry, School of Liberal Arts and Sciences,, Mody University of Science and Technology,

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 2018; 47(17): 6486-504. doi: 10.1039/C8CS00187A PMID: 29938722
  2. Lewis RV. Spider silk: Ancient ideas for new biomaterials. Chem Rev 2006; 106(9): 3762-74. doi: 10.1021/cr010194g PMID: 16967919
  3. Agnarsson I, Kuntner M, Blackledge TA. Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PLoS One 2010; 5(9): e11234. doi: 10.1371/journal.pone.0011234 PMID: 20856804
  4. Huang X, Liu G, Wang X. New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater 2012; 24(11): 1482-6. doi: 10.1002/adma.201104668 PMID: 22388863
  5. Hinman MB, Lewis RV. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 1992; 267(27): 19320-4. doi: 10.1016/S0021-9258(18)41777-2 PMID: 1527052
  6. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010; 329(5991): 528-31. doi: 10.1126/science.1188936 PMID: 20671180
  7. Liu Y, Shao Z, Vollrath F. Relationships between supercontraction and mechanical properties of spider silk. Nat Mater 2005; 4(12): 901-5. doi: 10.1038/nmat1534 PMID: 16299506
  8. Bell FI, McEwen IJ, Viney C. Supercontraction stress in wet spider dragline. Nature 2002; 416(6876): 37. doi: 10.1038/416037a PMID: 11882884
  9. Liu D, Yu L, He Y, et al. Peculiar torsion dynamical response of spider dragline silk. Appl Phys Lett 2017; 111(1): 013701. doi: 10.1063/1.4990676 PMID: 28104923
  10. Li J, Li S, Huang J, et al. Spider silk-inspired artificial fibers. Adv Sci 2022; 9(5): 2103965. doi: 10.1002/advs.202103965 PMID: 34927397
  11. Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 2001; 291(5513): 2603-5. doi: 10.1126/science.1057561 PMID: 11283372
  12. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes. PLoS One 2007; 2(6): e514. doi: 10.1371/journal.pone.0000514 PMID: 17565367
  13. Garb JE, Ayoub NA, Hayashi CY. Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 2010; 10: 243. doi: 10.1186/1471-2148-10-243
  14. Harmer AMT, Blackledge TA, Madin JS, Herberstein ME. High-performance spider webs: Integrating biomechanics, ecology and behaviour. J R Soc Interface 2011; 8(57): 457-71. doi: 10.1098/rsif.2010.0454 PMID: 21036911
  15. Vollrath F. Strength and structure of spiders’ silks. J Biotechnol 2000; 74(2): 67-83. PMID: 11763504
  16. Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 2006; 10(3): 770-7. doi: 10.1111/j.1582-4934.2006.tb00436.x PMID: 16989736
  17. Porter D, Guan J, Vollrath F. Spider silk: Super material or thin fibre? Adv Mater 2013; 25(9): 1275-9. doi: 10.1002/adma.201204158 PMID: 23180482
  18. Buehler MJ. Materials by design-A perspective from atoms to structures. MRS Bull 2013; 38(2): 169-76. doi: 10.1557/mrs.2013.26 PMID: 24163499
  19. Babu KM. Silk from silkworms and spiders as high-performance fibers. Structure and Properties of High-Performance Fibers. Cambridge, UK: Woodhead Publishing 2017; pp. 327-66. doi: 10.1016/B978-0-08-100550-7.00013-9
  20. Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: From fibroin sequence to mechanical function. J Exp Biol 1999; 202(23): 3295-303. doi: 10.1242/jeb.202.23.3295 PMID: 10562512
  21. Römer L, Scheibel T. The elaborate structure of spider silk. Prion 2008; 2(4): 154-61. doi: 10.4161/pri.2.4.7490 PMID: 19221522
  22. Eisoldt L, Smith A, Scheibel T. Decoding the secrets of spider silk. Mater Test 2011; 14(3): 80-6.
  23. Vollrath F, Porter D. Silks as ancient models for modern polymers. Polymer 2009; 50(24): 5623-32. doi: 10.1016/j.polymer.2009.09.068
  24. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401-16. doi: 10.1016/S0142-9612(02)00353-8 PMID: 12423595
  25. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol 2008; 26(5): 244-51. doi: 10.1016/j.tibtech.2008.02.006 PMID: 18367277
  26. Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002; 418(6899): 741-1. doi: 10.1038/418741a PMID: 12181556
  27. Du N, Yang Z, Liu XY, Li Y, Xu HY. Structural origin of the strain-hardening of spider silk. Adv Funct Mater 2011; 21(4): 772-8. doi: 10.1002/adfm.201001397
  28. Vasconcelos A, Freddi G, Cavaco-Paulo A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 2008; 9(4): 1299-305. doi: 10.1021/bm7012789 PMID: 18355027
  29. Hakimi O, Knight DP, Vollrath F, Vadgama P. Spider and mulberry silkworm silks as compatible biomaterials. Compos, Part B Eng 2007; 38(3): 324-37. doi: 10.1016/j.compositesb.2006.06.012
  30. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007; 32(8-9): 991-1007. doi: 10.1016/j.progpolymsci.2007.05.013 PMID: 19543442
  31. Sirichaisit J, Young RJ, Vollrath F. Molecular deformation in spider dragline silk subjected to stress. Polymer 2000; 41(3): 1223-7. doi: 10.1016/S0032-3861(99)00293-1
  32. Davies GJG, Knight DP, Vollrath F. Chitin in the silk gland ducts of the spider Nephila edulis and the silkworm Bombyx mori. PLoS One 2013; 8(8): e73225. doi: 10.1371/journal.pone.0073225 PMID: 24015298
  33. Blackledge TA, Hayashi CY. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol 2006; 209(13): 2452-61. doi: 10.1242/jeb.02275 PMID: 16788028
  34. Hu X, Yuan J, Wang X, et al. Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 2007; 46(11): 3294-303. doi: 10.1021/bi602507e PMID: 17311422
  35. Joel AC, Rawal A, Yao Y, et al. Physico-chemical properties of functionally adhesive spider silk nanofibres. Biomater Sci 2023; 11(6): 2139-50. doi: 10.1039/D2BM01599D
  36. Yarger JL, Cherry BR, van der Vaart A. Uncovering the structure-function relationship in spider silk. Nat Rev Mater 2018; 3(3): 18008. doi: 10.1038/natrevmats.2018.8
  37. Ko FK, Jovicic J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 2004; 5(3): 780-5. doi: 10.1021/bm0345099 PMID: 15132661
  38. Madurga R, Plaza GR, Blackledge TA, Guinea GV, Elices M, Pérez-Rigueiro J. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter. Sci Rep 2016; 6(1): 18991. doi: 10.1038/srep18991 PMID: 26755434
  39. Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF. Recent advances in development of functional spider silk-based hybrid materials. Front Chem 2020; 8: 554. doi: 10.3389/fchem.2020.00554 PMID: 32695749
  40. Blamires SJ, Spicer PT, Flanagan PJ. Spider silk biomimetics programs to inform the development of new wearable technologies. Front Mater 2020; 7: 29. doi: 10.3389/fmats.2020.00029
  41. Zhang S, Marini DM, Hwang W, Santoso S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 2002; 6(6): 865-71. doi: 10.1016/S1367-5931(02)00391-5 PMID: 12470743
  42. Anton AM, Heidebrecht A, Mahmood N, Beiner M, Scheibel T, Kremer F. Foundation of the outstanding toughness in biomimetic and natural spider silk. Biomacromolecules 2017; 18(12): 3954-62. doi: 10.1021/acs.biomac.7b00990 PMID: 28954189
  43. He W, Qian D, Wang Y, et al. A protein-like nanogel for spinning hierarchically structured artificial spider silk. Adv Mater 2022; 34(27): 2201843. doi: 10.1002/adma.202201843 PMID: 35509216
  44. Humenik M, Smith AM, Scheibel T. Recombinant spider silks-biopolymers with potential for future applications. Polymers (Basel) 2011; 3(1): 640-61. doi: 10.3390/polym3010640
  45. Kucharczyk K, Rybka JD, Hilgendorff M, et al. Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications. PLoS One 2019; 14(7): e0219790. doi: 10.1371/journal.pone.0219790 PMID: 31306458
  46. Cohen N. The underlying mechanisms behind the hydration-induced and mechanical response of spider silk. J Mech Phys Solids 2023; 172: 105141. doi: 10.1016/j.jmps.2022.105141
  47. Wang Q, McArdle P, Wang SL, et al. Protein secondary structure in spider silk nanofibrils. Nat Commun 2022; 13(1): 4329. doi: 10.1038/s41467-022-31883-3 PMID: 35902573
  48. Kandas I, Shehata N, Hassounah I, Sobolčiak P, Krupa I Sr, Lewis R. Optical fluorescent spider silk electrospun nanofibers with embedded cerium oxide nanoparticles. J Nanophotonics 2018; 12(2): 1. doi: 10.1117/1.JNP.12.026016
  49. Huang J, Wong C, George A, Kaplan DL. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 2007; 28(14): 2358-67. doi: 10.1016/j.biomaterials.2006.11.021 PMID: 17289141
  50. Wong Po Foo C, Patwardhan SV, Belton DJ, et al. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 2006; 103(25): 9428-33. doi: 10.1073/pnas.0601096103 PMID: 16769898
  51. Mieszawska AJ, Fourligas N, Georgakoudi I, et al. Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 2010; 31(34): 8902-10. doi: 10.1016/j.biomaterials.2010.07.109 PMID: 20817293
  52. Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC. Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 2012; 28(9): 4373-81. doi: 10.1021/la205084z PMID: 22313382
  53. Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 2010; 22(20): 5780-5. doi: 10.1021/cm101940u PMID: 20976116
  54. Rauscher S, Baud S, Miao M, Keeley FW, Pomès R. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 2006; 14(11): 1667-76. doi: 10.1016/j.str.2006.09.008 PMID: 17098192
  55. Lefèvre T, Rousseau ME, Pézolet M. Protein secondary structure and orientation in silk as revealed by raman spectromicroscopy. Biophys J 2007; 92(8): 2885-95. doi: 10.1529/biophysj.106.100339 PMID: 17277183
  56. Agnarsson I, Dhinojwala A, Sahni V, Blackledge TA. Spider silk as a novel high performance biomimetic muscle driven by humidity. J Exp Biol 2009; 212(13): 1990-4. doi: 10.1242/jeb.028282 PMID: 19525423
  57. Chu M, Sun Y. Self-assembly method for the preparation of near-infrared fluorescent spider silk coated with CdTe nanocrystals. Smart Mater Struct 2007; 16(6): 2453. doi: 10.1088/0964-1726/16/6/048
  58. Steven E, Park JG, Paravastu A, et al. Physical characterization of functionalized spider silk: Electronic and sensing properties. Sci Technol Adv Mater 2011; 12(5): 055002.
  59. Zheng JS, Zhang XS, Li P, et al. Oxygen reduction reaction properties of carbon nanofibers: Effect of metal purification. Electrochim Acta 2008; 53(10): 3587-96. doi: 10.1016/j.electacta.2007.11.081
  60. Liu D, Zhang X, You T. Urea-treated carbon nanofibers as efficient catalytic materials for oxygen reduction reaction. J Power Sources 2015; 273: 810-5. doi: 10.1016/j.jpowsour.2014.09.104
  61. Liang HW, Wu ZY, Chen LF, Li C, Yu SH. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015; 11: 366-76. doi: 10.1016/j.nanoen.2014.11.008
  62. Asiabi M, Mehdinia A, Jabbari A. Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb(II) and Cd(II). Mikrochim Acta 2017; 184(11): 4495-501. doi: 10.1007/s00604-017-2473-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024