Central Countries' and Brazil's Contributions to Nanotechnology


Цитировать

Полный текст

Аннотация

Abstract:Nanotechnology is a cornerstone of the scientific advances witnessed over the past few years. Nanotechnology applications are extensively broad, and an overview of the main trends worldwide can give an insight into the most researched areas and gaps to be covered. This document presents an overview of the trend topics of the three leading countries studying in this area, as well as Brazil for comparison. The data mining was made from the Scopus database and analyzed using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published from 2010 to 2020 revealed that the countries responsible for the highest number of published articles are The United States, China, and India, while Brazil is in the fifteenth position. Thematic global networks revealed that the standing-out research topics are health science, energy, wastewater treatment, and electronics. In a temporal observation, the primary topics of research are: India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the development of triboelectric nanogenerators. The collected data are available on GitHub. This study demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding of nanotechnology's contributions and trends and highlights the diverse priorities of nations in this cutting-edge field.

Об авторах

Jonas Santos

Programa de Engenharia da Nanotecnologia,, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro

Email: info@benthamscience.net

Leydi del Rocío Silva-Calpa

Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro

Email: info@benthamscience.net

Fernando de Souza

Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro

Автор, ответственный за переписку.
Email: info@benthamscience.net

Kaushik Pal

Department of Physics, University Center for Research and Development (UCRD), Chandigarh University

Email: info@benthamscience.net

Список литературы

  1. Ran W, Walz A, Stoiber K, et al. Depositing Molecular Graphene Nanoribbons on Ag(111) by electrospray controlled ion beam deposition: Self‐assembly and on‐surface transformations. Angew Chem Int Ed 2022; 61(14): e202111816. doi: 10.1002/anie.202111816 PMID: 35077609
  2. Hu X, Li F, Xia F, et al. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175: 113830. doi: 10.1016/j.addr.2021.113830 PMID: 34139254
  3. Mitchell S, Qin R, Zheng N, Pérez-Ramírez J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat Nanotechnol 2021; 16(2): 129-39. doi: 10.1038/s41565-020-00799-8 PMID: 33230317
  4. Xie X, Li P, Xu Y, et al. Single-molecule junction: A reliable platform for monitoring molecular physical and chemical processes. ACS Nano 2022; 16(3): 3476-505. doi: 10.1021/acsnano.1c11433 PMID: 35179354
  5. Hurtado-Gallego J, Sangtarash S, Davidson R, et al. Thermoelectric enhancement in single organic radical molecules. Nano Lett 2022; 22(3): 948-53. doi: 10.1021/acs.nanolett.1c03698 PMID: 35073099
  6. Soleymani-Goloujeh M, Hosseini S, Baghaban Eslaminejad M. Advanced nanotechnology approaches as emerging tools in cellular-based technologies. Adv Exp Med Biol 2023; 1409: 127-44. doi: 10.1007/5584_2022_725
  7. Li D, Liu Y, Wu N. Application progress of nanotechnology in regenerative medicine of diabetes mellitus. Diabetes Res Clin Pract 2022; 190: 109966. doi: 10.1016/j.diabres.2022.109966 PMID: 35718019
  8. Dash S, Khan AS, Mohanty S. Impact of nanotechnology on the realm of stem cells and regenerative medicine. In: ChemNanoMat 2022; 8(9): e202200177. doi: 10.1002/cnma.202200177
  9. Dhanjal DS, Mehra P, Bhardwaj S, et al. Mycology-nanotechnology interface: Applications in medicine and cosmetology. Int J Nanomedicine 2022; 17: 2505-33. doi: 10.2147/IJN.S363282 PMID: 35677678
  10. Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic medicine. Adv Funct Mater 2022; 32(32): 2204791. doi: 10.1002/adfm.202204791
  11. Abedini-Nassab R, Emami SM, Nowghabi AN. Nanotechnology and acoustics in medicine and biology. Recent Pat Nanotechnol 2022; 16(3): 198-206. doi: 10.2174/1872210515666210428134424 PMID: 33913408
  12. Alzate-Correa D, Lawrence WR, Salazar-Puerta A, Higuita-Castro N, Gallego-Perez D. Nanotechnology-driven cell-based therapies in regenerative medicine. AAPS J 2022; 24(2): 43. doi: 10.1208/s12248-022-00692-3 PMID: 35292878
  13. Kumar R, Ranjith S, Balu H, Bharathi DR, Chandan K, Ahmed SS. Role of nanotechnology in biomedical applications: An updated review. UPI J Pharm Med Health Sci 2022; 39-43.
  14. Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The promise of nanotechnology in personalized medicine. J Pers Med 2022; 12(5): 673. doi: 10.3390/jpm12050673 PMID: 35629095
  15. Cascallar M, Alijas S, Pensado-López A, et al. What zebrafish and nanotechnology can offer for cancer treatments in the age of personalized medicine. Cancers 2022; 14(9): 2238. doi: 10.3390/cancers14092238 PMID: 35565373
  16. Sahoo U. Application of nanotechnology in agriculture in India. Int J Nat Sci 2022; 13(72): 44422-9.
  17. Chopra H, Bibi S, Islam F, et al. Emerging trends in the delivery of resveratrol by nanostructures: Applications of nanotechnology in life sciences. J Nanomater 2022; 2022
  18. Vijayakumar MD, Surendhar GJ, Natrayan L, Patil PP, Ram PM, Paramasivam P. Evolution and recent scenario of nanotechnology in agriculture and food industries. J Nanomater 2022; 2022 doi: 10.1155/2022/1280411
  19. Fadiji AE, Mthiyane DMN, Onwudiwe DC, Babalola OO. Harnessing the known and unknown impact of nanotechnology on enhancing food security and reducing postharvest losses: Constraints and future prospects. Agronomy 2022; 12(7): 1657. doi: 10.3390/agronomy12071657
  20. Khodadadi A, Zarepour A, Abbaszadeh S, et al. Nanotechnology for SARS-CoV-2 Diagnosis. Nanofabrication 2022; 7: 1-17.
  21. Rai R, Nalini P, Singh YP. Nanotechnology for Sustainable Horticulture Development: Opportunities and Challenges. Innov. Approaches Sustain. Dev 2022; pp. 191-210.
  22. Xu C, Lei C, Hosseinpour S, Ivanovski S, Walsh LJ, Khademhosseini A. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. Natl Sci Rev 2022; 9(10): nwac124. doi: 10.1093/nsr/nwac124 PMID: 36196115
  23. Melanie M, Miranti M, Kasmara H, et al. Nanotechnology-based bioactive antifeedant for plant protection. Nanomaterials 2022; 12(4): 630. doi: 10.3390/nano12040630 PMID: 35214959
  24. Beig B, Niazi MBK, Sher F, et al. Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett 2022; 20(4): 2709-26. doi: 10.1007/s10311-022-01409-w
  25. Andreo J, Ettlinger R, Zaremba O, et al. Reticular nanoscience: Bottom-up assembly nanotechnology. J Am Chem Soc 2022; 144(17): 7531-50. doi: 10.1021/jacs.1c11507 PMID: 35389641
  26. Afolalu SA, Ikumapayi OM, Oloyede OR, Ogedengbe TS, Ogundipe AT. Advances in nanotechnology and nanoparticles in the 21st Century-an overview. Proceedings of the International Conference on Industrial Engineering and Operations Management. Nsukka, Nigeria. 2022.
  27. Del Grosso E, Franco E, Prins LJ, Ricci F. Dissipative DNA nanotechnology. Nat Chem 2022; 14(6): 600-13. doi: 10.1038/s41557-022-00957-6 PMID: 35668213
  28. Zheng Z, Zhu S, Lv M, Gu Z, Hu H. Harnessing nanotechnology for cardiovascular disease applications-a comprehensive review based on bibliometric analysis. Nano Today 2022; 44: 101453. doi: 10.1016/j.nantod.2022.101453
  29. Nabizadeh Z, Nasrollahzadeh M, Daemi H, et al. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. Beilstein J Nanotechnol 2022; 13: 363-89. doi: 10.3762/bjnano.13.31 PMID: 35529803
  30. Hindy OA, Goker M, Yilgor Huri P. Nanoscale agents within 3D-printed constructs: Intersection of nanotechnology and personalized bone tissue engineering. Emergent Mater 2022; pp. 1-11.
  31. Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology strategies for plant genetic engineering. Adv Mater 2022; 34(7): 2106945. doi: 10.1002/adma.202106945 PMID: 34699644
  32. Soni RA, Rizwan M, Singh S. Opportunities and potential of green chemistry in nanotechnology. Nanotechnol Environ Eng 2022; 1-13.
  33. Pijeira MSO, Viltres H, Kozempel J, et al. Radiolabeled nanomaterials for biomedical applications: Radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7(1): 8. doi: 10.1186/s41181-022-00161-4 PMID: 35467307
  34. Payal Pandey P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Pat Nanotechnol 2022; 16(1): 45-66. doi: 10.2174/1872210515666210120114504 PMID: 33494686
  35. Hao P, Niu L, Luo Y, Wu N, Zhao Y. Surface engineering of lipid vesicles based on DNA nanotechnology. ChemPlusChem 2022; 87(5): e202200074. doi: 10.1002/cplu.202200074 PMID: 35604011
  36. Marzana M, Morsada Z, Faruk MO, et al. Nanostructured carbons: Towards soft‐bioelectronics, biosensing and theraputic applications. Chem Rec 2022; 22(7): e202100319. doi: 10.1002/tcr.202100319 PMID: 35189015
  37. Sen D, Patil V, Smriti K, et al. Nanotechnology and nanomaterials in dentistry: Present and future perspectives in clinical applications. Eng Sci 2022; 2022(20): 13-22.
  38. Bucci R, Georgilis E, Bittner AM, Gelmi ML, Clerici F. Peptide-based electrospun fibers: Current status and emerging developments. Nanomaterials 2021; 11(5): 1262. doi: 10.3390/nano11051262 PMID: 34065019
  39. Wang W, Jiang Y, Thomas PJ. Structural design and physical mechanism of axial and radial sandwich resonators with piezoelectric ceramics: A review. Sensors 2021; 21(4): 1112. doi: 10.3390/s21041112 PMID: 33562652
  40. El-Sheekh MM, Morsi HH, Hassan LHS, Ali SS. The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol Res 2022; 263: 127111. doi: 10.1016/j.micres.2022.127111 PMID: 35834891
  41. Ashrafizadeh SN, Seifollahi Z. Trends in biotechnology and ties with chemical engineering. J Biotechnol Biomed 2021; 4: 169-86.
  42. Muhammad ID. A comparative study of research and development related to nanotechnology in Egypt, Nigeria and South Africa. Technol Soc 2022; 68: 101888. doi: 10.1016/j.techsoc.2022.101888
  43. Bodunde OP, Ikumapayi OM, Akinlabi ET, Oladapo BI, Adeoye AOM, Fatoba SO. A futuristic insight into a “nano-doctor”: A clinical review on medical diagnosis and devices using nanotechnology. Mater Today Proc 2021; 44: 1144-53. doi: 10.1016/j.matpr.2020.11.232
  44. Leso V, Fontana L, Iavicoli I. Biomedical nanotechnology: Occupational views. Nano Today 2019; 24: 10-4. doi: 10.1016/j.nantod.2018.11.002
  45. Chatterjee P, Kumar S. Current developments in nanotechnology for cancer treatment. Mater Today Proc 2022; 48: 1754-8. doi: 10.1016/j.matpr.2021.10.048
  46. Umapathy VR, Natarajan PM, Sumathi JC, et al. Current trends and future perspectives on dental nanomaterials-an overview of nanotechnology strategies in dentistry. J King Saud Univ Sci 2022; 102231. doi: 10.1016/j.jksus.2022.102231
  47. Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines. Homeopathy 2015; 104(2): 123-38. doi: 10.1016/j.homp.2014.11.003 PMID: 25869977
  48. Kalita M, Payne MM, Bossmann SH. Glyco-nanotechnology: A biomedical perspective. Nanomedicine 2022; 42: 102542. doi: 10.1016/j.nano.2022.102542 PMID: 35189393
  49. Assad H, Kaya S, Senthil Kumar P, Vo DVN, Sharma A, Kumar A. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel 2022; 323: 124277. doi: 10.1016/j.fuel.2022.124277
  50. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol 2004; 61(3): 216-20. doi: 10.1016/j.surneu.2003.09.036 PMID: 14984987
  51. Zhang X, Guo M, Huang Z, Huang Y, Wu C, Pan X. Mapping the intersection of nanotechnology and SARS-CoV-2/COVID-19: A bibliometric analysis. Infect Med 2022; 1(2): 103-12. doi: 10.1016/j.imj.2022.06.005
  52. Yabrov A, Okunev Y. Medicine without drugs-a new direction for application of nanotechnology. Med Hypotheses 2004; 63(1): 149-54. doi: 10.1016/j.mehy.2004.01.034 PMID: 15193368
  53. Ikumapayi OM, Akinlabi ET, Adeoye AOM, Fatoba SO. Microfabrication and nanotechnology in manufacturing system-an overview. Mater Today Proc 2021; 44: 1154-62. doi: 10.1016/j.matpr.2020.11.233
  54. Pushparaj K, Liu WC, Meyyazhagan A, et al. Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy 2022; 240: 122732. doi: 10.1016/j.energy.2021.122732
  55. Datta R, Jaitawat SS. Nanotechnology-the new frontier of medicine. Med J Armed Forces India 2006; 62(3): 263-8. doi: 10.1016/S0377-1237(06)80016-X PMID: 27365690
  56. Almeida L, Felzenszwalb I, Marques M, Cruz C. Nanotechnology activities: Environmental protection regulatory issues data. Heliyon 2020; 6(10): e05303. doi: 10.1016/j.heliyon.2020.e05303 PMID: 33102878
  57. Kargozar S, Mozafari M. Nanotechnology and nanomedicine: Start small, think big. Mater Today Proc 2018; 5(7): 15492-500. doi: 10.1016/j.matpr.2018.04.155
  58. Wang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine 2021; 34: 102387. doi: 10.1016/j.nano.2021.102387 PMID: 33753283
  59. Nedumal Pugazhenthi P, Selvaperumal S, Gnananaskanda Parthiban P, Nagarajan R, Naganathan GS. Nanotechnology applied for improving research in electrical domain-a survey. Mater Today Proc 2021. doi: 10.1016/j.matpr.2021.03.379
  60. Zarrintaj P, Ahmadi Z, Hosseinnezhad M, Saeb MR, Laheurte P, Mozafari M. Photosensitizers in medicine: Does nanotechnology make a difference? Mater Today Proc 2018; 5(7): 15836-44. doi: 10.1016/j.matpr.2018.05.082
  61. Shi F, Zhang Y, Yang G, Guo T, Feng N. Preparation of a micro/nanotechnology based multi-unit drug delivery system for a Chinese medicine Niuhuang Xingxiao Wan and assessment of its antitumor efficacy. Int J Pharm 2015; 492(1-2): 244-7. doi: 10.1016/j.ijpharm.2015.07.023 PMID: 26188318
  62. Kamarulzaman NA, Lee KE, Siow KS, Mokhtar M. Public benefit and risk perceptions of nanotechnology development: Psychological and sociological aspects. Technol Soc 2020; 62: 101329. doi: 10.1016/j.techsoc.2020.101329
  63. Rathore A, Mahesh G. Public perception of nanotechnology: A contrast between developed and developing countries. Technol Soc 2021; 67: 101751. doi: 10.1016/j.techsoc.2021.101751
  64. Kuang L, Burgess B, Cuite CL, Tepper BJ, Hallman WK. Sensory acceptability and willingness to buy foods presented as having benefits achieved through the use of nanotechnology. Food Qual Prefer 2020; 83: 103922. doi: 10.1016/j.foodqual.2020.103922
  65. Behl T, Kaur I, Sehgal A, et al. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. Chemosphere 2022; 288(Pt 2): 132533. doi: 10.1016/j.chemosphere.2021.132533 PMID: 34655646
  66. Khan MI, Zahra QA, Batool F, et al. Trends in nanotechnology to improve therapeutic efficacy across special structures. OpenNano 2022; 7: 100049. doi: 10.1016/j.onano.2022.100049
  67. Bastani B, Fernandez D. Intellectual property rights in nanotechnology. Thin Solid Films 2002; 420-421: 472-7. doi: 10.1016/S0040-6090(02)00843-X
  68. Samal SS, Manohara SR. Nanoscience and nanotechnology in India: A broad perspective. Mater Today Proc 2019; 10: 151-8. doi: 10.1016/j.matpr.2019.02.200
  69. Tanguy NR, Rana M, Khan AA, et al. Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 2022; 98: 107337. doi: 10.1016/j.nanoen.2022.107337
  70. Branecky M, Aboualigaledari N, Cech V. Plasma nanotechnology for controlling chemical and physical properties of organosilicon nanocoatings. Mater Today Commun 2020; 24: 101234. doi: 10.1016/j.mtcomm.2020.101234
  71. Mishra M, Dashora K, Srivastava A, Fasake VD, Nag RH. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol Environ Saf 2019; 171: 677-82. doi: 10.1016/j.ecoenv.2018.12.085 PMID: 30658303
  72. Riyaz S, Nashit Rabeet M, Kumar Sharma V. Reversible code converters in QCA nanotechnology. Mater Today Proc 2022; 63: 440-6. doi: 10.1016/j.matpr.2022.03.446
  73. Review A. Role of nanotechnology in the world of cosmetology: A review. Mater Today Proc 2021; 45: 3302-6. doi: 10.1016/j.matpr.2020.12.638
  74. Böttner S, Jorgensen MR, Schmidt OG. Rolled-up nanotechnology: 3D photonic materials by design. Scr Mater 2016; 122: 119-24. doi: 10.1016/j.scriptamat.2016.04.030
  75. Ghosh T, Raj GVSB, Dash KK. A comprehensive review on nanotechnology based sensors for monitoring quality and shelf life of food products. Measurement. Food 2022; 7: 100049. doi: 10.1016/j.meafoo.2022.100049
  76. Younis SA, Kim KH, Shaheen SM, et al. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew Sustain Energy Rev 2021; 152: 111686. doi: 10.1016/j.rser.2021.111686
  77. Pummakarnchana O, Tripathi N, Dutta J. Air pollution monitoring and GIS modeling: A new use of nanotechnology based solid state gas sensors. Sci Technol Adv Mater 2005; 6(3-4): 251-5. doi: 10.1016/j.stam.2005.02.003
  78. Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K. Application of nanotechnology in food packaging: Pros and Cons. Journal of Agriculture and Food Research 2022; 7: 100270. doi: 10.1016/j.jafr.2022.100270
  79. Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363(1): 1-24. doi: 10.1016/j.jcis.2011.07.017 PMID: 21824625
  80. Cardoso RM, Pereira TS, Facure MHM, et al. Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports 2022; 4: 100068. doi: 10.1016/j.snr.2021.100068
  81. Comini E, Baratto C, Concina I, et al. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens Actuators B Chem 2013; 179: 3-20. doi: 10.1016/j.snb.2012.10.027
  82. Jadhav MS, Laxmeshwar LS, Akki JF, Raikar PU, Tangod VB, Raikar US. Multimode fiber optic sensor for adulterant traces in edible oil using nanotechnology technique. Mater Today Proc 2017; 4(11): 11910-4. doi: 10.1016/j.matpr.2017.09.111
  83. Suma GR, Subramani NK, Sachhidananda S, Satyanarayana SV. Siddaramaiah. Nanotechnology enabled E.Coli sensors: An opto-electronic study. Mater Today Proc 2017; 4(10): 11300-4. doi: 10.1016/j.matpr.2017.09.054
  84. Gómez-Llorente H, Hervás P, Pérez-Esteve É, Barat JM, Fernández-Segovia I. Nanotechnology in the agri-food sector: Consumer perceptions. NanoImpact 2022; 26: 100399. doi: 10.1016/j.impact.2022.100399 PMID: 35560291
  85. Kuda A, Yadav M. Opportunities and challenges of using nanomaterials and nanotechnology in architecture: An overview. Mater Today Proc 2022; 65: 2102-11. doi: 10.1016/j.matpr.2022.07.052
  86. Miao Y, Li P, Cheng S, et al. Preparation of multi-axial compressible 3D PVDF nanofibre/graphene wearable composites sensor sponge and application of integrated sensor. Sens Actuators A Phys 2022; 342: 113648. doi: 10.1016/j.sna.2022.113648
  87. Khorablou Z, Shahdost-fard F, Razmi H, Yola ML, Karimi-Maleh H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere 2021; 278: 130393. doi: 10.1016/j.chemosphere.2021.130393 PMID: 33823350
  88. Chausali N, Saxena J, Prasad R. Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research 2022; 7: 100257. doi: 10.1016/j.jafr.2021.100257
  89. Thanigaivel S, Priya AK, Dutta K, et al. Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A biorefinery approach for waste to value-added products. Fuel 2022; 322: 124236. doi: 10.1016/j.fuel.2022.124236
  90. Norris A, Saafi M, Romine P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr Build Mater 2008; 22(2): 111-20. doi: 10.1016/j.conbuildmat.2006.05.047
  91. Chatterjee A, Bhattacharjee P, Roy NK, Kumbhakar P. Usage of nanotechnology based gas sensor for health assessment and maintenance of transformers by DGA method. Int J Electr Power Energy Syst 2013; 45(1): 137-41. doi: 10.1016/j.ijepes.2012.08.044
  92. Giotitsas C, Pazaitis A, Kostakis V. A peer-to-peer approach to energy production. Technol Soc 2015; 42: 28-38. doi: 10.1016/j.techsoc.2015.02.002
  93. Koç P, Gülmez A. Analysis of relationships between nanotechnology applications, mineral saving and ecological footprint: Evidence from panel fourier cointegration and causality tests. Resour Policy 2021; 74: 102373. doi: 10.1016/j.resourpol.2021.102373
  94. Charoen K, Prapainainar C, Sureeyatanapas P, et al. Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. J Clean Prod 2017; 142: 1309-20. doi: 10.1016/j.jclepro.2016.09.059
  95. Al-Nemrawi NK, AbuAlSamen MM, Alzoubi KH. Awareness about nanotechnology and its applications in drug industry among pharmacy students. Curr Pharm Teach Learn 2020; 12(3): 274-80. doi: 10.1016/j.cptl.2019.12.003 PMID: 32273062
  96. Kandi D, Parida K. CdS QDs sensitized various Bi based semiconductors: A comparison study on clean energy production under visible light irradiation. Mater Today Proc 2021; 35: 216-20. doi: 10.1016/j.matpr.2020.04.538
  97. Samer M, Helmy K, Morsy S, et al. Cellphone application for computing biogas, methane and electrical energy production from different agricultural wastes. Comput Electron Agric 2019; 163: 104873. doi: 10.1016/j.compag.2019.104873
  98. Vijayalakshmi S, Govindarajan M, Al-Mulahim N, Ahmed Z, Mahboob S. Cellulase immobilized magnetic nanoparticles for green energy production from Allamanda schottii L: Sustainability research in waste recycling. Saudi J Biol Sci 2021; 28(1): 901-10. doi: 10.1016/j.sjbs.2020.11.034 PMID: 33424382
  99. Frewer LJ, Gupta N, George S, Fischer ARH, Giles EL, Coles D. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci Technol 2014; 40(2): 211-25. doi: 10.1016/j.tifs.2014.06.005
  100. Phung CD, Tran TH, Pham LM, et al. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324: 413-29. doi: 10.1016/j.jconrel.2020.05.029 PMID: 32461115
  101. Mohammad AW, Lau CH, Zaharim A, Omar MZ. Elements of nanotechnology education in engineering curriculum worldwide. Procedia Soc Behav Sci 2012; 60: 405-12. doi: 10.1016/j.sbspro.2012.09.398
  102. Govarthanan M, Manikandan S, Subbaiya R, et al. Emerging trends and nanotechnology advances for sustainable biogas production from lignocellulosic waste biomass: A critical review. Fuel 2022; 312: 122928. doi: 10.1016/j.fuel.2021.122928
  103. Sagel VN, Rouwenhorst KHR, Faria JA. Green ammonia enables sustainable energy production in small island developing states: A case study on the island of Curaçao. Renew Sustain Energy Rev 2022; 161: 112381. doi: 10.1016/j.rser.2022.112381
  104. Bosu S, Rajamohan N. Nanotechnology approach for enhancement in biohydrogen production- review on applications of nanocatalyst and life cycle assessment. Fuel 2022; 323: 124351. doi: 10.1016/j.fuel.2022.124351
  105. Martinez-Duart JM, Hernandez-Moro J, Serrano-Calle S, Gomez-Calvet R, Casanova-Molina M. New frontiers in sustainable energy production and storage. Vacuum 2015; 122: 369-75. doi: 10.1016/j.vacuum.2015.05.027
  106. Nuortimo K, Härkönen J. Opinion mining approach to study media-image of energy production. Implications to public acceptance and market deployment. Renew Sustain Energy Rev 2018; 96: 210-7. doi: 10.1016/j.rser.2018.07.018
  107. Jung F, Thurn M, Krollik K, et al. Predicting the environmental emissions arising from conventional and nanotechnology-related pharmaceutical drug products. Environ Res 2021; 192: 110219. doi: 10.1016/j.envres.2020.110219 PMID: 32980299
  108. Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022; 397-399: 316-49. doi: 10.1016/j.cattod.2021.08.016
  109. Karaca F, Öner MA. Scenarios of nanotechnology development and usage in Turkey. Technol Forecast Soc Change 2015; 91: 327-40. doi: 10.1016/j.techfore.2014.04.004
  110. Foley RW, Wiek A. Scenarios of nanotechnology innovation vis-à-vis sustainability challenges. Futures 2014; 64: 1-14. doi: 10.1016/j.futures.2014.09.005
  111. Howard DC, Wadsworth RA, Whitaker JW, Hughes N, Bunce RGH. The impact of sustainable energy production on land use in Britain through to 2050. Land Use Policy 2009; 26: S284-92. doi: 10.1016/j.landusepol.2009.09.017
  112. Rakkappan SR, Sivan S, Raza MA, Relkar A, Mittal H, Adak M. A facile and reliable approach to enhance the energy storage performance of 1-Decanol for sustainable and energy-efficient cold storage system. J Energy Storage 2022; 52: 104933. doi: 10.1016/j.est.2022.104933
  113. El-Shafai NM, Shukry M, Sharshir SW, Ramadan MS, Alhadhrami A, El-Mehasseb I. Advanced applications of the nanohybrid membrane of chitosan/nickel oxide for photocatalytic, electro-biosensor, energy storage, and supercapacitors. J Energy Storage 2022; 50: 104626. doi: 10.1016/j.est.2022.104626
  114. Wang Y, Zhao Y, Ren M, et al. Artificial muscle fascicles integrated with high-performance actuation properties and energy-storage function. Nano Energy 2022; 102: 107609. doi: 10.1016/j.nanoen.2022.107609
  115. Tang Y, Zhang H, Jin Y, Shi J, Zou R. Boosting the electrochemical energy storage and conversion performance by structural distortion in metal–organic frameworks. Chem Eng J 2022; 443: 136269. doi: 10.1016/j.cej.2022.136269
  116. Manuraj M, Mohan VV, Assa Aravindh S, Sarath Kumar SR, Narayanan Unni KN, Rakhi RB. Can mixed anion transition metal dichalcogenide electrodes enhance the performance of electrochemical energy storage devices? The case of MoS2xSe2(1-x). Chem Eng J 2022; 443: 136451. doi: 10.1016/j.cej.2022.136451
  117. Saranprabhu MK, Rajan KS. Copper-dispersed solar salt: An improved phase change material for thermal energy storage. Thermochim Acta 2022; 179302. doi: 10.1016/j.tca.2022.179302
  118. Priya Balmuchu S, Mangalampalli SRNK, Dobbidi P. Dielectric spectroscopy and ferroelectric studies of multiferroic bismuth ferrite modified barium titanate ceramics for energy storage capacitor applications. Mater Sci Eng B 2022; 282: 115791. doi: 10.1016/j.mseb.2022.115791
  119. Kuo TR, Lin LY, Lin KY, Yougbaré S. Effects of size and phase of TiO2 in poly (vinyl alcohol)-based gel electrolyte on energy storage ability of flexible capacitive supercapacitors. J Energy Storage 2022; 52: 104773. doi: 10.1016/j.est.2022.104773
  120. Prasad AK, Park JY, Kang SH, Ahn KS. Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage applications. Electrochim Acta 2022; 422: 140340. doi: 10.1016/j.electacta.2022.140340
  121. Zhou Y, Chen J, Jiang N, Guo F, Yang B, Zhao S. Energy storage performances of La doped SrBi5Ti4FeO18 films. Chem Eng J 2022; 431: 133999. doi: 10.1016/j.cej.2021.133999
  122. Wu Q, Zhao Y, Zhou Y, Chen X, Wu X, Zhao S. Energy storage properties of composite films with relaxor antiferroelectric behaviors. J Alloys Compd 2021; 881: 160576. doi: 10.1016/j.jallcom.2021.160576
  123. Xu Y, Yang Z, Xu K, et al. Enhanced energy-storage performance in silver niobate-based dielectric ceramics sintered at low temperature. J Alloys Compd 2022; 913: 165313. doi: 10.1016/j.jallcom.2022.165313
  124. Qin W, Zhao M, Li Z, et al. High energy storage and thermal stability under low electric field in Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn0.25Ta0.5)O3 ceramics. Chem Eng J 2022; 443: 136505. doi: 10.1016/j.cej.2022.136505
  125. Tang X, Zhou B, Ma Q, et al. High-mass-density nanographene frameworks for compact capacitive energy storage. J Power Sources 2022; 529: 231266. doi: 10.1016/j.jpowsour.2022.231266
  126. Gou X, Liu Y, Jiang N, et al. Non–ferroelectric intercalation structure based on Aurivillius phase Bi4Ti3O12: A research arena to achieve high energy storage performance. Ceram Int 2022; 48(7): 9534-43. doi: 10.1016/j.ceramint.2021.12.151
  127. Ghalambaz M, Melaibari AA, Chamkha AJ, Younis O, Sheremet M. Phase change heat transfer and energy storage in a wavy-tube thermal storage unit filled with a nano-enhanced phase change material and metal foams. J Energy Storage 2022; 54: 105277. doi: 10.1016/j.est.2022.105277
  128. Lokhande PE, Pakdel A, Pathan HM, et al. Prospects of MXenes in energy storage applications. Chemosphere 2022; 297: 134225. doi: 10.1016/j.chemosphere.2022.134225 PMID: 35259358
  129. Iqbal MZ, Siddique S, Shaheen M, Alam S, Alzaid M. Role of Ag and Cu as an interfacial layer on the electrochemical performance of Ni/Ag/Co3(PO4)2 and Ni/Cu/Co3(PO4)2 electrodes for hybrid energy storage devices. Ceram Int 2022; 48(11): 15686-94. doi: 10.1016/j.ceramint.2022.02.103
  130. Hourdakis E, Kochylas I, Botzakaki MA, Xanthopoulos NJ, Gardelis S. Si nanowire-based micro-capacitors fabricated with metal assisted chemical etching for integrated energy storage applications. Solid-State Electron 2022; 196: 108408. doi: 10.1016/j.sse.2022.108408
  131. Li Y, Kumar N, Hirschey J, et al. Stable salt hydrate-based thermal energy storage materials. Compos, Part B Eng 2022; 233: 109621. doi: 10.1016/j.compositesb.2022.109621
  132. Bahzad H, Fennell P, Shah N, Hallett J, Ali N. Techno-economic assessment for a pumped thermal energy storage integrated with open cycle gas turbine and chemical looping technology. Energy Convers Manage 2022; 255: 115332. doi: 10.1016/j.enconman.2022.115332
  133. Bryant ST, Straker K, Wrigley C. The rapid product design and development of a viable nanotechnology energy storage product. J Clean Prod 2020; 244: 118725. doi: 10.1016/j.jclepro.2019.118725
  134. Wu Q, Chen X, Zhao L, Zhao Y, Zhou Y, Zhao S. The relaxor properties and energy storage performance of Aurivillius compounds with different number of perovskite-like layers. J Alloys Compd 2022; 911: 165081. doi: 10.1016/j.jallcom.2022.165081
  135. Thermal energy storage system with a high-temperature nanoparticle enhanced phase change material: Charging and discharging characteristics upon integration with process preheating. J Energy Storage 2022; 55: 105295. doi: 10.1016/j.est.2022.105295
  136. Zhou Y, Chen J, Yang B, Zhao S. Ultrahigh energy storage performances derived from the relaxation behaviors and inhibition of the grain growth in La doped Bi5Ti3FeO15 films. Chem Eng J 2021; 424: 130435. doi: 10.1016/j.cej.2021.130435
  137. Saravanan A, Kumar PS, Karishma S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021; 264(Pt 2): 128580. doi: 10.1016/j.chemosphere.2020.128580 PMID: 33059285
  138. Sivasubramanian P, Chang JH, Nagendran S, Dong CD, Shkir M, Kumar M. A review on bismuth-based nanocomposites for energy and environmental applications. Chemosphere 2022; 307(Pt 1): 135652. doi: 10.1016/j.chemosphere.2022.135652 PMID: 35817189
  139. Baraneedharan P, Vadivel S. C A A, Mohamed SB, Rajendran S. Advances in preparation, mechanism and applications of various carbon materials in environmental applications: A review. Chemosphere 2022; 300: 134596. doi: 10.1016/j.chemosphere.2022.134596 PMID: 35436457
  140. Li SN, Wang R, Ho SH. Algae-mediated biosystems for metallic nanoparticle production: From synthetic mechanisms to aquatic environmental applications. J Hazard Mater 2021; 420: 126625. doi: 10.1016/j.jhazmat.2021.126625 PMID: 34329084
  141. Saravanan A, Kumar PS. Biochar derived carbonaceous material for various environmental applications: Systematic review. Environ Res 2022; 214(Pt 1): 113857. doi: 10.1016/j.envres.2022.113857 PMID: 35835170
  142. Shalaby MG, Al-Hossainy AF, Abo-Zeid AM, Mobark H, Mahmoud YAG. Combined experimental thin film, DFT-TDDFT computational study, structure properties for FeO+P2O5 bio-nanocomposite by Geotrichum candidum and Environmental application. J Mol Struct 2022; 1258: 132635. doi: 10.1016/j.molstruc.2022.132635
  143. Hosny M, Fawzy M, El-Borady OM, Mahmoud AED. Comparative study between Phragmites australis root and rhizome extracts for mediating gold nanoparticles synthesis and their medical and environmental applications. Adv Powder Technol 2021; 32(7): 2268-79. doi: 10.1016/j.apt.2021.05.004
  144. Bansal R, Verduzco R, Wong MS, Westerhoff P, Garcia-Segura S. Development of nano boron-doped diamond electrodes for environmental applications. J Electroanal Chem 2022; 907: 116028. doi: 10.1016/j.jelechem.2022.116028
  145. Corsi I, Winther-Nielsen M, Sethi R, et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 2018; 154: 237-44. doi: 10.1016/j.ecoenv.2018.02.037 PMID: 29476973
  146. Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. J Hazard Mater 2022; 438: 129523. doi: 10.1016/j.jhazmat.2022.129523 PMID: 35820334
  147. Prabha I, Nivetha A, Sakthivel C. Effective/comparative investigation on green mediated nano copper oxide: Fabrication, characterization and environmental applications. Mater Today Proc 2022; 51: 1690-5. doi: 10.1016/j.matpr.2020.10.024
  148. Zhang W, Narang K, Jasso-Salcedo A, et al. Electrospun nanofiber materials for energy and environmental applications. Energy Procedia 2019; 158: 6723-4. doi: 10.1016/j.egypro.2019.01.016
  149. Padmanabhan NT, Thomas N, Louis J, et al. Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere 2021; 271: 129506. doi: 10.1016/j.chemosphere.2020.129506 PMID: 33445017
  150. Ezhilarasi AA, Vijaya JJ, Kennedy LJ, Kaviyarasu K. Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Mater Chem Phys 2020; 241: 122419. doi: 10.1016/j.matchemphys.2019.122419
  151. Manikandan V, Lee NY. Green synthesis of carbon quantum dots and their environmental applications. Environ Res 2022; 212(Pt B): 113283. doi: 10.1016/j.envres.2022.113283 PMID: 35461844
  152. Subramanian R, Eswaran A, Kathirason SG, et al. Green synthesized chitosan modified platinum-doped silver nanocomposite: An investigation for biomedical and environmental applications. J King Saud Univ Sci 2022; 34(7): 102220. doi: 10.1016/j.jksus.2022.102220
  153. Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Kaviyarasu K, Selvaraj R. Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. Environ Res 2022; 212(Pt B): 113274. doi: 10.1016/j.envres.2022.113274 PMID: 35461848
  154. Ortega PP, Silva CC, Ramirez MA, Biasotto G, Foschini CR, Simões AZ. Multifunctional environmental applications of ZnO nanostructures synthesized by the microwave-assisted hydrothermal technique. Appl Surf Sci 2021; 542: 148723. doi: 10.1016/j.apsusc.2020.148723
  155. Tom AP. WITHDRAWN: Nanotechnology for sustainable water treatment-a review. Mater Today Proc 2021. doi: 10.1016/j.matpr.2021.05.629
  156. Chen L, Huang H, Thangavelu L, et al. Optimization and comparison of machine learning methods in estimation of carbon dioxide loading in chemical solvents for environmental applications. J Mol Liq 2022; 349: 118513. doi: 10.1016/j.molliq.2022.118513
  157. Maria Baroi A, Ioana Brazdis R, Fistos T, Claudiu Fierascu R. Overview on the use of apatitic materials for environmental applications. Mater Today Proc 2019; 19: 917-23. doi: 10.1016/j.matpr.2019.08.002
  158. George A, Magimai Antoni Raj D, Venci X, et al. Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ Res 2022; 203: 111880. doi: 10.1016/j.envres.2021.111880 PMID: 34400161
  159. Chongdar S, Bhattacharjee S, Bhanja P, Bhaumik A. Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chem Commun 2022; 58(21): 3429-60. doi: 10.1039/D1CC06340E PMID: 35234753
  160. Khan F, Shahid A, Zhu H, et al. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 2022; 293: 133571. doi: 10.1016/j.chemosphere.2022.133571 PMID: 35026203
  161. Rani P, Ahmed B, Singh J, et al. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci 2022; 29(6): 103296. doi: 10.1016/j.sjbs.2022.103296 PMID: 35574283
  162. Unal MA, Bayrakdar F, Fusco L, et al. 2D MXenes with antiviral and immunomodulatory properties: A pilot study against SARS-CoV-2. Nano Today 2021; 38: 101136. doi: 10.1016/j.nantod.2021.101136 PMID: 33753982
  163. De Maio F, Rosa E, Perini G, et al. 3D-printed graphene polylactic acid devices resistant to SARS-CoV-2: Sunlight-mediated sterilization of additive manufactured objects. Carbon 2022; 194: 34-41. doi: 10.1016/j.carbon.2022.03.036 PMID: 35313599
  164. Khan S, Joshi K, Deshmukh S. A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Mater Today Proc 2022; 50: 2119-27. doi: 10.1016/j.matpr.2021.09.433
  165. Kamaraj AB, Sundaram M. A mathematical model to predict the porosity of nickel pillars manufactured by localized electrochemical deposition under pulsed voltage conditions. Procedia Manuf 2020; 48: 181-6. doi: 10.1016/j.promfg.2020.05.036
  166. Sagan A, Bryndova L, Kowalska-Bobko I, et al. A reversal of fortune: Comparison of health system responses to COVID-19 in the Visegrad group during the early phases of the pandemic. Health Policy 2022; 126(5): 446-55. doi: 10.1016/j.healthpol.2021.10.009 PMID: 34789401
  167. Nair AN, Anand P, George A, Mondal N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environ Res 2022; 213: 113579. doi: 10.1016/j.envres.2022.113579 PMID: 35714688
  168. Prabhakar A, Bansal I, Jaiswar A, Roy N, Verma D. A simple cost-effective microfluidic platform for rapid synthesis of diverse metal nanoparticles: A novel approach towards fighting SARS-CoV-2. Mater Today Proc 2021. doi: 10.1016/j.matpr.2021.05.624 PMID: 34150529
  169. Durán Acevedo CM, Carrillo Gómez JK, Albarracín Rojas CA. Academic stress detection on university students during COVID-19 outbreak by using an electronic nose and the galvanic skin response. Biomed Signal Process Control 2021; 68: 102756. doi: 10.1016/j.bspc.2021.102756 PMID: 36570516
  170. Zeng J, Duarte PA, Ma Y, et al. An impedimetric biosensor for COVID-19 serology test and modification of sensor performance via dielectrophoresis force. Biosens Bioelectron 2022; 213: 114476. doi: 10.1016/j.bios.2022.114476 PMID: 35716642
  171. Xue Q, Kan X, Pan Z, et al. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens Bioelectron 2021; 186: 113286. doi: 10.1016/j.bios.2021.113286 PMID: 33990035
  172. Bourguignon T, Torrano AA, Houel-Renault L, Machelart A, Brodin P, Gref R. An original methodology to study polymeric nanoparticle-macrophage interactions: Nanoparticle tracking analysis in cell culture media and quantification of the internalized objects. Int J Pharm 2021; 610: 121202. doi: 10.1016/j.ijpharm.2021.121202 PMID: 34666144
  173. Patrício Silva AL, Prata JC, Duarte AC, Barcelò D, Rocha-Santos T. An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. Chem Eng J 2021; 426: 131201. doi: 10.1016/j.cej.2021.131201 PMID: 35791349
  174. Kumaravel V, Nair KM, Mathew S, et al. Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chem Eng J 2021; 416: 129071. doi: 10.1016/j.cej.2021.129071 PMID: 33642937
  175. Nickels L. Antiviral boost for nanoparticles. Met Powder Rep 2020; 75(6): 330-3. doi: 10.1016/j.mprp.2020.10.002
  176. Jahromi AM, Solhjoo A, Ghasemi M, Khedri M, Maleki R, Tayebi L. Atomistic insight into 2D COFs as antiviral agents against SARS-CoV-2. Mater Chem Phys 2022; 276: 125382. doi: 10.1016/j.matchemphys.2021.125382 PMID: 34725529
  177. Wang D, Li K, Zhou C, et al. Bi2MoO6 and Ag nanoparticles immobilized on textile by plasma-derived innovative techniques to generate antimicrobial activity. Appl Surf Sci 2022; 585: 152591. doi: 10.1016/j.apsusc.2022.152591
  178. Singh S, Shauloff N, Sharma CP, Shimoni R, Arnusch CJ, Jelinek R. Carbon dot-polymer nanoporous membrane for recyclable sunlight-sterilized facemasks. J Colloid Interface Sci 2021; 592: 342-8. doi: 10.1016/j.jcis.2021.02.049 PMID: 33677194
  179. Wibeck V, Eliasson K, Neset TS. Co-creation research for transformative times: Facilitating foresight capacity in view of global sustainability challenges. Environ Sci Policy 2022; 128: 290-8. doi: 10.1016/j.envsci.2021.11.023
  180. Karges J. Combination of chemistry and material science to overcome health problems. Biosafety and Health 2022; 4(2): 64-5. doi: 10.1016/j.bsheal.2022.03.004 PMID: 35284813
  181. Pei Y, Liu W, Masokano IB, et al. Comparing Chinese children and adults with RT-PCR positive COVID-19: A systematic review. J Infect Public Health 2020; 13(10): 1424-31. doi: 10.1016/j.jiph.2020.06.036 PMID: 32682658
  182. Khizar S, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta 2022; 241: 123243. doi: 10.1016/j.talanta.2022.123243 PMID: 35121538
  183. Tapia-Hernández JA, Madera-Santana TJ, Rodríguez-Félix F, Barreras-Urbina CG. Controlled and prolonged release systems of urea from micro- and nanomaterials as an alternative for developing a sustainable agriculture: A review. J Nanomater 2022; 2022: 1-14. doi: 10.1155/2022/5697803
  184. Rahmani AM, Mirmahaleh SYH. Coronavirus disease (COVID-19) prevention and treatment methods and effective parameters: A systematic literature review. Sustain Cities Soc 2021; 64: 102568. doi: 10.1016/j.scs.2020.102568 PMID: 33110743
  185. Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis-a review of current methods. Biosens Bioelectron 2021; 172: 112752. doi: 10.1016/j.bios.2020.112752 PMID: 33126180
  186. Ardusso M, Forero-López AD, Buzzi NS, Spetter CV, Fernández-Severini MD. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci Total Environ 2021; 763: 144365. doi: 10.1016/j.scitotenv.2020.144365 PMID: 33360513
  187. Tavilani A, Abbasi E, Kian Ara F, Darini A, Asefy Z. COVID-19 vaccines: Current evidence and considerations. Metabolism Open 2021; 12: 100124. doi: 10.1016/j.metop.2021.100124 PMID: 34541483
  188. O’Connor S, Mathew S, Dave F, et al. COVID-19: Rapid prototyping and production of face shields via flat, laser-cut, and 3D-printed models. Results in Engineering 2022; 14: 100452. doi: 10.1016/j.rineng.2022.100452 PMID: 35600085
  189. López ADF, Fabiani M, Lassalle VL, Spetter CV, Severini MDF. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Mar Pollut Bull 2022; 174: 113276. doi: 10.1016/j.marpolbul.2021.113276 PMID: 35090270
  190. Periasamy R. Cyclodextrin-based molecules as hosts in the formation of supramolecular complexes and their practical applications—A review. J Carbohydr Chem 2021; 40(4): 135-55. doi: 10.1080/07328303.2021.1967970
  191. Mignani S, Shi X, Rodrigues J, et al. Dendrimers toward translational nanotherapeutics: Concise key step analysis. Bioconjug Chem 2020; 31(9): 2060-71. doi: 10.1021/acs.bioconjchem.0c00395 PMID: 32786368
  192. Suresh Kumar V, Krishnamoorthi C. Development of electrical transduction based wearable tactile sensors for human vital signs monitor: Fundamentals, methodologies and applications. Sens Actuators A Phys 2021; 321: 112582. doi: 10.1016/j.sna.2021.112582
  193. Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron 2020; 165: 112349. doi: 10.1016/j.bios.2020.112349 PMID: 32510340
  194. Teymoorian T, Teymourian T, Kowsari E, Ramakrishna S. Direct and indirect effects of SARS-CoV-2 on wastewater treatment. J Water Process Eng 2021; 42: 102193. doi: 10.1016/j.jwpe.2021.102193 PMID: 35592058
  195. Devaraj H, Malhotra R. Effect of nanomaterial shape on fabrication of conformal circuits. 48th SME North Am Manuf Res Conf NAMRC 48. 251-5. doi: 10.1016/j.promfg.2020.05.045
  196. Snelling WJ, Afkhami A, Turkington HL, et al. Efficacy of single pass UVC air treatment for the inactivation of coronavirus, MS2 coliphage and Staphylococcus aureus bioaerosols. J Aerosol Sci 2022; 164: 106003. doi: 10.1016/j.jaerosci.2022.106003 PMID: 35496770
  197. Musselman KP, Delumeau LV, Araujo R, Wang H, MacManus-Driscoll J. Electrochemical removal of anodic aluminium oxide templates for the production of phase-pure cuprous oxide nanorods for antimicrobial surfaces. Electrochem Commun 2020; 120: 106833. doi: 10.1016/j.elecom.2020.106833 PMID: 32963489
  198. Geetha K, Sivasangari D, Kim HS, Murugadoss G, Kathalingam A. Electrospun nanofibrous ZnO/PVA/PVP composite films for efficient antimicrobial face masks. Ceram Int 2022; 48(19): 29197-204. doi: 10.1016/j.ceramint.2022.05.164
  199. Zhang R, Xu Q, Bai S, et al. Enhancing the filtration efficiency and wearing time of disposable surgical masks using TENG technology. Nano Energy 2021; 79: 105434. doi: 10.1016/j.nanoen.2020.105434 PMID: 33042770
  200. Sayibu M, Chu J, Akintunde TY, Rufai OH, Amosun TS, George-Ufot G. Environmental conditions, mobile digital culture, mobile usability, knowledge of app in COVID-19 risk mitigation: A structural equation model analysis. Smart Health 2022; 25: 100286. doi: 10.1016/j.smhl.2022.100286 PMID: 35600252
  201. Rodríguez NB, Formentini G, Favi C, Marconi M. Environmental implication of personal protection equipment in the pandemic era: LCA comparison of face masks typologies. Procedia CIRP 2021; 98: 306-11. doi: 10.1016/j.procir.2021.01.108 PMID: 33723504
  202. Cheng Y, Li J, Chen M, Zhang S, He R, Wang N. Environmentally friendly and antimicrobial bilayer structured fabrics with integrated interception and sterilization for personal protective mask. Separ Purif Tech 2022; 294: 121165. doi: 10.1016/j.seppur.2022.121165
  203. Rahman T, Khandakar A, Qiblawey Y, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 2021; 132: 104319. doi: 10.1016/j.compbiomed.2021.104319 PMID: 33799220
  204. Forouzandeh P, O’Dowd K, Pillai SC. Face masks and respirators in the fight against the COVID-19 pandemic: An overview of the standards and testing methods. Saf Sci 2021; 133: 104995. doi: 10.1016/j.ssci.2020.104995 PMID: 32982065
  205. Wu H, Hu Z, Geng Q, et al. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022; 651: 129656. doi: 10.1016/j.colsurfa.2022.129656
  206. Devi S, Nagaraja KV, Thanuja L, Reddy MV, Ramakrishna S. Finite element analysis over transmission region of coronavirus in CFD analysis for the respiratory cough droplets. Ain Shams Eng J 2022; 13(6): 101766. doi: 10.1016/j.asej.2022.101766
  207. Akinola A, Singh G, Ndjiongue A. Frequency-domain reconfigurable antenna for COVID-19 tracking. Sensors International 2021; 2: 100094. doi: 10.1016/j.sintl.2021.100094 PMID: 34766053
  208. Matsuda A. Functionalities and modification of sol–gel derived SiO2–TiO2 systems for advanced coatings and powders. J Ceram Soc Jpn 2022; 130(1): 143-62. doi: 10.2109/jcersj2.21133
  209. Frampton D, Rampling T, Cross A, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis 2021; 21(9): 1246-56. doi: 10.1016/S1473-3099(21)00170-5 PMID: 33857406
  210. Dey N, Vickram S, Thanigaivel S, et al. Graphene materials: Armor against nosocomial infections and biofilm formation-a review. Environ Res 2022; 214(Pt 2): 113867. doi: 10.1016/j.envres.2022.113867 PMID: 35843279
  211. Mattioli IA, Castro KR, Macedo LJA, et al. Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis. Biosens Bioelectron 2022; 199: 113866. doi: 10.1016/j.bios.2021.113866 PMID: 34915214
  212. Cetin AE, Kocer ZA, Topkaya SN, Yazici ZA. Handheld plasmonic biosensor for virus detection in field-settings. Sens Actuators B Chem 2021; 344: 130301. doi: 10.1016/j.snb.2021.130301 PMID: 34149185
  213. Prado M, Marski SRDS, Pacheco LP, et al. Hexamethyldisiloxane coating by plasma to create a superhydrophobic surface for fabric masks. J Mater Res Technol 2022; 17: 913-24. doi: 10.1016/j.jmrt.2022.01.003
  214. Gu J, Yagi S, Meng J, et al. High-efficiency production of core-sheath nanofiber membrane via co-axial electro-centrifugal spinning for controlled drug release. J Membr Sci 2022; 654: 120571. doi: 10.1016/j.memsci.2022.120571
  215. Li IW, Fan JK, Lai AC, Lo C. Home-made masks with filtration efficiency for nano-aerosols for community mitigation of COVID-19 pandemic. Public Health 2020; 188: 42-50. doi: 10.1016/j.puhe.2020.08.018 PMID: 33075669
  216. Francone A, Merino S, Retolaza A, et al. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surf Interfaces 2021; 27: 101494. doi: 10.1016/j.surfin.2021.101494 PMID: 34957348
  217. Du J, Yang C, Ma X, Li Q. Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene. Appl Surf Sci 2022; 578: 151934. doi: 10.1016/j.apsusc.2021.151934 PMID: 34866721
  218. Giatti LL. Integrating uncertainties through participatory approaches: On the burden of cognitive exclusion and infodemic in a post-normal pandemic. Futures 2022; 136: 102888. doi: 10.1016/j.futures.2021.102888
  219. Jain S, Nehra M, Kumar R, et al. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021; 179: 113074. doi: 10.1016/j.bios.2021.113074 PMID: 33596516
  220. Roberts A, Mahari S, Shahdeo D, Gandhi S. Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Anal Chim Acta 2021; 1188: 339207. doi: 10.1016/j.aca.2021.339207 PMID: 34794571
  221. Bhubalan K, Tamothran AM, Kee SH, et al. Leveraging blockchain concepts as watermarkers of plastics for sustainable waste management in progressing circular economy. Environ Res 2022; 213: 113631. doi: 10.1016/j.envres.2022.113631 PMID: 35714685
  222. Khan S, Sharifi M, Hasan A, et al. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 2021; 30: 171-84. doi: 10.1016/j.jare.2020.12.001 PMID: 34026294
  223. Bordbar MM, Samadinia H, Hajian A, et al. Mask assistance to colorimetric sniffers for detection of Covid-19 disease using exhaled breath metabolites. Sens Actuators B Chem 2022; 369: 132379. doi: 10.1016/j.snb.2022.132379 PMID: 35855726
  224. Maheswari C, Sathyabama M, Chandrasekar S, et al. Medical applications of Couroupita guianensis Abul plant and Covid-19 best Safety measure by using Mathematical Nano topological spaces. J King Saud Univ Sci 2022; 34(6): 102163. doi: 10.1016/j.jksus.2022.102163
  225. Rai A, Sharma VK, Jain A, et al. Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379: 109833. doi: 10.1016/j.ijfoodmicro.2022.109833 PMID: 35914405
  226. Prabhakar A, Verma D, Dhwaj A, Mukherji S. Microchannel integrated tapered and tapered-bend waveguides, for proficient, evanescent-field absorbance based, on-chip, chemical and biological sensing operations. Sens Actuators B Chem 2021; 332: 129455. doi: 10.1016/j.snb.2021.129455
  227. Vaquer A, Alba-Patiño A, Adrover-Jaume C, et al. Nanoparticle transfer biosensors for the non-invasive detection of SARS-CoV-2 antigens trapped in surgical face masks. Sens Actuators B Chem 2021; 345: 130347. doi: 10.1016/j.snb.2021.130347 PMID: 34188360
  228. Bhutani U, Basu T, Majumdar S. Oral Drug Delivery: Conventional to long acting new-age designs. Eur J Pharm Biopharm 2021; 162: 23-42. doi: 10.1016/j.ejpb.2021.02.008 PMID: 33631319
  229. Basak M, Mitra S, Bandyopadhyay D. Pathways to community transmission of COVID–19 due to rapid evaporation of respiratory virulets. J Colloid Interface Sci 2022; 619: 229-45. doi: 10.1016/j.jcis.2022.03.098 PMID: 35397458
  230. Kaushik AK, Dhau JS. Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. Applied Surface Science Advances 2022; 9: 100236. doi: 10.1016/j.apsadv.2022.100236
  231. Lu W, Wang X, Zhang J, et al. Plasma boosted the conversion of waste plastics into liquid fuel by a peroxymonosulfate-hydrothermal process. Chem Eng J 2022; 446: 137236. doi: 10.1016/j.cej.2022.137236
  232. Toscanini MA, Limeres MJ, Garrido AV, et al. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. J Drug Deliv Sci Technol 2021; 66: 102927. doi: 10.1016/j.jddst.2021.102927
  233. Chong CT, Fan YV, Lee CT, Klemeš JJ. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2022; 241: 122801. doi: 10.1016/j.energy.2021.122801 PMID: 36570560
  234. Andrade BF, Tritany R, dos Santos C, et al. Potential of the vegetable species mandevilla moricandiana (Apocynaceae) to combat larvae of the mosquito aedes aegypti. Rev Virtual Quím 2021; 13: 1092-9. doi: 10.21577/1984-6835.20210054
  235. Ahmad J, Ahmad M, Usman ARA, Al-Wabel MI. Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. J Environ Manage 2021; 298: 113486. doi: 10.1016/j.jenvman.2021.113486 PMID: 34391102
  236. Bachmann P, Frutos-Bencze D R. R&D and innovation efforts during the COVID-19 pandemic: The role of universities. Journal of Innovation & Knowledge 2022; 7(4): 100238. doi: 10.1016/j.jik.2022.100238
  237. Singh R, Kaur J, Gupta K, Singh M, Kanaoujiya R, Kaur N. Recent advances and applications of polymeric materials in healthcare sector and COVID-19 management. Mater Today Proc 2022; 62: 2878-82. doi: 10.1016/j.matpr.2022.02.472 PMID: 35251941
  238. Chappell KJ, Mordant FL, Li Z, et al. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis 2021; 21(10): 1383-94. doi: 10.1016/S1473-3099(21)00200-0 PMID: 33887208
  239. Ezhilan M, Suresh I, Nesakumar N. SARS-CoV, MERS-CoV and SARS-CoV-2: A diagnostic challenge. Measurement 2021; 168: 108335. doi: 10.1016/j.measurement.2020.108335 PMID: 33519010
  240. Falciola L, Barbieri M. Searching and analyzing patent-relevant COVID-19 information. World Pat Inf 2022; 68: 102094. doi: 10.1016/j.wpi.2022.102094
  241. Scabini LFS, Ribas LC, Neiva MB, Junior AGB, Farfán AJF, Bruno OM. Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil. Physica A 2021; 564: 125498. doi: 10.1016/j.physa.2020.125498 PMID: 33204050
  242. Xiong Z, Ren K, Donnelly M, You M, Xu G. Spectrally filtered photodiode pairs for on-chip ratiometric aptasensing of cytokine dynamics. Sens Actuators B Chem 2021; 345: 130330. doi: 10.1016/j.snb.2021.130330
  243. Esmizadeh E, Chang BP, Jubinville D, et al. Stability of nitrile and vinyl latex gloves under repeated disinfection cycles. Materials Today Sustainability 2021; 11-12: 100067. doi: 10.1016/j.mtsust.2021.100067
  244. Fathizadeh H, Taghizadeh S, Safari R, et al. Study presence of COVID-19 (SARS-CoV-2) in the sweat of patients infected with Covid-19. Microb Pathog 2020; 149: 104556. doi: 10.1016/j.micpath.2020.104556 PMID: 33031898
  245. Miller BS, Thomas MR, Banner M, et al. Sub-picomolar lateral flow antigen detection with two-wavelength imaging of composite nanoparticles. Biosens Bioelectron 2022; 207: 114133. doi: 10.1016/j.bios.2022.114133 PMID: 35316759
  246. Yasri S, Wiwanitkit V. Sustainable materials and COVID-19 detection biosensor: A brief review. Sensors International 2022; 3: 100171. doi: 10.1016/j.sintl.2022.100171 PMID: 35284845
  247. Eskikaya O, Ozdemir S, Tollu G, et al. Synthesis of two different zinc oxide nanoflowers and comparison of antioxidant and photocatalytic activity. Chemosphere 2022; 306: 135389. doi: 10.1016/j.chemosphere.2022.135389 PMID: 35718032
  248. He R, Li J, Chen M, et al. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks. J Hazard Mater 2022; 428: 128239. doi: 10.1016/j.jhazmat.2022.128239 PMID: 35030485
  249. Gold ER. The fall of the innovation empire and its possible rise through open science. Res Policy 2021; 50(5): 104226. doi: 10.1016/j.respol.2021.104226 PMID: 34083844
  250. Morales-Narváez E, Dincer C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens Bioelectron 2020; 163: 112274. doi: 10.1016/j.bios.2020.112274 PMID: 32421627
  251. Kilicoglu O, Kara U, Inanc I. The impact of polymer additive for N95 masks on gamma-ray attenuation properties. Mater Chem Phys 2021; 260: 124093. doi: 10.1016/j.matchemphys.2020.124093 PMID: 33262549
  252. Garrido PF, Calvelo M, Blanco-González A, et al. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588: 119689. doi: 10.1016/j.ijpharm.2020.119689 PMID: 32717282
  253. Mohapatra S, Menon NG, Mohapatra G, et al. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. Sci Total Environ 2021; 765: 142746. doi: 10.1016/j.scitotenv.2020.142746 PMID: 33092831
  254. Wang C, Zhao J, Liu L, et al. Transformation of fibrous membranes from opaque to transparent under mechanical pressing. Engineering 2021; 19: 84-92. doi: 10.1016/j.eng.2021.02.018
  255. Smirnov A, Smolokurov E, Osmanov M, Tarikov V. Traveler precautions relating to Covid-19 countries. Transp Res Procedia 2022; 61: 155-63. doi: 10.1016/j.trpro.2022.01.025
  256. Adelodun B, Kareem KY, Kumar P, et al. Understanding the impacts of the COVID-19 pandemic on sustainable agri-food system and agroecosystem decarbonization nexus: A review. J Clean Prod 2021; 318: 128451. doi: 10.1016/j.jclepro.2021.128451 PMID: 36570877
  257. Alomari MA, Heffron RJ. Utilising law in the transition of the Kingdom of Saudi Arabia to a low-carbon economy. Environ Innov Soc Transit 2021; 39: 107-18. doi: 10.1016/j.eist.2021.03.003
  258. Zhang T, Zhou P, Simon T, Cui T. Vibrating a sessile droplet to enhance mass transfer for high-performance electrochemical sensors. Sens Actuators B Chem 2022; 362: 131788. doi: 10.1016/j.snb.2022.131788
  259. Zhou H, Deng J. Vibration assisted afm-based nanomachining under elevated temperatures using soft and stiff probes. Procedia Manuf 2020; 48: 508-13. doi: 10.1016/j.promfg.2020.05.075
  260. Anwar T, Kumam P, Thounthong P. A comparative fractional study to evaluate thermal performance of NaAlg–MoS2–Co hybrid nanofluid subject to shape factor and dual ramped conditions. Alex Eng J 2022; 61(3): 2166-87. doi: 10.1016/j.aej.2021.06.085
  261. El-Sheikh SM, Osman DI, Ali OI, et al. A novel Ag/Zn bimetallic MOF as a superior sensitive biosensing platform for HCV-RNA electrochemical detection. Appl Surf Sci 2021; 562: 150202. doi: 10.1016/j.apsusc.2021.150202
  262. Davidson JL, Wang J, Maruthamuthu MK, et al. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. Biosensors and Bioelectronics: X 2021; 9: 100076. doi: 10.1016/j.biosx.2021.100076 PMID: 34423284
  263. Zhang K, Fan Z, Ding Y, Xie M. A pH-engineering regenerative DNA tetrahedron ECL biosensor for the assay of SARS-CoV-2 RdRp gene based on CRISPR/Cas12a trans-activity. Chem Eng J 2022; 429: 132472. doi: 10.1016/j.cej.2021.132472 PMID: 34539224
  264. Weinstein JB, Bates TA, Leier HC, McBride SK, Barklis E, Tafesse FG. A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants. iScience 2022; 25(3): 103960. doi: 10.1016/j.isci.2022.103960 PMID: 35224467
  265. Zamhuri SA, Soon CF, Nordin AN, et al. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. Sens Biosensing Res 2022; 36: 100482. doi: 10.1016/j.sbsr.2022.100482 PMID: 35251937
  266. Yaman G. A Suggestion of Standard and Optimized Steps in the LOC (Lab on a Chip), LOD (Lab on a Disc), and POC (Point of Care) Development Process for Biomedical Applications: A Case Study about ESR. J Comput Appl Math 2022; 114626. doi: 10.1016/j.cam.2022.114626
  267. Su A, Liu Y, Cao X, Xu W, Liang C, Xu S. A universal CRISPR/Cas12a-mediated AuNPs aggregation-based surface-enhanced Raman scattering (CRISPR/Cas-SERS) platform for virus gene detection. Sens Actuators B Chem 2022; 369: 132295. doi: 10.1016/j.snb.2022.132295
  268. Li Y, Deng F, Goldys EM. A versatile CRISPR/Cas12a-based sensitivity amplifier suitable for commercial HRP-based ELISA kits. Sens Actuators B Chem 2021; 347: 130533. doi: 10.1016/j.snb.2021.130533
  269. Zhao H, Zhang Y, Chen Y, et al. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens Bioelectron 2021; 194: 113629. doi: 10.1016/j.bios.2021.113629 PMID: 34534949
  270. Chong WJ, Shen S, Li Y, Trinchi A, Pejak D. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges. J Mater Sci Technol 2022; 111: 120-51. doi: 10.1016/j.jmst.2021.09.039
  271. Abiko Y, Yamada Y, Hayasaki T, Kimura Y, Almarasy AA, Fujimori A. Adsorption immobilization of biomolecules from subphase on Langmuir monolayers of organo-modified single-walled carbon nanotube. Colloids Surf A Physicochem Eng Asp 2021; 621: 126559. doi: 10.1016/j.colsurfa.2021.126559
  272. Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. Sensors International 2021; 2: 100102. doi: 10.1016/j.sintl.2021.100102 PMID: 34766058
  273. Axin Liang A, Huipeng Hou B, Shanshan Tang C, Liquan Sun D, Aiqin Luo E. An advanced molecularly imprinted electrochemical sensor for the highly sensitive and selective detection and determination of Human IgG. Bioelectrochemistry 2021; 137: 107671. doi: 10.1016/j.bioelechem.2020.107671 PMID: 32950847
  274. Negahdary M, Angnes L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 2022; 246: 123511. doi: 10.1016/j.talanta.2022.123511 PMID: 35500518
  275. Mao K, Zhang H, Yang Z. An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosens Bioelectron 2020; 169: 112617. doi: 10.1016/j.bios.2020.112617 PMID: 32998066
  276. Hashemi SA, Bahrani S, Mousavi SM, et al. Antibody mounting capability of 1D/2D carbonaceous nanomaterials toward rapid-specific detection of SARS-CoV-2. Talanta 2022; 239: 123113. doi: 10.1016/j.talanta.2021.123113 PMID: 34863060
  277. Qian S, Cui Y, Cai Z, Li L. Applications of smartphone-based colorimetric biosensors. Biosens Bioelectron: X 2022; 11: 100173. doi: 10.1016/j.biosx.2022.100173
  278. Bhardwaj T, Kumar Sharma T. Aptasensors for full body health checkup. Biosensors and Bioelectronics: X 2022; 11: 100199. doi: 10.1016/j.biosx.2022.100199
  279. Sreelakshmi S, Vineeth PK, Mohanan A, Ramesh NV. Ayurvedic bhasma and synthesized nanoparticles: A comparative review. Mater Today Proc 2021; 46: 3079-83. doi: 10.1016/j.matpr.2021.02.585
  280. Rahimi R, Solimannejad M. B3O3 monolayer with dual application in sensing of COVID-19 biomarkers and drug delivery for treatment purposes: A periodic DFT study. J Mol Liq 2022; 354: 118855. doi: 10.1016/j.molliq.2022.118855
  281. Rabiee N, Fatahi Y, Ahmadi S, et al. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Sci Total Environ 2022; 825: 153902. doi: 10.1016/j.scitotenv.2022.153902 PMID: 35182622
  282. Lee CH, Seok H, Jang W, et al. Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler. Biosens Bioelectron 2021; 192: 113499. doi: 10.1016/j.bios.2021.113499 PMID: 34311208
  283. Garg R, Rani P, Garg R, et al. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. Environ Pollut 2022; 310: 119830. doi: 10.1016/j.envpol.2022.119830 PMID: 35926739
  284. Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: A review. Environ Res 2020; 191: 110119. doi: 10.1016/j.envres.2020.110119 PMID: 32846177
  285. Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290: 102380. doi: 10.1016/j.cis.2021.102380 PMID: 33819727
  286. Meunier V, Ania C, Bianco A, et al. Carbon science perspective in 2022: Current research and future challenges. Carbon 2022; 195: 272-91. doi: 10.1016/j.carbon.2022.04.015
  287. Vernerová A, Krčmová LK, Heneberk O, et al. Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta 2021; 233: 122598. doi: 10.1016/j.talanta.2021.122598 PMID: 34215086
  288. Soares RRG, Pettke A, Robles-Remacho A, et al. Circle-to-circle amplification coupled with microfluidic affinity chromatography enrichment for in vitro molecular diagnostics of Zika fever and analysis of anti-flaviviral drug efficacy. Sens Actuators B Chem 2021; 336: 129723. doi: 10.1016/j.snb.2021.129723
  289. Asadi F, Shahnazari R, Bhalla N, Payam AF. Clinical evaluation of SARS-CoV-2 lung HRCT and RT-PCR Techniques: Towards risk factor based diagnosis of infectious diseases. Comput Struct Biotechnol J 2021; 19: 2699-707. doi: 10.1016/j.csbj.2021.04.058 PMID: 33968332
  290. Krishnan S, Syed ZQ. Colorimetric visual sensors for point-of-needs testing. Sensor Actuat Report 2022; 4: 100078. doi: 10.1016/j.snr.2022.100078
  291. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med 2020; 119: 103670. doi: 10.1016/j.compbiomed.2020.103670 PMID: 32209231
  292. Anaya DV, Zhan K, Tao L, Lee C, Yuce MR, Alan T. Contactless tracking of humans using non-contact triboelectric sensing technology: Enabling new assistive applications for the elderly and the visually impaired. Nano Energy 2021; 90: 106486. doi: 10.1016/j.nanoen.2021.106486
  293. Karami A, Hasani M, Azizi Jalilian F, Ezati R. Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2. Sens Actuators B Chem 2021; 328: 128971. doi: 10.1016/j.snb.2020.128971 PMID: 33012989
  294. Khan S, Tombuloglu H, Hassanein SE, et al. Coronavirus diseases 2019: Current biological situation and potential therapeutic perspective. Eur J Pharmacol 2020; 886: 173447. doi: 10.1016/j.ejphar.2020.173447 PMID: 32763302
  295. Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med 2020; 121: 103749. doi: 10.1016/j.compbiomed.2020.103749 PMID: 32568687
  296. Ma NL, Peng W, Soon CF, et al. Covid-19 pandemic in the lens of food safety and security. Environ Res 2021; 193: 110405. doi: 10.1016/j.envres.2020.110405 PMID: 33130165
  297. Yin L, Man S, Ye S, Liu G, Ma L. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosens Bioelectron 2021; 193: 113541. doi: 10.1016/j.bios.2021.113541 PMID: 34418634
  298. Wang Y, Xue T, Wang M, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem 2022; 362: 131765. doi: 10.1016/j.snb.2022.131765 PMID: 35370361
  299. Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron 2022; 197: 113732. doi: 10.1016/j.bios.2021.113732 PMID: 34741959
  300. Martín J, Tena N, Asuero AG. Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchem J 2021; 167: 106305. doi: 10.1016/j.microc.2021.106305 PMID: 33897053
  301. Germain M, Caputo F, Metcalfe S, et al. Delivering the power of nanomedicine to patients today. J Control Release 2020; 326: 164-71. doi: 10.1016/j.jconrel.2020.07.007 PMID: 32681950
  302. Albargi H, Marnadu R, Sujithkumar G, et al. Deposition of nanostructured Sn doped Co3O4 films by a facile nebulizer spray pyrolysis method and fabrication of p-Sn doped Co3O4/n-Si junction diodes for opto-nanoelectronics. Sens Actuators A Phys 2021; 332: 113067. doi: 10.1016/j.sna.2021.113067
  303. Payandehpeyman J, Parvini N, Moradi K, Hashemian N. Design and finite element modeling of two–dimensional nanomechanical biosensors for SARS–CoV–2 detection. Diamond Related Materials 2022; 128: 109263. doi: 10.1016/j.diamond.2022.109263 PMID: 35891677
  304. Murillo AMM, Tomé-Amat J, Ramírez Y, et al. Developing an optical interferometric detection method based biosensor for detecting specific SARS-CoV-2 immunoglobulins in Serum and Saliva, and their corresponding ELISA correlation. Sens Actuators B Chem 2021; 345: 130394. doi: 10.1016/j.snb.2021.130394 PMID: 34248283
  305. Zamani M, Yalcin H, Naeini AB, Zeba G, Daim TU. Developing metrics for emerging technologies: identification and assessment. Technol Forecast Soc Change 2022; 176: 121456. doi: 10.1016/j.techfore.2021.121456
  306. Mert S, Sancak S, Aydın H, et al. Development of a SERS based cancer diagnosis approach employing cryosectioned thyroid tissue samples on PDMS. Nanomedicine 2022; 44: 102577. doi: 10.1016/j.nano.2022.102577 PMID: 35716872
  307. Antiochia R. Developments in biosensors for CoV detection and future trends. Biosens Bioelectron 2021; 173: 112777. doi: 10.1016/j.bios.2020.112777 PMID: 33189015
  308. Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chem Eng J 2021; 423: 130189. doi: 10.1016/j.cej.2021.130189 PMID: 33994842
  309. Soares JC, Soares AC, Angelim MKSC, et al. Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta 2022; 239: 123076. doi: 10.1016/j.talanta.2021.123076 PMID: 34876273
  310. Hashemi SA, Bahrani S, Mousavi SM, et al. Differentiable detection of ethanol/methanol in biological fluids using prompt graphene-based electrochemical nanosensor coupled with catalytic complex of nickel oxide/8-hydroxyquinoline. Anal Chim Acta 2022; 1194: 339407. doi: 10.1016/j.aca.2021.339407 PMID: 35063153
  311. Zhao B, Wang W, Li N, et al. Digital-resolution and highly sensitive detection of multiple exosomal small RNAs by DNA toehold probe-based photonic resonator absorption microscopy. Talanta 2022; 241: 123256. doi: 10.1016/j.talanta.2022.123256 PMID: 35085990
  312. Angelopoulou M, Makarona E, Salapatas A, et al. Directly immersible silicon photonic probes: Application to rapid SARS-CoV-2 serological testing. Biosens Bioelectron 2022; 215: 114570. doi: 10.1016/j.bios.2022.114570 PMID: 35850040
  313. Rodrigues VC, Soares JC, Soares AC, et al. Electrochemical and optical detection and machine learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker PCA3. Talanta 2021; 222: 121444. doi: 10.1016/j.talanta.2020.121444 PMID: 33167198
  314. Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. Chem Eng J 2020; 127575. doi: 10.1016/j.cej.2020.127575 PMID: 33162783
  315. Kumar N, Shetti NP, Jagannath S, Aminabhavi TM. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem Eng J 2022; 430: 132966. doi: 10.1016/j.cej.2021.132966 PMID: 34690533
  316. Novodchuk I, Kayaharman M, Prassas I, et al. Electronic field effect detection of SARS-CoV-2 N-protein before the onset of symptoms. Biosens Bioelectron 2022; 210: 114331. doi: 10.1016/j.bios.2022.114331 PMID: 35512584
  317. Malik P, Gupta R, Malik V, Ameta RK. Emerging nanomaterials for improved biosensing. Measurement. Sensors 2021; 16: 100050. doi: 10.1016/j.measen.2021.100050
  318. Brodowski M, Pierpaoli M, Janik M, et al. Enhanced susceptibility of SARS-CoV-2 spike RBD protein assay targeted by cellular receptors ACE2 and CD147: Multivariate data analysis of multisine impedimetric response. Sens Actuators B Chem 2022; 370: 132427. doi: 10.1016/j.snb.2022.132427 PMID: 35911567
  319. Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron 2021; 178: 113015. doi: 10.1016/j.bios.2021.113015 PMID: 33493896
  320. Zhang K, Fan Z, Yao B, et al. Entropy-driven electrochemiluminescence ultra-sensitive detection strategy of NF-κB p50 as the regulator of cytokine storm. Biosens Bioelectron 2021; 176: 112942. doi: 10.1016/j.bios.2020.112942 PMID: 33401144
  321. Khan S, Babadaei MMN, Hasan A, et al. Enzyme–polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms. J Adv Res 2021; 33: 227-39. doi: 10.1016/j.jare.2021.01.012 PMID: 34603792
  322. Plikusiene I, Maciulis V, Ramanaviciene A, et al. Evaluation of kinetics and thermodynamics of interaction between immobilized SARS-CoV-2 nucleoprotein and specific antibodies by total internal reflection ellipsometry. J Colloid Interface Sci 2021; 594: 195-203. doi: 10.1016/j.jcis.2021.02.100 PMID: 33761394
  323. Manoto SL, El-Hussein A, Malabi R, et al. Exploring optical spectroscopic techniques and nanomaterials for virus detection. Saudi J Biol Sci 2021; 28(1): 78-89. doi: 10.1016/j.sjbs.2020.08.034 PMID: 32868971
  324. Xu L, Li D, Ramadan S, Li Y, Klein N. Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron 2020; 170: 112673. doi: 10.1016/j.bios.2020.112673 PMID: 33038584
  325. Ghasemi R, Mirahmadi-zare SZ, Allafchian A, Behmanesh M. Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (Streptococcus agalactiae) based on a fluorescent-immune nanofibers. Sens Actuators B Chem 2022; 352: 130968. doi: 10.1016/j.snb.2021.130968
  326. Tarighat MA, Ghorghosheh FH, Abdi G. Fe3O4@SiO2-Ag nanocomposite colorimetric sensor for determination of arginine and ascorbic acid based on synthesized small size AgNPs by cystoseria algae extract. Mater Sci Eng B 2022; 283: 115855. doi: 10.1016/j.mseb.2022.115855
  327. McLamore ES, Alocilja E, Gomes C, et al. FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178: 113011. doi: 10.1016/j.bios.2021.113011 PMID: 33517232
  328. Righini GC, Krzak J, Lukowiak A, Macrelli G, Varas S, Ferrari M. From flexible electronics to flexible photonics: A brief overview. Opt Mater 2021; 115: 111011. doi: 10.1016/j.optmat.2021.111011
  329. Rai A, Bhaskar S, Ganesh KM, Ramamurthy SS. Gelucire®-mediated heterometallic AgAu nanohybrid engineering for femtomolar cysteine detection using smartphone-based plasmonics technology. Mater Chem Phys 2022; 279: 125747. doi: 10.1016/j.matchemphys.2022.125747
  330. Saltepe B, Bozkurt EU, Güngen MA, Çiçek AE, Şeker UÖŞ. Genetic circuits combined with machine learning provides fast responding living sensors. Biosens Bioelectron 2021; 178: 113028. doi: 10.1016/j.bios.2021.113028 PMID: 33508538
  331. Du T, Zhang J, Li C, et al. Gold/Silver hybrid nanoparticles with enduring inhibition of coronavirus multiplication through multisite mechanisms. Bioconjug Chem 2020; 31(11): 2553-63. doi: 10.1021/acs.bioconjchem.0c00506 PMID: 33073571
  332. Bahari D, Babamiri B, Salimi A, Rashidi A. Graphdiyne/graphene quantum dots for development of FRET ratiometric fluorescent assay toward sensitive detection of miRNA in human serum and bioimaging of living cancer cells. J Lumin 2021; 239: 118371. doi: 10.1016/j.jlumin.2021.118371
  333. Fu L, Mao S, Chen F, et al. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011–2021). Chemosphere 2022; 297: 134127. doi: 10.1016/j.chemosphere.2022.134127 PMID: 35240147
  334. Ali Farzin M, Abdoos H, Saber R. Graphite nanocrystals coated paper-based electrode for detection of SARS-Cov-2 gene using DNA-functionalized Au@carbon dot core–shell nanoparticles. Microchem J 2022; 179: 107585. doi: 10.1016/j.microc.2022.107585 PMID: 35578710
  335. Cherkaoui D, Huang D, Miller BS, Turbé V, McKendry RA. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosens Bioelectron 2021; 189: 113328. doi: 10.1016/j.bios.2021.113328 PMID: 34051382
  336. Burg S, Roth S, Cohen M, et al. High throughput optical modulation biosensing for highly sensitive and rapid detection of biomarkers. Talanta 2022; 248: 123624. doi: 10.1016/j.talanta.2022.123624 PMID: 35660998
  337. Siew QY, Pang EL, Loh HS, Tan MTT. Highly sensitive and specific graphene/TiO2 impedimetric immunosensor based on plant-derived tetravalent envelope glycoprotein domain III (EDIII) probe antigen for dengue diagnosis. Biosens Bioelectron 2021; 176: 112895. doi: 10.1016/j.bios.2020.112895 PMID: 33358432
  338. Ebrahimi F, Amoli HS, Mozaffari SA. Impedimetric and single-frequency capacitance spectroscopy strategy in label-free rapid screening of lactoferrin. Sens Actuators B Chem 2022; 354: 131107. doi: 10.1016/j.snb.2021.131107
  339. Jansen AJG, Spaan T, Low HZ, et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv 2020; 4(13): 2967-78. doi: 10.1182/bloodadvances.2020001640 PMID: 32609845
  340. Torrijos-Morán L, Lisboa BD, Soler M, Lechuga LM, García-Rupérez J. Integrated optical bimodal waveguide biosensors: Principles and applications. Results in Optics 2022; 9: 100285. doi: 10.1016/j.rio.2022.100285
  341. Pan T, Shen M, Shi J, et al. Intracellular potassium ion fluorescent nanoprobes for functional analysis of hERG channel via bioimaging. Sens Actuators B Chem 2021; 345: 130450. doi: 10.1016/j.snb.2021.130450
  342. Rahmati Z, Roushani M, Hosseini H, Choobin H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 2022; 146: 108106. doi: 10.1016/j.bioelechem.2022.108106 PMID: 35339949
  343. Petchakup C, Hutchinson PE, Tay HM, Leong SY, Li KHH, Hou HW. Label-free quantitative lymphocyte activation profiling using microfluidic impedance cytometry. Sens Actuators B Chem 2021; 339: 129864. doi: 10.1016/j.snb.2021.129864
  344. Gianti E, Percec S. Machine learning at the interface of polymer science and biology: How far can we go? Biomacromolecules 2022; 23(3): 576-91. doi: 10.1021/acs.biomac.1c01436 PMID: 35133143
  345. Materón EM, Miyazaki CM, Carr O, et al. Magnetic nanoparticles in biomedical applications: A review. Appl Surfac Sci Adv 2021; 6: 100163. doi: 10.1016/j.apsadv.2021.100163
  346. Kad A, Pundir A, Arya SK, Puri S, Khatri M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol In Vitro 2022; 83: 105418. doi: 10.1016/j.tiv.2022.105418 PMID: 35724836
  347. Pina-Coronado C, Martínez-Sobrino Á, Gutiérrez-Gálvez L, et al. Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing. Sens Actuators B Chem 2022; 369: 132217. doi: 10.1016/j.snb.2022.132217 PMID: 35755181
  348. Lowdon JW, Diliën H, Singla P, et al. MIPs for commercial application in low-cost sensors and assays-an overview of the current status quo. Sens Actuators B Chem 2020; 325: 128973. doi: 10.1016/j.snb.2020.128973 PMID: 33012991
  349. Ratautaite V, Boguzaite R, Brazys E, et al. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 2022; 403: 139581. doi: 10.1016/j.electacta.2021.139581 PMID: 34898691
  350. Ilgar M, Baytemir G, Taşaltın N, Güllülü S, Yeşilyurt İS, Karakuş S. Multifunctional maca extract coated CuO nanoparticles with antimicrobial and dopamine sensing activities: A dual electrochemical – Smartphone colorimetric detection system. J Photochem Photobiol Chem 2022; 431: 114075. doi: 10.1016/j.jphotochem.2022.114075
  351. Yin K, Ding X, Xu Z, et al. Multiplexed colorimetric detection of SARS-CoV-2 and other pathogens in wastewater on a 3D printed integrated microfluidic chip. Sens Actuators B Chem 2021; 344: 130242. doi: 10.1016/j.snb.2021.130242 PMID: 34121812
  352. Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338: 813-36. doi: 10.1016/j.jconrel.2021.08.046 PMID: 34478750
  353. Santhy A, Saraswathyamma B, Parvathy Krishnan A, Luscious L. Nanomaterials incorporated electrochemical sensors for the monitoring of pyridoxine: A mini review. Mater Today Proc 2021; 46: 2998-3004. doi: 10.1016/j.matpr.2020.12.703
  354. Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. Curr Opin Solid State Mater Sci 2021; 25(6): 100964. doi: 10.1016/j.cossms.2021.100964 PMID: 34729031
  355. Bhalla N, Payam AF, Morelli A, et al. Nanoplasmonic biosensor for rapid detection of multiple viral variants in human serum. Sens Actuators B Chem 2022; 365: 131906. doi: 10.1016/j.snb.2022.131906 PMID: 35463481
  356. Zhao Z. Nanosurface modification of Ti64 implant by anodic fluorine-doped alumina/titania for orthopedic application. Mater Chem Phys 2022; 281: 125867. doi: 10.1016/j.matchemphys.2022.125867
  357. Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. New challenges in point of care electrochemical detection of clinical biomarkers. Sens Actuators B Chem 2021; 345: 130349. doi: 10.1016/j.snb.2021.130349
  358. González-Garnica M, Galdámez-Martínez A, Malagón F, et al. One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance. Sens Actuators B Chem 2021; 337: 129765. doi: 10.1016/j.snb.2021.129765
  359. Huang L, Ding L, Zhou J, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens Bioelectron 2021; 171: 112685. doi: 10.1016/j.bios.2020.112685 PMID: 33113383
  360. Li L, Zhang Y, Zheng W, Li X, Zhao Y. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection. Talanta 2022; 247: 123599. doi: 10.1016/j.talanta.2022.123599 PMID: 35653863
  361. Li N, Zhao B, Stavins R, et al. Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing. Curr Opin Solid State Mater Sci 2022; 26(1): 100966. doi: 10.1016/j.cossms.2021.100966 PMID: 34840515
  362. Soto D, Orozco J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal Chim Acta 2022; 1205: 339739. doi: 10.1016/j.aca.2022.339739 PMID: 35414399
  363. Serre-Miranda C, Nobrega C, Roque S, et al. Performance assessment of 11 commercial serological tests for SARS-CoV-2 on hospitalised COVID-19 patients. Int J Infect Dis 2021; 104: 661-9. doi: 10.1016/j.ijid.2021.01.038 PMID: 33484862
  364. Dubey AK, Chaudhry SK, Singh HB, Gupta VK, Kaushik A. Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. Biotechnol Rep 2022; 33: e00712. doi: 10.1016/j.btre.2022.e00712 PMID: 35186674
  365. Mandal D, Indaleeb MM, Younan A, Banerjee S. Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies. Sens Biosensing Res 2022; 37: 100510. doi: 10.1016/j.sbsr.2022.100510 PMID: 35855937
  366. van Dongen JE, Berendsen JTW, Steenbergen RDM, Wolthuis RMF, Eijkel JCT, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens Bioelectron 2020; 166: 112445. doi: 10.1016/j.bios.2020.112445 PMID: 32758911
  367. Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210: 114330. doi: 10.1016/j.bios.2022.114330 PMID: 35567882
  368. Muduganti M, Magna G, di Zazzo L, et al. Porphyrinoids coated silica nanoparticles capacitive sensors for COVID-19 detection from the analysis of blood serum volatolome. Sens Actuators B Chem 2022; 369: 132329. doi: 10.1016/j.snb.2022.132329
  369. Hashmi A, Nayak V, Singh KRB, et al. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. Materials Today Advances 2022; 13: 100208. doi: 10.1016/j.mtadv.2022.100208 PMID: 35039802
  370. Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. Ecotoxicol Environ Saf 2021; 219: 112357. doi: 10.1016/j.ecoenv.2021.112357 PMID: 34044308
  371. Bagheri Novir S, Aram MR. Quantum mechanical studies of the adsorption of Remdesivir, as an effective drug for treatment of COVID-19, on the surface of pristine, COOH-functionalized and S-, Si- and Al- doped carbon nanotubes. Physica E 2021; 129: 114668. doi: 10.1016/j.physe.2021.114668 PMID: 33564274
  372. Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: A new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145: 108050. doi: 10.1016/j.bioelechem.2022.108050 PMID: 35074732
  373. Rana G, Dhiman P, Kumar A, et al. Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications. Chem Eng Res Des 2021; 175: 182-208. doi: 10.1016/j.cherd.2021.08.040
  374. Nagy-Simon T, Hada AM, Suarasan S, Potara M. Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein. J Mol Struct 2021; 1246: 131178. doi: 10.1016/j.molstruc.2021.131178 PMID: 36536692
  375. Zheng XT, Tan YN. Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens. Sensors International 2020; 1: 100034. doi: 10.1016/j.sintl.2020.100034 PMID: 34766041
  376. Mohankumar P, Ajayan J, Mohanraj T, Yasodharan R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021; 167: 108293. doi: 10.1016/j.measurement.2020.108293
  377. Roy S, Dikshit PK, Sherpa KC, Singh A, Jacob S, Chandra Rajak R. Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review. J Environ Manage 2021; 297: 113422. doi: 10.1016/j.jenvman.2021.113422 PMID: 34351298
  378. Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Biosci 2022; 47: 101695. doi: 10.1016/j.fbio.2022.101695
  379. Haji Mohammadi M, Mulder S, Khashayar P, Kalbasi A, Azimzadeh M, Aref AR. Saliva Lab-on-a-chip biosensors: Recent novel ideas and applications in disease detection. Microchem J 2021; 168: 106506. doi: 10.1016/j.microc.2021.106506
  380. Zafar S, Nazir M, Sabah A, Jurcut AD. Securing bio-cyber interface for the internet of bio-nano things using particle swarm optimization and artificial neural networks based parameter profiling. Comput Biol Med 2021; 136: 104707. doi: 10.1016/j.compbiomed.2021.104707 PMID: 34375900
  381. Maithani Y, Choudhuri B, Mehta BR, Singh JP. Self-adhesive, stretchable, and dry silver nanorods embedded polydimethylsiloxane biopotential electrodes for electrocardiography. Sens Actuators A Phys 2021; 332: 113068. doi: 10.1016/j.sna.2021.113068
  382. Li N, Zhao Y, Liu Y, et al. Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. Nano Today 2021; 41: 101308. doi: 10.1016/j.nantod.2021.101308 PMID: 34630625
  383. Zhang Y, Chen M, Liu C, et al. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens Actuators B Chem 2021; 345: 130411. doi: 10.1016/j.snb.2021.130411 PMID: 34248284
  384. Hatamluyi B, Rezayi M, Amel Jamehdar S, et al. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectron 2022; 207: 114209. doi: 10.1016/j.bios.2022.114209 PMID: 35339072
  385. Chen L, Huang H, Wang Z, Deng K, Huang H. Sensitive fluorescence detection of pathogens based on target nucleic acid sequence-triggered transcription. Talanta 2022; 243: 123352. doi: 10.1016/j.talanta.2022.123352 PMID: 35305458
  386. Wang K, Li T, Cao B, et al. Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms. Sens Actuators A Phys 2022; 333: 113299. doi: 10.1016/j.sna.2021.113299
  387. Benelmekki M, Gasso S, Martinez LM. Simultaneous optical and magnetophoretic monitoring of DNA hybridization using superparamagnetic and plasmonic colloids. Colloids Surf B Biointerfaces 2020; 193: 111126. doi: 10.1016/j.colsurfb.2020.111126 PMID: 32422560
  388. Zhao B, Che C, Wang W, Li N, Cunningham BT. Single-step, wash-free digital immunoassay for rapid quantitative analysis of serological antibody against SARS-CoV-2 by photonic resonator absorption microscopy. Talanta 2021; 225: 122004. doi: 10.1016/j.talanta.2020.122004 PMID: 33592744
  389. Albrycht P, Al-Otaibi JS, Mary YS, Mary YS, Trivedi R, Chakraborty B. Surface enhanced Raman scattering investigation of pioglitazone on silver and silver-gold metal substrates-experimental analysis and theoretical modeling. J Mol Struct 2021; 1244: 130992. doi: 10.1016/j.molstruc.2021.130992
  390. Latorre R, Ramírez-Garcia PD, Hegron A, et al. Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials 2022; 285: 121536. doi: 10.1016/j.biomaterials.2022.121536 PMID: 35533442
  391. Borse V, Konwar AN. Synthesis and characterization of gold nanoparticles as a sensing tool for the lateral flow immunoassay development. Sensors International 2020; 1: 100051. doi: 10.1016/j.sintl.2020.100051
  392. Zhou Y, Liu J, Dong H, et al. Target-induced silver nanocluster generation for highly sensitive electrochemical aptasensor towards cell-secreted interferon-γ. Biosens Bioelectron 2022; 203: 114042. doi: 10.1016/j.bios.2022.114042 PMID: 35124342
  393. Gaobotse G, Mbunge E, Batani J, Muchemwa B. The future of smart implants towards personalized and pervasive healthcare in Sub-Saharan Africa: Opportunities, barriers and policy recommendations. Sensors International 2022; 3: 100173. doi: 10.1016/j.sintl.2022.100173
  394. Mahshid SS, Flynn SE, Mahshid S. The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2. Biosens Bioelectron 2021; 176: 112905. doi: 10.1016/j.bios.2020.112905 PMID: 33358285
  395. Chiarello F, Fantoni G, Hogarth T, Giordano V, Baltina L, Spada I. Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach. Technol Forecast Soc Change 2021; 173: 121177. doi: 10.1016/j.techfore.2021.121177
  396. Stark NM, Matuana LM. Trends in sustainable biobased packaging materials: A mini review. Mater Today Sustain 2021; 15: 100084. doi: 10.1016/j.mtsust.2021.100084
  397. Şahin Z, Meunier-Prest R, Dumoulin F, Kumar A, Isci Ü, Bouvet M. Tuning of organic heterojunction conductivity by the substituents’ electronic effects in phthalocyanines for ambipolar gas sensors. Sens Actuators B Chem 2021; 332: 129505. doi: 10.1016/j.snb.2021.129505
  398. Alireza Hashemi S, Bahrani S, Mojtaba Mousavi S, et al. Ultra-precise label-free nanosensor based on integrated graphene with Au nanostars toward direct detection of IgG antibodies of SARS-CoV-2 in blood. J Electroanal Chem 2021; 894: 115341. doi: 10.1016/j.jelechem.2021.115341 PMID: 33994897
  399. Daoudi K, Ramachandran K, Alawadhi H, et al. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. Surf Interfaces 2021; 27: 101454. doi: 10.1016/j.surfin.2021.101454 PMID: 34957346
  400. Hashemi SA, Golab Behbahan NG, Bahrani S, et al. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens Bioelectron 2021; 171: 112731. doi: 10.1016/j.bios.2020.112731 PMID: 33075725
  401. Mwanza D, Mfamela N, Adeniyi O, Nyokong T, Mashazi P. Ultrasensitive detection of prostate-specific antigen using glucose-encapsulated nanoliposomes anti-PSA polyclonal antibody as detection nanobioprobes. Talanta 2022; 245: 123483. doi: 10.1016/j.talanta.2022.123483 PMID: 35453097
  402. Tavakoli-Koopaei R, Javadi-Zarnaghi F, Mirhendi H. Unified-amplifier based primer exchange reaction (UniAmPER) enabled detection of SARS-CoV-2 from clinical samples. Sens Actuators B Chem 2022; 357: 131409. doi: 10.1016/j.snb.2022.131409 PMID: 35035095
  403. Wang M, Lin Y, Lu J, et al. Visual naked-eye detection of SARS-CoV-2 RNA based on covalent organic framework capsules. Chem Eng J 2022; 429: 132332. doi: 10.1016/j.cej.2021.132332 PMID: 34539223
  404. Panes P, Macariola MA, Niervo C, Maghanoy AG, Garcia KP, Ignacio JJ. A bibliometric approach for analyzing the potential role of waste-derived nanoparticles in the upstream oil and gas industry. Cleaner Eng Technol 2022; 8: 100468. doi: 10.1016/j.clet.2022.100468
  405. Muz İ, Göktaş F, Kurban M. A density functional theory study on favipiravir drug interaction with BN-doped C60 heterofullerene. Physica E 2022; 135: 114950. doi: 10.1016/j.physe.2021.114950
  406. Braz Gomes K, D’Souza B, Vijayanand S, Menon I, D’Souza MJ. A dual-delivery platform for vaccination using antigen-loaded nanoparticles in dissolving microneedles. Int J Pharm 2022; 613: 121393. doi: 10.1016/j.ijpharm.2021.121393 PMID: 34929312
  407. Jia H, Shang Y, Cao H, et al. A minimalist supramolecular nanovaccine forcefully propels the Tfh cell and GC B cell responses. Chem Eng J 2022; 435: 134782. doi: 10.1016/j.cej.2022.134782
  408. Olivera-Ugarte SM, Bolduc M, Laliberté-Gagné MÈ, et al. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. Nanomedicine 2022; 44: 102584. doi: 10.1016/j.nano.2022.102584 PMID: 35850421
  409. Mehta K, Sharma R, Vyas V. A quantile regression approach to study the impact of aluminium prices on manufacturing sector of India during COVID era. Mater Today Proc 2022; 65: 3506-11. doi: 10.1016/j.matpr.2022.06.087
  410. Pachaiappan R, Rajendran S, Senthil Kumar P, Vo D-VN, Hoang KA. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem Eng Res Des 2022; 177: 304-20. doi: 10.1016/j.cherd.2021.11.006
  411. Kanwar A, Sharma A. A review on role of zinc as a potent immunity boosting agent. Mater Today Proc 2022; 68: 880-5. doi: 10.1016/j.matpr.2022.06.423
  412. Caputo L, Quintieri L, Bugatti V, Gorrasi G. A salicylate-functionalized PET packaging to counteract blue discoloration on mozzarella cheese under cold storage. Food Packag Shelf Life 2022; 32: 100850. doi: 10.1016/j.fpsl.2022.100850
  413. Riahi Z, Priyadarshi R, Rhim JW, Lotfali E, Bagheri R, Pircheraghi G. Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications. Colloids Surf B Biointerfaces 2022; 215: 112519. doi: 10.1016/j.colsurfb.2022.112519 PMID: 35487069
  414. Venkatesh G, Sixto-López Y, Vennila P, et al. An investigation on the molecular structure, interaction with metal clusters, anti-Covid-19 ability of 2-deoxy-D-glucose: DFT calculations, MD and docking simulations. J Mol Struct 2022; 1258: 132678. doi: 10.1016/j.molstruc.2022.132678
  415. Uwizeyimana DE. Analysing the importance of e-government in times of disruption: The case of public education in Rwanda during Covid-19 lockdown. Eval Program Plann 2022; 91: 102064. doi: 10.1016/j.evalprogplan.2022.102064 PMID: 35306359
  416. Hooshmand SE, Ebadati A, Hosseini ES, et al. Antibacterial, antibiofilm, anti-inflammatory, and wound healing effects of nanoscale multifunctional cationic alternating copolymers. Bioorg Chem 2022; 119: 105550. doi: 10.1016/j.bioorg.2021.105550 PMID: 34920337
  417. Dentamaro V, Giglio P, Impedovo D, Moretti L, Pirlo G. AUCO ResNet: An end-to-end network for Covid-19 pre-screening from cough and breath. Pattern Recognit 2022; 127: 108656. doi: 10.1016/j.patcog.2022.108656 PMID: 35313619
  418. Niro CM, Medeiros JA, Bresolin JD, et al. Banana leathers as influenced by polysaccharide matrix and probiotic bacteria. Food Hydrocolloids for Health 2022; 2: 100081. doi: 10.1016/j.fhfh.2022.100081
  419. Tobaldi DM, Dvoranová D, Lajaunie L, et al. Benzene and NO photocatalytic-assisted removal using indoor lighting conditions. Mater Today Energy 2022; 25: 100974. doi: 10.1016/j.mtener.2022.100974
  420. Dałek P, Drabik D, Wołczańska H, et al. Bioavailability by design — Vitamin D3 liposomal delivery vehicles. Nanomedicine 2022; 43: 102552. doi: 10.1016/j.nano.2022.102552 PMID: 35346834
  421. Shanmugan S, Selvaraju P, Nagaraj J, Sivakumar S, Ravichandran S. Biogenic silver nanoparticles of antibacterial activities for poly-herbal extracts in novel medicine. Mater Today Proc 2022; 51: 1107-14. doi: 10.1016/j.matpr.2021.07.107
  422. Song X, Tang Z, Liu W, et al. Biomaterials and regulatory science. J Mater Sci Technol 2022; 128: 221-7. doi: 10.1016/j.jmst.2022.04.018
  423. Antony S, Antony S, Rebello S, et al. Bioremediation of endocrine disrupting chemicals- advancements and challenges. Environ Res 2022; 213: 113509. doi: 10.1016/j.envres.2022.113509 PMID: 35660566
  424. Rius-Rocabert S, Arranz-Herrero J, Fernández-Valdés A, et al. Broad virus inactivation using inorganic micro/nano-particulate materials. Mater Today Bio 2022; 13: 100191. doi: 10.1016/j.mtbio.2021.100191 PMID: 35024597
  425. Xin X, Nepal J, Wright AL, Yang X, He Z. Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: Comparison of foliar spray and soil drench application. J Clean Prod 2022; 363: 132630. doi: 10.1016/j.jclepro.2022.132630
  426. Miranda M, Ribeiro MDMM, Spricigo PC, et al. Carnauba wax nanoemulsion applied as an edible coating on fresh tomato for postharvest quality evaluation. Heliyon 2022; 8(7): e09803. doi: 10.1016/j.heliyon.2022.e09803 PMID: 35800251
  427. Al-Hakkani MF, Gouda GA, Hassan SHA, Mohamed MMA, Nagiub AM. Cefixime wastewater management via bioengineered Hematite nanoparticles and the in-vitro synergetic potential multifunction activities of Cefixime@Hematite nanosystem. Surf Interfaces 2022; 30: 101877. doi: 10.1016/j.surfin.2022.101877
  428. Abbas AH, Fairouz NY. Characterization, biosynthesis of copper nanoparticles using ginger roots extract and investigation of its antibacterial activity. Mater Today Proc 2022; 61: 908-13. doi: 10.1016/j.matpr.2021.09.551
  429. Erdogan Eliuz EA, Yabalak E. Chicken feather hydrochar incorporated with phenolic extract of Rosa damascena Mill. to enlarge the antibacterial performance against Acinobacter baumannii and Staphylococcus aureus. J Environ Chem Eng 2022; 10(5): 108289. doi: 10.1016/j.jece.2022.108289
  430. Zahmatkesh S, Klemeš JJ, Bokhari A, et al. Critical role of Hyssop plant in the possible transmission of SARS-CoV-2 in contaminated human Feces and its implications for the prevention of the virus spread in sewage. Chemosphere 2022; 305: 135247. doi: 10.1016/j.chemosphere.2022.135247 PMID: 35688196
  431. Ruwan Jayakantha DNP, Bandara HMN, Gunawardana NM, et al. Design and construction of a low cost air purifier for killing harmful airborne microorganisms using a combination of a strong multi-directional electric-field and an ultra violet light. HardwareX 2022; 11: e00279. doi: 10.1016/j.ohx.2022.e00279 PMID: 35509923
  432. Maślana K, Kędzierski T, Żywicka A, Zielińska B, Mijowska E. Design of self-cleaning and self-disinfecting paper-shaped photocatalysts based on wood and eucalyptus derived cellulose fibers modified with gCN/Ag nanoparticles. Environ Nanotechnol Monit Manag 2022; 17: 100656. doi: 10.1016/j.enmm.2022.100656
  433. Singh G, Kim S, Lee K. Development of a highly sensitive and portable particulate matter SAW sensor and interface electronics. Sens Actuators A Phys 2022; 343: 113641. doi: 10.1016/j.sna.2022.113641
  434. Kamalzare S, Iranpur Mobarakeh V, Mirzazadeh Tekie FS, et al. Development of a T cell-targeted siRNA delivery system against HIV-1 using modified superparamagnetic iron oxide nanoparticles: An in vitro study. J Pharm Sci 2022; 111(5): 1463-9. doi: 10.1016/j.xphs.2021.10.018 PMID: 34673092
  435. Party P, Kókai D, Burián K, Nagy A, Hopp B, Ambrus R. Development of extra-fine particles containing nanosized meloxicam for deep pulmonary delivery: In vitro aerodynamic and cell line measurements. Eur J Pharm Sci 2022; 176: 106247. doi: 10.1016/j.ejps.2022.106247 PMID: 35760279
  436. Sanna V, Satta S, Hsiai T, Sechi M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur J Med Chem 2022; 231: 114121. doi: 10.1016/j.ejmech.2022.114121 PMID: 35114539
  437. Ebrahimipour H, Haghparast-Bidgoli H, Aval SB, et al. Diagnostic and therapeutic costs of patients with a diagnosis of or suspected coronavirus disease in Iran. Value Health Reg Issues 2022; 27: 21-4. doi: 10.1016/j.vhri.2021.05.001 PMID: 34784544
  438. Turcu DC, Rotolo MM. Disrupting from the Ground up: Community-Led and Place-Based Food Governance in London during COVID-19. Urban Gov 2022; 2(1): 178-87. doi: 10.1016/j.ugj.2022.04.006
  439. Xu L, Wang X, Wang L, Zhang D. Does technological advancement impede ecological footprint level? The role of natural resources prices volatility, foreign direct investment and renewable energy in China. Resour Policy 2022; 76: 102559. doi: 10.1016/j.resourpol.2022.102559
  440. Li X, Feng Y, Li H, Zhang Q. Effect of anionic groups on the antibacterial activity of magnesium oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2022; 635: 127978. doi: 10.1016/j.colsurfa.2021.127978
  441. Dzieżyc M, Kazienko P. Effectiveness of research grants funded by European Research Council and Polish National Science Centre. J Informetrics 2022; 16(1): 101243. doi: 10.1016/j.joi.2021.101243
  442. Guarro M, Suñer F, Lecina M, Borrós S, Fornaguera C. Efficient extracellular vesicles freeze-dry method for direct formulations preparation and use. Colloids Surf B Biointerfaces 2022; 218: 112745. doi: 10.1016/j.colsurfb.2022.112745 PMID: 35930983
  443. Ghosh M, Pradhan S, Mandal S, et al. Enhanced antibacterial activity of a novel protein-arginine deiminase type-4 (PADI4) inhibitor after conjugation with a biocompatible nanocarrier. J Drug Deliv Sci Technol 2022; 74: 103549. doi: 10.1016/j.jddst.2022.103549
  444. Abusweireh RS, Rajamohan N, Vasseghian Y. Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel 2022; 319: 123862. doi: 10.1016/j.fuel.2022.123862
  445. Zhang M, Wang L, Liu J, Pang Y. Envelope virus-mimetic nanovaccines by hybridizing bioengineered cell membranes with bacterial vesicles. iScience 2022; 25(6): 104490. doi: 10.1016/j.isci.2022.104490 PMID: 35712077
  446. Moshref Javadi M, Taghdisi Hosseinzadeh M, Soleimani N, Rommasi F. Evaluating the immunogenicity of gold nanoparticles conjugated RBD with Freund’s adjuvant as a potential vaccine against SARS-CoV-2. Microb Pathog 2022; 170: 105687. doi: 10.1016/j.micpath.2022.105687 PMID: 35917987
  447. Hazafa A, Jahan N, Zia MA, Rahman KU, Sagheer M, Naeem M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. Chemosphere 2022; 292: 133411. doi: 10.1016/j.chemosphere.2021.133411 PMID: 34958785
  448. Lodovichi J, Landucci E, Pitto L, et al. Evaluation of the increase of the thymoquinone permeability formulated in polymeric micelles: In vitro test and in vivo toxicity assessment in Zebrafish embryos. Eur J Pharm Sci 2022; 169: 106090. doi: 10.1016/j.ejps.2021.106090 PMID: 34864170
  449. Silva MD, Ray K, Gama M, Remenschneider AK, Sillankorva S. Ex vivo transtympanic permeation of the liposome encapsulated S. pneumoniae endolysin MSlys. Int J Pharm 2022; 620: 121752. doi: 10.1016/j.ijpharm.2022.121752 PMID: 35439573
  450. Parker L, Boughton S, Lawrence R, Bero L. Experts identified warning signs of fraudulent research: A qualitative study to inform a screening tool. J Clin Epidemiol 2022; 151: 1-17. doi: 10.1016/j.jclinepi.2022.07.006 PMID: 35850426
  451. Moreira J, Fernandes MM, Carvalho EO, et al. Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. Acta Biomater 2022; 139: 237-48. doi: 10.1016/j.actbio.2021.07.067 PMID: 34358697
  452. Grieger K, Merck A, Kuzma J. Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. J Responsibl Technol 2022; 10: 100030. doi: 10.1016/j.jrt.2022.100030
  453. Javed AR, Shahzad F, Rehman S, et al. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022; 129: 103794. doi: 10.1016/j.cities.2022.103794
  454. Vijayakumar N, Bhuvaneshwari VK, Ayyadurai GK, et al. Green synthesis of zinc oxide nanoparticles using Anoectochilus elatus, and their biomedical applications. Saudi J Biol Sci 2022; 29(4): 2270-9. doi: 10.1016/j.sjbs.2021.11.065 PMID: 35531172
  455. Rehman FU, Liu Y, Yang Q, et al. Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy. J Control Release 2022; 345: 696-708. doi: 10.1016/j.jconrel.2022.03.036 PMID: 35341901
  456. Lin HY, Yen SC, Kang CH, et al. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. J Hazard Mater 2022; 429: 128337. doi: 10.1016/j.jhazmat.2022.128337 PMID: 35121295
  457. Hidayat SN, Julian T, Dharmawan AB, et al. Hybrid learning method based on feature clustering and scoring for enhanced COVID-19 breath analysis by an electronic nose. Artif Intell Med 2022; 129: 102323. doi: 10.1016/j.artmed.2022.102323 PMID: 35659391
  458. Ammar M, Haleem A, Javaid M, Bahl S, Verma AS. Implementing Industry 4.0 technologies in self-healing materials and digitally managing the quality of manufacturing. Mater Today Proc 2022; 52: 2285-94. doi: 10.1016/j.matpr.2021.09.248
  459. Fagbamigbe AF, Tolba MF, Amankwaa EF, et al. Implications of WHO COVID-19 interim guideline 2020.5 on the comprehensive care for infected persons in Africa Before, during and after clinical management of cases. Sci Am 2022; 15: e01083. doi: 10.1016/j.sciaf.2021.e01083 PMID: 34957351
  460. Li Y, Guo C, Chen Q, et al. Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides viai calming cytokine storm. Int J Biol Macromol 2022; 202: 691-706. doi: 10.1016/j.ijbiomac.2022.01.194 PMID: 35124019
  461. Nkanga CI, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. injectable slow-release hydrogel formulation of a plant virus-based COVID-19 vaccine candidate. Biomacromolecules 2022; 23(4): 1812-25. doi: 10.1021/acs.biomac.2c00112 PMID: 35344365
  462. Lakshmanan A, Sarngan PP, Sarkar D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania. Chemosphere 2022; 286(Pt 2): 131671. doi: 10.1016/j.chemosphere.2021.131671 PMID: 34352548
  463. Khoza LJ, Kumar P, Dube A, Demana PH, Choonara YE. Insights into innovative therapeutics for drug-resistant tuberculosis: Host-directed therapy and autophagy inducing modified nanoparticles. Int J Pharm 2022; 622: 121893. doi: 10.1016/j.ijpharm.2022.121893 PMID: 35680110
  464. Zahmatkesh S, Amesho KTT, Sillanpaa M, Wang C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. Cleaner Chem Eng 2022; 3: 100036. doi: 10.1016/j.clce.2022.100036
  465. Zubair G, Shoaib M, Khan MI, et al. Intelligent supervised learning for viscous fluid submerged in water based carbon nanotubes with irreversibility concept. Int Commun Heat Mass Transf 2022; 130: 105790. doi: 10.1016/j.icheatmasstransfer.2021.105790
  466. Chaudhary V, Channegowda M, Ansari SA, et al. Low-trace monitoring of airborne sulphur dioxide employing SnO2-CNT hybrids-based energy-efficient chemiresistor. J Mater Res Technol 2022; 20: 2468-78. doi: 10.1016/j.jmrt.2022.07.159
  467. Arber Raviv S, Alyan M, Egorov E, et al. Lung targeted liposomes for treating ARDS. J Control Release 2022; 346: 421-33. doi: 10.1016/j.jconrel.2022.03.028 PMID: 35358610
  468. Xu T, Gu J, Meng J, Du L, Kumar A, Xu H. Melt electrowriting reinforced composite membrane for controlled drug release. J Mech Behav Biomed Mater 2022; 132: 105277. doi: 10.1016/j.jmbbm.2022.105277 PMID: 35617819
  469. Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun 2022; 58(54): 7466-82. doi: 10.1039/D2CC01772E PMID: 35730442
  470. Ahirwar A, Kesharwani K, Deka R, et al. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349: 32-46. doi: 10.1016/j.jbiotec.2022.03.012 PMID: 35339574
  471. Nath SS, Villadsen J. Modeling dynamics of chemical reaction networks using electrical analogs: Application to autocatalytic reactions. Chem Eng J Adv 2022; 12: 100374. doi: 10.1016/j.ceja.2022.100374
  472. Dhingra K, Dinda AK, Kottarath SK, Chaudhari PK, Verma F. Mucoadhesive silver nanoparticle-based local drug delivery system for peri-implantitis management in COVID-19 era. Part 1: antimicrobial and safety in-vitro analysis. J Oral Biol Craniofac Res 2022; 12(1): 177-81. doi: 10.1016/j.jobcr.2021.11.007 PMID: 34849334
  473. Astinchap B, Ghanbaripour H, Amuzgar R. Multifractal analysis of chest CT images of patients with the 2019 novel coronavirus disease (COVID-19). Chaos Solitons Fractals 2022; 156: 111820. doi: 10.1016/j.chaos.2022.111820 PMID: 35095221
  474. Supramaniam J, Low DYS, Wong SK, Leo BF, Goh BH, Tang SY. Nano-engineered ZnO/CNF-based epoxidized natural rubber with enhanced strength for novel Self-healing glove fabrication. Chem Eng J 2022; 437: 135440. doi: 10.1016/j.cej.2022.135440
  475. Salama KF, Alnimr A, Alamri A, et al. Nano-treatment of HEPA filters in COVID-19 isolation rooms in an academic medical center in Saudi Arabia. J Infect Public Health 2022; 15(9): 937-41. doi: 10.1016/j.jiph.2022.07.004 PMID: 35914357
  476. Cyganowski P, Wolska J. Nanocomposite membranes with Au nanoparticles for dialysis-based catalytic reduction-separation of nitroaromatic compounds. React Funct Polym 2022; 170: 105119. doi: 10.1016/j.reactfunctpolym.2021.105119
  477. El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022; 348: 553-71. doi: 10.1016/j.jconrel.2022.06.010 PMID: 35705114
  478. Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343: 564-83. doi: 10.1016/j.jconrel.2022.01.047 PMID: 35124126
  479. Lee SCH, Burke PJ. NanoStat: An open source, fully wireless potentiostat. Electrochim Acta 2022; 422: 140481. doi: 10.1016/j.electacta.2022.140481
  480. Li Y, Duan R. Nanostructures with at least one dimension in ultra-small size for the treatment of acute kidney injury. Giant 2022; 11: 100111. doi: 10.1016/j.giant.2022.100111
  481. Alkan-Taş B, Berksun E, Taş CE, Ünal S, Ünal H. NIR-responsive waterborne polyurethane-polydopamine coatings for light-driven disinfection of surfaces. Prog Org Coat 2022; 164: 106669. doi: 10.1016/j.porgcoat.2021.106669
  482. Iqbal Z, Shamair Z, Usman M, et al. One pot synthesis of UiO-66@IL composite for fabrication of CO2 selective mixed matrix membranes. Chemosphere 2022; 303(Pt 2): 135122. doi: 10.1016/j.chemosphere.2022.135122 PMID: 35636596
  483. Jaroenram W, Chatnuntawech I, Kampeera J, et al. One-step colorimetric isothermal detection of COVID-19 with AI-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. Talanta 2022; 249: 123375. doi: 10.1016/j.talanta.2022.123375 PMID: 35738204
  484. Monteiro LM, Löbenberg R, Barbosa EJ, et al. Oral administration of buparvaquone nanostructured lipid carrier enables in vivo activity against Leishmania infantum. Eur J Pharm Sci 2022; 169: 106097. doi: 10.1016/j.ejps.2021.106097 PMID: 34910988
  485. Ross MM, Collins AM, McCarthy MB, Kelly AL. Overcoming barriers to consumer acceptance of 3D-printed foods in the food service sector. Food Qual Prefer 2022; 100: 104615. doi: 10.1016/j.foodqual.2022.104615
  486. Naseer MN, Zaidi AA, Dutta K, et al. Past, present and future of materials’ applications for CO2 capture: A bibliometric analysis. Energy Rep 2022; 8: 4252-64. doi: 10.1016/j.egyr.2022.02.301
  487. Jermy BR, Ravinayagam V, Almohazey D, et al. PEGylated green halloysite/spinel ferrite nanocomposites for pH sensitive delivery of dexamethasone: A potential pulmonary drug delivery treatment option for COVID-19. Appl Clay Sci 2022; 216: 106333. doi: 10.1016/j.clay.2021.106333 PMID: 34776567
  488. García-Casas X, Ghaffarinejad A, Aparicio FJ, et al. Plasma engineering of microstructured piezo – Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting. Nano Energy 2022; 91: 106673. doi: 10.1016/j.nanoen.2021.106673
  489. Kim J, Mayorga-Martinez CC, Vyskočil J, Ruzek D, Pumera M. Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl Mater Today 2022; 27: 101402. doi: 10.1016/j.apmt.2022.101402 PMID: 35155738
  490. Almendárez-Rodriguez C, Solis-Andrade KI, Govea-Alonso DO, Comas-Garcia M, Rosales-Mendoza S. Production and characterization of chimeric SARS-CoV-2 antigens based on the capsid protein of cowpea chlorotic mottle virus. Int J Biol Macromol 2022; 213: 1007-17. doi: 10.1016/j.ijbiomac.2022.06.021 PMID: 35690161
  491. Meena J, Singhvi P, Srichandan S, et al. RBD decorated PLA nanoparticle admixture with aluminum hydroxide elicit robust and long lasting immune response against SARS-CoV-2. Eur J Pharm Biopharm 2022; 176: 43-53. doi: 10.1016/j.ejpb.2022.05.008 PMID: 35589003
  492. Long Q, Yang Y, Yang M, et al. Recombinant VLPs empower RBM peptides showing no immunogenicity in native SARS-COV-2 protein to elicit a robust neutralizing antibody response. Nanomedicine 2022; 41: 102527. doi: 10.1016/j.nano.2022.102527 PMID: 35104670
  493. Spencer AC, Surnar B, Kolishetti N, Toborek M, Dhar S. Restoring the neuroprotective capacity of glial cells under opioid addiction. Addiction Neurosci 2022; 4: 100027. doi: 10.1016/j.addicn.2022.100027
  494. Zahmatkesh S, Sillanpää M. Review of method and a new tool for decline and inactive SARS-CoV-2 in wastewater treatment. Cleaner Chemical Engineering 2022; 3: 100037. doi: 10.1016/j.clce.2022.100037
  495. Choudhary N, Bharti R, Sharma R. Role of artificial intelligence in chemistry. Mater Today Proc 2022; 48: 1527-33. doi: 10.1016/j.matpr.2021.09.428
  496. Muhammad W, Zhu J, Zhai Z, et al. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater 2022; 148: 258-70. doi: 10.1016/j.actbio.2022.06.024 PMID: 35724918
  497. Gonzaga IMD, Dória AR, Santos GOS, et al. Scale-up of Ru-based mesh anodes for the degradation of synthetic hospital wastewater. Separ Purif Tech 2022; 285: 120260. doi: 10.1016/j.seppur.2021.120260
  498. Yörüklü HC, Filiz BC, Figen AK, Özkaya B. Screening of biohydrogen production based on dark fermentation in the presence of nano-sized Fe2O3 doped metal oxide additives. Int J Hydrogen Energy 2022; 47(34): 15383-96. doi: 10.1016/j.ijhydene.2022.03.148
  499. Duan Z, Liang M, Yang C, et al. Selenium nanoparticles coupling with Astragalus Polysaccharides exert their cytotoxicities in MCF-7 cells by inhibiting autophagy and promoting apoptosis. J Trace Elem Med Biol 2022; 73: 127006. doi: 10.1016/j.jtemb.2022.127006 PMID: 35660560
  500. Zhang Z, Zhao M, Su M, et al. Self-assembled 1D nanostructures for direct nanoscale detection and biosensing. Matter 2022; 5(6): 1865-76. doi: 10.1016/j.matt.2022.03.013
  501. Bukit BF, Frida E, Humaidi S, Sinuhaji P. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating. S Afr J Chem Eng 2022; 41: 105-10. doi: 10.1016/j.sajce.2022.05.007
  502. Bitencourt SB, Hatton BD, Bastos-Bitencourt NA, dos Santos DM, Pesqueira AA, De Souza GM. Silica deposition on zirconia via room-temperature atomic layer deposition (RT-ALD): Effect on bond strength to veneering ceramic. J Mech Behav Biomed Mater 2022; 129: 105142. doi: 10.1016/j.jmbbm.2022.105142 PMID: 35259624
  503. Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol 2022; 198: 101-10. doi: 10.1016/j.ijbiomac.2021.12.073 PMID: 34968533
  504. Sajadian SA, Ardestani NS, Jouyban A. Solubility of montelukast (as a potential treatment of COVID -19) in supercritical carbon dioxide: Experimental data and modelling. J Mol Liq 2022; 349: 118219. doi: 10.1016/j.molliq.2021.118219
  505. Sodeifian G, Alwi RS, Razmimanesh F. Solubility of Pholcodine (antitussive drug) in supercritical carbon dioxide: Experimental data and thermodynamic modeling. Fluid Phase Equilib 2022; 556: 113396. doi: 10.1016/j.fluid.2022.113396
  506. Jatal R, Mendes Saraiva S, Vázquez-Vázquez C, et al. Sphingomyelin nanosystems decorated with TSP-1 derived peptide targeting senescent cells. Int J Pharm 2022; 617: 121618. doi: 10.1016/j.ijpharm.2022.121618 PMID: 35219823
  507. Matheri AN, Mohamed B, Ntuli F, Nabadda E, Ngila JC. Sustainable circularity and intelligent data-driven operations and control of the wastewater treatment plant. Phys Chem Earth Parts ABC 2022; 126: 103152. doi: 10.1016/j.pce.2022.103152
  508. Halimehjani AZ, Dehghan F, Tafakori V, Amini E, Hooshmand SE, Nosood YL. Synthesis of novel antibacterial and antifungal dithiocarbamate-containing piperazine derivatives via re-engineering multicomponent approach. Heliyon 2022; 8(6): e09564. doi: 10.1016/j.heliyon.2022.e09564 PMID: 35669544
  509. Xu J, Ramasamy M, Tang T, Wang Y, Zhao W, Tam KC. Synthesis of silver nanoclusters in colloidal scaffold for biolabeling and antimicrobial applications. J Colloid Interface Sci 2022; 623: 883-96. doi: 10.1016/j.jcis.2022.05.084 PMID: 35636296
  510. Shanmugan S, Madupu RK, Selvaraju P, Ravichandran S. Systematic growth on antibacterial activities use of silver nanoparticles with Citrus aurantifolia. Mater Today Proc 2022; 51: 998-1005. doi: 10.1016/j.matpr.2021.07.055
  511. Al-Mustanjid M, Mahmud SMH, Akter F, et al. Systems biology models to identify the influence of SARS-CoV-2 infections to the progression of human autoimmune diseases. Informatics in Medicine Unlocked 2022; 32: 101003. doi: 10.1016/j.imu.2022.101003 PMID: 35818398
  512. Khairiah K, Frida E, Sebayang K, Sinuhaji P, Humaidi S, Fudholi A. The development of a novel FM nanoadsorbent for heavy metal remediation in polluted water. S Afr J Chem Eng 2022; 39: 32-41. doi: 10.1016/j.sajce.2021.11.006
  513. Eş I, Malfatti-Gasperini AA, de la Torre LG. The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids Surf B Biointerfaces 2022; 215: 112476. doi: 10.1016/j.colsurfb.2022.112476 PMID: 35390597
  514. Yuan Y, Liu J, Gao B, Sillanpää M, Al-Farraj S. The effect of activated sludge treatment and catalytic ozonation on high concentration of ammonia nitrogen removal from landfill leachate. Bioresour Technol 2022; 361: 127668. doi: 10.1016/j.biortech.2022.127668 PMID: 35878770
  515. Ruokolainen J, Igel B. The elusiveness of business networks—Why do science park firm tenants not collaborate with neighbors? Ind Mark Manage 2022; 101: 113-24. doi: 10.1016/j.indmarman.2021.11.011
  516. Noble SM, Mende M, Grewal D, Parasuraman A. The fifth industrial revolution: How harmonious human–machine collaboration is triggering a retail and service Revolution. J Retailing 2022; 98(2): 199-208. doi: 10.1016/j.jretai.2022.04.003
  517. Chatalova L, Korotayev A. The long cycle perspective on the emerging bio age. Futures 2022; 141: 102991. doi: 10.1016/j.futures.2022.102991
  518. Foong SY, Chan YH, Loy ACM, et al. The nexus between biofuels and pesticides in agroforestry: Pathways toward United Nations sustainable development goals. Environ Res 2022; 214(Pt. 1): 113751. doi: 10.1016/j.envres.2022.113751 PMID: 35753369
  519. Piccarozzi M, Aquilani B. The role of Big Data in the business challenge of Covid-19: A systematic literature review in managerial studies. Procedia Comput Sci 2022; 200: 1746-55. doi: 10.1016/j.procs.2022.01.375 PMID: 35284028
  520. Sharma V, Singh AP, Singh AP. Therapeutic approaches in COVID-19 followed before arrival of any vaccine. Mater Today Proc 2022; 48: 1258-64. doi: 10.1016/j.matpr.2021.08.265 PMID: 34493973
  521. Ji J, Liu N, Tian Y, et al. Transparent polyurethane coating with synergistically enhanced antibacterial mechanism composed of low surface free energy and biocide. Chem Eng J 2022; 445: 136716. doi: 10.1016/j.cej.2022.136716
  522. Greenhawt M. True, true, and unrelated: Stop routine testing to vaccine excipients for suspected vaccine allergy. Ann Allergy Asthma Immunol 2022; 129(1): 24-6. doi: 10.1016/j.anai.2022.04.007 PMID: 35717133
  523. Wang Y, Wang Q, Wu G, et al. Ultra-fast bacterial inactivation of Cu2O@halloysite nanotubes hybrids with charge adsorption and physical piercing ability for medical protective fabrics. J Mater Sci Technol 2022; 122: 1-9. doi: 10.1016/j.jmst.2021.12.059
  524. Marrucci L, Corcelli F, Daddi T, Iraldo F. Using a life cycle assessment to identify the risk of “circular washing” in the leather industry. Resour Conserv Recycling 2022; 185: 106466. doi: 10.1016/j.resconrec.2022.106466
  525. Tomás AL, Reichel A, Silva PM, et al. UV-C irradiation-based inactivation of SARS-CoV-2 in contaminated porous and non-porous surfaces. J Photochem Photobiol B 2022; 234: 112531. doi: 10.1016/j.jphotobiol.2022.112531 PMID: 35933836
  526. Wang R, Li Y, Pang Y, et al. VIR-CRISPR: Visual in-one-tube ultrafast RT-PCR and CRISPR method for instant SARS-CoV-2 detection. Anal Chim Acta 2022; 1212: 339937. doi: 10.1016/j.aca.2022.339937 PMID: 35623788
  527. Wang Y, Zheng X, Liu J, Chen L, Chen Q, Zhao Y. Virus-like siRNA construct dynamically responsive to sequential microenvironments for potent RNA interference. J Colloid Interface Sci 2022; 622: 938-49. doi: 10.1016/j.jcis.2022.05.006 PMID: 35561612
  528. Mascuch SJ, Fakhretaha-Aval S, Bowman JC, et al. A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. J Biol Chem 2020; 295(46): 15438-53. doi: 10.1074/jbc.RA120.015434 PMID: 32883809
  529. Reis RYN, Goulart LA, Mascaro LH, Alves SA. A critical view of the contributions of photoelectrochemical technology to pharmaceutical degradation. J Environ Chem Eng 2022; 10(3): 107859. doi: 10.1016/j.jece.2022.107859
  530. Zhao Z, Ma X, Zhang R, et al. A novel liposome-polymer hybrid nanoparticles delivering a multi-epitope self-replication DNA vaccine and its preliminary immune evaluation in experimental animals. Nanomedicine 2020; 102338. doi: 10.1016/j.nano.2020.102338 PMID: 33197626
  531. Barbosa EJ, Andrade MAB, Gubitoso MR, et al. Acoustic levitation and high-resolution synchrotron X-ray powder diffraction: A fast screening approach of niclosamide amorphous solid dispersions. Int J Pharm 2021; 602: 120611. doi: 10.1016/j.ijpharm.2021.120611 PMID: 33872710
  532. Chan Y, Ng SW, Mehta M, et al. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis. Med Hypotheses 2020; 144: 110298. doi: 10.1016/j.mehy.2020.110298 PMID: 33254489
  533. Mehta M, Prasher P, Sharma M, et al. Advanced drug delivery systems can assist in targeting coronavirus disease (COVID-19): A hypothesis. Med Hypotheses 2020; 144: 110254. doi: 10.1016/j.mehy.2020.110254 PMID: 33254559
  534. Patil RB, Chougale AD. Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Mater Today Proc 2021; 47: 5520-32. doi: 10.1016/j.matpr.2021.03.384
  535. Megahed NA, Ghoneim EM. Antivirus-built environment: Lessons learned from Covid-19 pandemic. Sustain Cities Soc 2020; 61: 102350. doi: 10.1016/j.scs.2020.102350 PMID: 32834930
  536. Caputo F, Mehn D, Clogston JD, et al. Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union Nanomedicine Characterization Laboratory and National Cancer Institute - Nanotechnology Characterization Laboratory. J Chromatogr A 2021; 1635: 461767. doi: 10.1016/j.chroma.2020.461767 PMID: 33310281
  537. Robson B. Bioinformatics studies on a function of the SARS-CoV-2 spike glycoprotein as the binding of host sialic acid glycans. Comput Biol Med 2020; 122: 103849. doi: 10.1016/j.compbiomed.2020.103849 PMID: 32658736
  538. Khurana I, Allawadhi P, Khurana A, et al. Can bilirubin nanomedicine become a hope for the management of COVID-19? Med Hypotheses 2021; 149: 110534. doi: 10.1016/j.mehy.2021.110534 PMID: 33640714
  539. Skariyachan S, Gopal D, Deshpande D, Joshi A, Uttarkar A, Niranjan V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infect Genet Evol 2021; 96: 105155. doi: 10.1016/j.meegid.2021.105155 PMID: 34823028
  540. Hanifehnezhad A, Kehribar EŞ, Öztop S, et al. Characterization of local SARS-CoV-2 isolates and pathogenicity in IFNAR−/- mice. Heliyon 2020; 6(9): e05116. doi: 10.1016/j.heliyon.2020.e05116 PMID: 33015402
  541. Shourni S, Javadi A, Hosseinpour N, Bahramian A, Raoufi M. Characterization of protein corona formation on nanoparticles via the analysis of dynamic interfacial properties: Bovine serum albumin-silica particle interaction. Colloids Surf A Physicochem Eng Asp 2022; 638: 128273. doi: 10.1016/j.colsurfa.2022.128273
  542. Harwood S, Eaves S. Conceptualising technology, its development and future: The six genres of technology. Technol Forecast Soc Change 2020; 160: 120174. doi: 10.1016/j.techfore.2020.120174 PMID: 32904525
  543. Costoya J, Surnar B, Kalathil AA, Kolishetti N, Dhar S. Controlled release nanoplatforms for three commonly used chemotherapeutics. Mol Aspects Med 2022; 83: 101043. doi: 10.1016/j.mam.2021.101043 PMID: 34920863
  544. Zaheer T, Pal K, Abbas RZ, Torres MPR. COVID-19 and Ivermectin: Potential threats associated with human use. J Mol Struct 2021; 1243: 130808. doi: 10.1016/j.molstruc.2021.130808 PMID: 34149064
  545. Ng KY, Gui MM. COVID-19: Development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility. Physica D 2020; 411: 132599. doi: 10.1016/j.physd.2020.132599 PMID: 32536738
  546. Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem 2021; 219: 111454. doi: 10.1016/j.jinorgbio.2021.111454 PMID: 33878530
  547. Parvathaneni V, Shukla SK, Kulkarni NS, Gupta V. Development and characterization of inhalable transferrin functionalized amodiaquine nanoparticles – Efficacy in Non-Small Cell Lung Cancer (NSCLC) treatment. Int J Pharm 2021; 608: 121038. doi: 10.1016/j.ijpharm.2021.121038 PMID: 34438008
  548. Bande F, Arshad SS, Bejo MH, et al. Development and immunogenic potentials of chitosan-saponin encapsulated DNA vaccine against avian infectious bronchitis coronavirus. Microb Pathog 2020; 149: 104560. doi: 10.1016/j.micpath.2020.104560 PMID: 33068733
  549. Longueira Y, Polo ML, Turk G, Laufer N. Dynamics of SARS-CoV-2-specific antibodies among COVID19 biobank donors in Argentina. Heliyon 2021; 7(10): e08140. doi: 10.1016/j.heliyon.2021.e08140 PMID: 34642643
  550. Pelosi C, Duce C, Wurm FR, Tinè MR. Effect of polymer hydrophilicity and molar mass on the properties of the protein in protein–polymer conjugates: The case of PPEylated myoglobin. Biomacromolecules 2021; 22(5): 1932-43. doi: 10.1021/acs.biomac.1c00058 PMID: 33830737
  551. Kosal ME. Emerging life sciences and possible threats to international security. Orbis 2020; 64(4): 599-614. doi: 10.1016/j.orbis.2020.08.008 PMID: 32994647
  552. Wang Y, Xie Y, Luo J, et al. Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus. Nano Today 2021; 38: 101139. doi: 10.1016/j.nantod.2021.101139 PMID: 33758593
  553. Mahnam K, Lotfi M, Shapoorabadi FA. Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide. J Mol Graph Model 2021; 107: 107952. doi: 10.1016/j.jmgm.2021.107952 PMID: 34119951
  554. Hou F, Teng Z, Ru J, et al. Flower-like mesoporous silica nanoparticles as an antigen delivery platform to promote systemic immune response. Nanomedicine 2022; 42: 102541. doi: 10.1016/j.nano.2022.102541 PMID: 35181525
  555. Ramaiah GB, Tegegne A, Melese B. Functionality of nanomaterials and its technological aspects-used in preventing, diagnosing and treating COVID-19. Mater Today Proc 2021; 47: 2337-44. doi: 10.1016/j.matpr.2021.04.306 PMID: 33968611
  556. Dunford M, Qi B. Global reset: COVID-19, systemic rivalry and the global order. Research in Globalization 2020; 2: 100021. doi: 10.1016/j.resglo.2020.100021
  557. Nazari E, Shahriari MH, Dadgarmoghaddam M, et al. Home quarantine is a useful strategy to prevent the coronavirus outbreak: Identifying the reasons for non-compliance in some Iranians. Informat Med Unlocked 2020; 21: 100487. doi: 10.1016/j.imu.2020.100487 PMID: 33251325
  558. Souza DCS, Amorim SM, Cadamuro RD, et al. Hydrophobic cellulose-based and non-woven fabrics coated with mesoporous TiO2 and their virucidal properties under indoor light. Carbohydrate Polymer Technol Applicat 2022; 3: 100182. doi: 10.1016/j.carpta.2021.100182
  559. Mildner R, Hak S, Parot J, et al. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021; 163: 252-65. doi: 10.1016/j.ejpb.2021.03.004 PMID: 33745980
  560. Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Sahebkar A, Oskuee RK, Kesharwani P, Jalili A. In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery. Int J Pharm 2022; 624: 122005. doi: 10.1016/j.ijpharm.2022.122005 PMID: 35817271
  561. Mirmohammadi S, Kianmehr A, Sabbaghian A, et al. In silico drug repurposing against SARS-CoV-2 using an integrative transcriptomic profiling approach: Hydrocortisone and Benzhydrocodone as potential drug candidates against COVID-19. Infect Genet Evol 2022; 103: 105318. doi: 10.1016/j.meegid.2022.105318 PMID: 35718334
  562. Hashemzadeh H, Iranshahy M, Iranshahi M, Raissi H. In silico exploration of disulfide derivatives of Ferula foetida oleo-gum (Covexir®) as promising therapeutics against SARS-CoV-2. Comput Biol Med 2022; 146: 105566. doi: 10.1016/j.compbiomed.2022.105566 PMID: 35598351
  563. Coelho F, Botelho C, Paris JL, Marques EF, Silva BFB. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. J Mol Liq 2021; 344: 117930. doi: 10.1016/j.molliq.2021.117930
  564. Hemmati SA, Tabein S. Insect protease inhibitors; promising inhibitory compounds against SARS-CoV-2 main protease. Comput Biol Med 2022; 142: 105228. doi: 10.1016/j.compbiomed.2022.105228 PMID: 35051855
  565. Mbunge E. Integrating emerging technologies into COVID-19 contact tracing: Opportunities, challenges and pitfalls. Diabetes Metab Syndr 2020; 14(6): 1631-6. doi: 10.1016/j.dsx.2020.08.029 PMID: 32892060
  566. Plikusiene I, Maciulis V, Juciute S, et al. Investigation of SARS-CoV-2 nucleocapsid protein interaction with a specific antibody by combined spectroscopic ellipsometry and quartz crystal microbalance with dissipation. J Colloid Interface Sci 2022; 626: 113-22. doi: 10.1016/j.jcis.2022.06.119 PMID: 35780545
  567. Sellaoui L, Badawi M, Monari A, et al. Make it clean, make it safe: A review on virus elimination via adsorption. Chem Eng J 2021; 412: 128682. doi: 10.1016/j.cej.2021.128682 PMID: 33776550
  568. Athirasala A, Patel S, Menezes PP, et al. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomedicine 2022; 42: 102550. doi: 10.1016/j.nano.2022.102550 PMID: 35292368
  569. Vora LK, Moffatt K, Tekko IA, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159: 44-76. doi: 10.1016/j.ejpb.2020.12.006 PMID: 33359666
  570. Amani H, Shahbazi MA, D’Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release 2021; 330: 185-217. doi: 10.1016/j.jconrel.2020.12.019 PMID: 33340568
  571. Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine 2021; 37: 102422. doi: 10.1016/j.nano.2021.102422 PMID: 34175455
  572. Asfour HZ, Alhakamy NA, Eljaaly K, et al. Molecular docking studies of HIV TAT and sitagliptin nano-formula as potential therapeutic targeting SARS-CoV2 protease. J Indian Chem Soc 2021; 98(9): 100119. doi: 10.1016/j.jics.2021.100119
  573. El-Ramady H, Abdalla N, Elbasiouny H, et al. Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicol Environ Saf 2021; 222: 112500. doi: 10.1016/j.ecoenv.2021.112500 PMID: 34274837
  574. Al-Ansari MM, Ranjit Singh AJA, Al-Khattaf FS, Michael JS. Nano-formulation of herbo-mineral alternative medicine from linga chenduram and evaluation of antiviral efficacy. Saudi J Biol Sci 2021; 28(3): 1596-606. doi: 10.1016/j.sjbs.2020.12.005 PMID: 33732045
  575. Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani KK. Nanoceria as a possible agent for the management of COVID-19. Nano Today 2020; 35: 100982. doi: 10.1016/j.nantod.2020.100982 PMID: 32952596
  576. Chen M, Rosenberg J, Cai X, et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter 2021; 4(6): 2059-82. doi: 10.1016/j.matt.2021.04.005 PMID: 33907732
  577. Hamouche W, Bisserier M, Brojakowska A, et al. Pathophysiology and pharmacological management of pulmonary and cardiovascular features of COVID-19. J Mol Cell Cardiol 2021; 153: 72-85. doi: 10.1016/j.yjmcc.2020.12.009 PMID: 33373644
  578. Park HH, Kim H, Lee HS, et al. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials 2021; 273: 120827. doi: 10.1016/j.biomaterials.2021.120827 PMID: 33910079
  579. Greydanus DE, Cabral MD, Patel DR. Pelvic inflammatory disease in the adolescent and young adult: An update. Dis Mon 2022; 68(3): 101287. doi: 10.1016/j.disamonth.2021.101287 PMID: 34521505
  580. Castellani C, Radu CM, Morillas-Becerril L, et al. Poly(lipoic acid)-based nanoparticles as a new therapeutic tool for delivering active molecules. Nanomedicine 2022; 45: 102593. doi: 10.1016/j.nano.2022.102593 PMID: 35907619
  581. Turuvekere Vittala Murthy N, Agrahari V, Chauhan H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur J Pharm Biopharm 2021; 161: 66-79. doi: 10.1016/j.ejpb.2021.02.003 PMID: 33588032
  582. Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Comput Biol Med 2021; 133: 104383. doi: 10.1016/j.compbiomed.2021.104383 PMID: 33915361
  583. Li L, Long J, Sang Y, et al. Rational preparation and application of a mRNA delivery system with cytidinyl/cationic lipid. J Control Release 2021; 340: 114-24. doi: 10.1016/j.jconrel.2021.10.023 PMID: 34699870
  584. Grieger KD, Merck AW, Cuchiara M, et al. Responsible innovation of nano-agrifoods: Insights and views from U.S. stakeholders. NanoImpact 2021; 24: 100365. doi: 10.1016/j.impact.2021.100365 PMID: 35559824
  585. Lim J, Cheong Y, Kim YS, et al. RNA-dependent assembly of chimeric antigen nanoparticles as an efficient H5N1 pre-pandemic vaccine platform. Nanomedicine 2021; 37: 102438. doi: 10.1016/j.nano.2021.102438 PMID: 34256061
  586. Azizova LR, Kulik TV, Palianytsia BB, Telbiz GM, Kartel MT. Secondary structure of muramyl dipeptide glycoside in pristine state and immobilized on nanosilica surface. Colloids Surf A Physicochem Eng Asp 2021; 631: 127724. doi: 10.1016/j.colsurfa.2021.127724
  587. Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks 2022; 3: 58-73. doi: 10.1016/j.ijin.2022.05.002
  588. Puri A, Ibrahim F, O’Reilly Beringhs A, et al. Stealth oxime ether lipid vesicles promote delivery of functional DsiRNA in human lung cancer A549 tumor bearing mouse xenografts. Nanomedicine 2022; 44: 102572. doi: 10.1016/j.nano.2022.102572 PMID: 35671983
  589. Farfán-Castro S, García-Soto MJ, Comas-García M, et al. Synthesis and immunogenicity assessment of a gold nanoparticle conjugate for the delivery of a peptide from SARS-CoV-2. Nanomedicine 2021; 34: 102372. doi: 10.1016/j.nano.2021.102372 PMID: 33662593
  590. Abbas G, Irfan A, Ahmed I, et al. Synthesis and investigation of anti-COVID19 ability of ferrocene Schiff base derivatives by quantum chemical and molecular docking. J Mol Struct 2022; 1253: 132242. doi: 10.1016/j.molstruc.2021.132242 PMID: 34975177
  591. Aubets E, Griera R, Felix AJ, et al. Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. Eur J Pharm Biopharm 2021; 165: 279-92. doi: 10.1016/j.ejpb.2021.05.016 PMID: 34033881
  592. Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJA. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health 2021; 14(3): 324-30. doi: 10.1016/j.jiph.2020.12.016 PMID: 33618277
  593. Rai PK, Usmani Z, Thakur VK, Gupta VK, Mishra YK. Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude. Curr Res Green Sustain Chem 2020; 3: 100011. doi: 10.1016/j.crgsc.2020.100011
  594. Ansari MA, Jamal QMS, Rehman S, et al. TAT-peptide conjugated repurposing drug against SARS-CoV-2 main protease (3CLpro): Potential therapeutic intervention to combat COVID-19. Arab J Chem 2020; 13(11): 8069-79. doi: 10.1016/j.arabjc.2020.09.037 PMID: 34909057
  595. Hobbs JE. The Covid-19 pandemic and meat supply chains. Meat Sci 2021; 181: 108459. doi: 10.1016/j.meatsci.2021.108459 PMID: 33602591
  596. Hassan SS, Choudhury PP, Dayhoff GW II, et al. The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Arch Biochem Biophys 2022; 717: 109124. doi: 10.1016/j.abb.2022.109124 PMID: 35085577
  597. Mohammadi G, Sotoudehnia Koranni Z, Jebali A. The oral vaccine based on self-replicating RNA lipid nanoparticles can simultaneously neutralize both SARS-CoV-2 variants alpha and delta. Int Immunopharmacol 2021; 101(Pt B): 108231. doi: 10.1016/j.intimp.2021.108231 PMID: 34655852
  598. Pandya M, Shah SMD, et al. Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach. Informatics in Medicine Unlocked 2022; 30: 100951. doi: 10.1016/j.imu.2022.100951 PMID: 35475214
  599. Liu Q, Wang X, Liao YP, et al. Use of a liver-targeting nanoparticle platform to intervene in peanut-induced anaphylaxis through delivery of an Ara h2 T-cell epitope. Nano Today 2022; 42: 101370. doi: 10.1016/j.nantod.2021.101370
  600. Sagisaka M, Endo T, Fujita K, et al. Very low surface tensions with “Hedgehog” surfactants. Colloids Surf A Physicochem Eng Asp 2021; 631: 127690. doi: 10.1016/j.colsurfa.2021.127690
  601. Chan SK, Du P, Ignacio C, Mehta S, Newton IG, Steinmetz NF. Virus-like particles as positive controls for COVID-19 RT-LAMP diagnostic assays. Biomacromolecules 2021; 22(3): 1231-43. doi: 10.1021/acs.biomac.0c01727 PMID: 33539086
  602. Natarajan S, Krishnamoorthy K, Sathyaseelan A, et al. A new route for the recycling of spent lithium-ion batteries towards advanced energy storage, conversion, and harvesting systems. Nano Energy 2022; 101: 107595. doi: 10.1016/j.nanoen.2022.107595
  603. Abstracts. Fuel Energy Abstr 2016; 57(2): 94-191. doi: 10.1016/j.fueleneab.2016.02.002
  604. Luo S, Samad YA, Chan V, Liao K. Cellular Graphene: Fabrication, mechanical properties, and strain-sensing applications. Matter 2019; 1(5): 1148-202. doi: 10.1016/j.matt.2019.10.001
  605. Dharmasena RDIG, Cronin HM, Dorey RA, Silva SRP. Direct current contact-mode triboelectric nanogenerators via systematic phase shifting. Nano Energy 2020; 75: 104887. doi: 10.1016/j.nanoen.2020.104887
  606. Peng S, Li L, Kong Yoong Lee J, et al. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016; 22: 361-95. doi: 10.1016/j.nanoen.2016.02.001
  607. Sun Z, Wen X, Wang L, et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022; 2: 32-46. doi: 10.1016/j.esci.2021.12.009
  608. Li M, Porter AL, Wang ZL. Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy 2017; 34: 93-102. doi: 10.1016/j.nanoen.2017.02.020
  609. Peng H, Fang X, Ranaei S, Wen Z, Porter AL. Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy 2017; 35: 358-69. doi: 10.1016/j.nanoen.2017.04.006
  610. Thakur S, Dasmahapatra AK, Bandyopadhyay D. Functional liquid droplets for analyte sensing and energy harvesting. Adv Colloid Interface Sci 2021; 294: 102453. doi: 10.1016/j.cis.2021.102453 PMID: 34120038
  611. Tian Y, An Y, Xu B. MXene-based materials for advanced nanogenerators. Nano Energy 2022; 101: 107556. doi: 10.1016/j.nanoen.2022.107556
  612. Lu MP, Lu MY, Chen LJ. p-Type ZnO nanowires: From synthesis to nanoenergy. Nano Energy 2012; 1(2): 247-58. doi: 10.1016/j.nanoen.2011.12.004
  613. Zhang XS, Su M, Brugger J, Kim B. Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 2017; 33: 393-401. doi: 10.1016/j.nanoen.2017.01.053
  614. Hu H, Pei Z, Ye C. Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater 2015; 1: 82-102. doi: 10.1016/j.ensm.2015.08.005
  615. Zou Y, Bo L, Li Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundamental Research 2021; 1(3): 364-82. doi: 10.1016/j.fmre.2021.05.002
  616. Rana S, Singh V, Singh B. Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. iScience 2022; 25(2): 103748. doi: 10.1016/j.isci.2022.103748 PMID: 35118361
  617. Zhao J, Cong Z, Hu J, et al. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 2022; 93: 106893. doi: 10.1016/j.nanoen.2021.106893
  618. Wu M, Yao K, Li D, et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater Today Energy 2021; 21: 100786. doi: 10.1016/j.mtener.2021.100786
  619. Ferrie S, Le Brun AP, Krishnan G, Andersson GG, Darwish N, Ciampi S. Sliding silicon-based Schottky diodes: Maximizing triboelectricity with surface chemistry. Nano Energy 2022; 93: 106861. doi: 10.1016/j.nanoen.2021.106861
  620. Badatya S, Bharti DK, Srivastava AK, Gupta MK. Solution processed high performance piezoelectric eggshell membrane – PVDF layer composite nanogenerator via tuning the interfacial polarization. J Alloys Compd 2021; 863: 158406. doi: 10.1016/j.jallcom.2020.158406
  621. Li M, Xu B, Li Z, Gao Y, Yang Y, Huang X. Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing. Chem Eng J 2022; 450: 137491. doi: 10.1016/j.cej.2022.137491
  622. Zhu B, Lund P, Raza R, et al. A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2013; 2(6): 1179-85. doi: 10.1016/j.nanoen.2013.05.001
  623. Afif A, Rahman SMH, Tasfiah Azad A, Zaini J, Islan MA, Azad AK. Advanced materials and technologies for hybrid supercapacitors for energy storage-a review. J Energy Storage 2019; 25: 100852. doi: 10.1016/j.est.2019.100852
  624. Olabi AG, Abdelkareem MA, Wilberforce T, Sayed ET. Application of graphene in energy storage device-a review. Renew Sustain Energy Rev 2021; 135: 110026. doi: 10.1016/j.rser.2020.110026
  625. Kong L, Hasanbeigi A, Price L. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: A technical review. J Clean Prod 2016; 122: 5-28. doi: 10.1016/j.jclepro.2015.12.116
  626. Wang J. Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy 2015; 80: 509-21. doi: 10.1016/j.energy.2014.12.007
  627. Md Khudzari J, Kurian J, Tartakovsky B, Raghavan GSV. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem Eng J 2018; 136: 51-60. doi: 10.1016/j.bej.2018.05.002
  628. Khatoon R, Attique S, Liu R, et al. Carbonized waste milk powders as cathodes for stable lithium–sulfur batteries with ultra-large capacity and high initial coulombic efficiency. Green Energy & Environment 2022; 7(5): 1071-83. doi: 10.1016/j.gee.2021.01.007
  629. Furszyfer Del Rio DD, Sovacool BK, Foley AM, et al. Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renew Sustain Energy Rev 2022; 157: 112081. doi: 10.1016/j.rser.2022.112081
  630. Sadhasivam T, Kim HT, Jung S, Roh SH, Park JH, Jung HY. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew Sustain Energy Rev 2017; 72: 523-34. doi: 10.1016/j.rser.2017.01.107
  631. Kraia T, Wachowski S, Vøllestad E, et al. Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte. Solid State Ion 2017; 306: 31-7. doi: 10.1016/j.ssi.2017.04.010
  632. Patil JV, Mali SS, Kamble AS, Hong CK, Kim JH, Patil PS. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl Surf Sci 2017; 423: 641-74. doi: 10.1016/j.apsusc.2017.06.116
  633. Hussain A, Arif SM, Aslam M. Emerging renewable and sustainable energy technologies: State of the art. Renew Sustain Energy Rev 2017; 71: 12-28. doi: 10.1016/j.rser.2016.12.033
  634. Guo Y, Bae J, Zhao F, Yu G. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem 2019; 1(3): 335-48. doi: 10.1016/j.trechm.2019.03.005
  635. Saritas O, Burmaoglu S. Future of sustainable military operations under emerging energy and security considerations. Technol Forecast Soc Change 2016; 102: 331-43. doi: 10.1016/j.techfore.2015.08.010
  636. Lee SJ, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew Sustain Energy Rev 2021; 143: 110849. doi: 10.1016/j.rser.2021.110849
  637. Iqbal MZ, Faisal MM, Ali SR, Afzal AM. Hydrothermally synthesized zinc phosphate-rGO composites for supercapattery devices. J Electroanal Chem 2020; 871: 114299. doi: 10.1016/j.jelechem.2020.114299
  638. Sahoo P, Misra DK, Salvador J, et al. Microstructure and thermal conductivity of surfactant-free NiO nanostructures. J Solid State Chem 2012; 190: 29-35. doi: 10.1016/j.jssc.2012.01.052
  639. Kostoglou N, Koczwara C, Prehal C, et al. Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 2017; 40: 49-64. doi: 10.1016/j.nanoen.2017.07.056
  640. Akbari-Fakhrabadi A, Mangalaraja RV, Sanhueza FA, Avila RE, Ananthakumar S, Chan SH. Nanostructured Gd–CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting. J Power Sources 2012; 218: 307-12. doi: 10.1016/j.jpowsour.2012.07.005
  641. Devi N, Ray SS. Performance of bismuth-based materials for supercapacitor applications: A review. Mater Today Commun 2020; 25: 101691. doi: 10.1016/j.mtcomm.2020.101691
  642. Saeidi S, Najari S, Hessel V, et al. Recent advances in CO2 hydrogenation to value-added products-current challenges and future directions. Pror Energy Combust Sci 2021; 85: 100905. doi: 10.1016/j.pecs.2021.100905
  643. Wang M, Zhang H, Cui J, et al. Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Mater 2021; 39: 305-46. doi: 10.1016/j.ensm.2021.04.034
  644. Zheng Y, Li X, Pi C, et al. Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem 2020; 19: 100149. doi: 10.1016/j.flatc.2019.100149
  645. Tran DT, Nguyen DC, Le HT, et al. Recent progress on single atom/sub-nano electrocatalysts for energy applications. Prog Mater Sci 2021; 115: 100711. doi: 10.1016/j.pmatsci.2020.100711
  646. Yang S, He P, Zhou H. Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Mater 2018; 13: 29-48. doi: 10.1016/j.ensm.2017.12.020
  647. Zhang L, Liu X, Zhao Q, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage Mater 2016; 4: 92-102. doi: 10.1016/j.ensm.2016.01.011
  648. Peng KQ, Wang X, Li L, Hu Y, Lee ST. Silicon nanowires for advanced energy conversion and storage. Nano Today 2013; 8(1): 75-97. doi: 10.1016/j.nantod.2012.12.009
  649. Lu Y, Cai Y, Souamy L, Song X, Zhang L, Wang J. Solid oxide fuel cell technology for sustainable development in China: An over-view. Int J Hydrogen Energy 2018; 43(28): 12870-91. doi: 10.1016/j.ijhydene.2018.05.008
  650. Salguero Salas MA, De Paoli JM, Linarez Pérez OE, Bajales N, Fuertes VC. Synthesis and characterization of alumina-embedded SrCo0.95V0.05O3 nanostructured perovskite: An attractive material for supercapacitor devices. Microporous Mesoporous Mater 2020; 293: 109797. doi: 10.1016/j.micromeso.2019.109797
  651. Ferg EE, Schuldt F, Schmidt J. The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. J Power Sources 2019; 423: 380-403. doi: 10.1016/j.jpowsour.2019.03.063
  652. Pitt MP, Paskevicius M, Webb CJ, Sheppard DA, Buckley CE, Gray EM. The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2+ 0.01Nb2O5 benchmark. Int J Hydrogen Energy 2012; 37(5): 4227-37. doi: 10.1016/j.ijhydene.2011.11.114
  653. Cheng X, Shen Z, Jiao L, et al. Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem 2021; 3(6): 100066. doi: 10.1016/j.enchem.2021.100066
  654. Drozdick HK, Weiss R, Sullivan CM, Wieghold S, Nienhaus L. Widespread opportunities for materials engineering of nanocrystals: Synthetically tailorable effects and methodologies. Matter 2022; 5(6): 1645-69. doi: 10.1016/j.matt.2022.04.023
  655. Du X, Liu D, An K, et al. Advances in oxide semiconductors for surface enhanced Raman scattering. Appl Mater Today 2022; 29: 101563. doi: 10.1016/j.apmt.2022.101563
  656. Singh P, Pal K, Chakravraty A, Ikram S. Execution and viable applications of face shield “a safeguard” against viral infections of cross-protection studies: A comprehensive review. J Mol Struct 2021; 1238: 130443. doi: 10.1016/j.molstruc.2021.130443 PMID: 33867574
  657. Li C, Cong S, Tian Z, et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 2019; 60: 247-56. doi: 10.1016/j.nanoen.2019.03.061
  658. Lethien C, Zegaoui M, Roussel P, Tilmant P, Rolland N, Rolland PA. Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery. Microelectron Eng 2011; 88(10): 3172-7. doi: 10.1016/j.mee.2011.06.022
  659. Kim KJ, Jung H, Kim JH, Jang NS, Kim JM, Kim SH. Nanoenergetic material-on-multiwalled carbon nanotubes paper chip as compact and flexible igniter. Carbon 2017; 114: 217-23. doi: 10.1016/j.carbon.2016.12.021
  660. Manohar A, Vijayakanth V, Prabhakar Vattikuti SV, Kim KH. Synthesis and characterization of Mg2+ substituted MnFe2O4 nanoparticles for supercapacitor applications. Ceram Int 2022; 48(20): 30695-703. doi: 10.1016/j.ceramint.2022.07.018
  661. Ezugwu AE, Ikotun AM, Oyelade OO, et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell 2022; 110: 104743. doi: 10.1016/j.engappai.2022.104743
  662. Norder K, Emich K, Kanar A, Sawhney A, Behrend TS. A house divided: A multilevel bibliometric review of the job search literature 1973–2020. J Bus Res 2022; 151: 100-17. doi: 10.1016/j.jbusres.2022.06.036
  663. Manlhiot C, van den Eynde J, Kutty S, Ross HJ. A primer on the present state and future prospects for machine learning and artificial intelligence applications in cardiology. Can J Cardiol 2022; 38(2): 169-84. doi: 10.1016/j.cjca.2021.11.009 PMID: 34838700
  664. Andrade Cruz I, Chuenchart W, Long F, et al. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresour Technol 2022; 345: 126433. doi: 10.1016/j.biortech.2021.126433 PMID: 34848330
  665. Lim SY, Selvaraji S, Lau H, Li SFY. Application of omics beyond the central dogma in coronary heart disease research: A bibliometric study and literature review. Comput Biol Med 2022; 140: 105069. doi: 10.1016/j.compbiomed.2021.105069 PMID: 34847384
  666. Filom S, Amiri AM, Razavi S. Applications of machine learning methods in port operations-a systematic literature review. Transp Res, Part E Logist Trans Rev 2022; 161: 102722. doi: 10.1016/j.tre.2022.102722
  667. Zabin A, González VA, Zou Y, Amor R. Applications of machine learning to BIM: A systematic literature review. Adv Eng Inform 2022; 51: 101474. doi: 10.1016/j.aei.2021.101474
  668. Ahmed S, Alshater MM, Ammari AE, Hammami H. Artificial intelligence and machine learning in finance: A bibliometric review. Res Int Bus Finance 2022; 61: 101646. doi: 10.1016/j.ribaf.2022.101646
  669. Debrah C, Chan APC, Darko A. Artificial intelligence in green building. Autom Construct 2022; 137: 104192. doi: 10.1016/j.autcon.2022.104192
  670. Huang Y, Xu C, Zhang X, Li L. Bibliometric analysis of landslide research based on the WOS database. Nat Hazards Rev 2022; 2(2): 49-61. doi: 10.1016/j.nhres.2022.02.001
  671. Dalavi AM, Gomes A, Javed Husain A. Bibliometric analysis of nature inspired optimization techniques. Comput Ind Eng 2022; 169: 108161. doi: 10.1016/j.cie.2022.108161
  672. Souza L, Bueno C. City Information Modelling as a support decision tool for planning and management of cities: A systematic literature review and bibliometric analysis. Build Environ 2022; 207: 108403. doi: 10.1016/j.buildenv.2021.108403
  673. Di Vaio A, Hassan R, Alavoine C. Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technol Forecast Soc Change 2022; 174: 121201. doi: 10.1016/j.techfore.2021.121201
  674. Carballo-Meilan A, McDonald L, Pragot W, Starnawski LM, Saleemi AN, Afzal W. Development of a data-driven scientific methodology: From articles to chemometric data products. Chemom Intell Lab Syst 2022; 225: 104555. doi: 10.1016/j.chemolab.2022.104555
  675. Perez-Vega R, Hopkinson P, Singhal A, Mariani MM. From CRM to social CRM: A bibliometric review and research agenda for consumer research. J Bus Res 2022; 151: 1-16. doi: 10.1016/j.jbusres.2022.06.028
  676. Zhang F, Chan APC, Darko A, Chen Z, Li D. Integrated applications of building information modeling and artificial intelligence techniques in the AEC/FM industry. Autom Construct 2022; 139: 104289. doi: 10.1016/j.autcon.2022.104289
  677. Liu T. Knowledge tracing: A bibliometric analysis. Computers and Education: Artif Intell 2022; 3: 100090. doi: 10.1016/j.caeai.2022.100090
  678. Arora S, Majumdar A. Machine learning and soft computing applications in textile and clothing supply chain: Bibliometric and network analyses to delineate future research agenda. Expert Syst Appl 2022; 200: 117000. doi: 10.1016/j.eswa.2022.117000
  679. Kumbure MM, Lohrmann C, Luukka P, Porras J. Machine learning techniques and data for stock market forecasting: A literature review. Expert Syst Appl 2022; 197: 116659. doi: 10.1016/j.eswa.2022.116659
  680. Niyogisubizo J, Liao L, Nziyumva E, Murwanashyaka E, Nshimyumukiza PC. Predicting student’s dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Comput Educ Artif Intell 2022; 3: 100066. doi: 10.1016/j.caeai.2022.100066
  681. Qin J, Hu F, Liu Y, et al. Research and application of machine learning for additive manufacturing. Addit Manuf 2022; 52: 102691. doi: 10.1016/j.addma.2022.102691
  682. Zhou J, Guo Y, Sun J, Yu E, Wang R. Review of bike-sharing system studies using bibliometrics method. J Traffic Transp Eng Engl 2022. doi: 10.1016/j.jtte.2021.08.003
  683. Wang C, Geng H, Sun R, Song H. Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining. Resour Policy 2022; 77: 102636. doi: 10.1016/j.resourpol.2022.102636
  684. Suero-Abreu GA, Hamid A, Akbilgic O, Brown SA. Trends in cardiology and oncology artificial intelligence publications. American Heart Journal Plus: Cardiol Res Pract 2022; 17: 100162. doi: 10.1016/j.ahjo.2022.100162
  685. Duong QH, Zhou L, Meng M, Nguyen TV, Ieromonachou P, Nguyen DT. Understanding product returns: A systematic literature review using machine learning and bibliometric analysis. Int J Prod Econ 2022; 243: 108340. doi: 10.1016/j.ijpe.2021.108340
  686. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010; 84(2): 523-38. doi: 10.1007/s11192-009-0146-3 PMID: 20585380
  687. Annual Energy Outlook - U.S. Energy Information Administration (EIA).
  688. USA national science and technology council 2021 national nanotechnology initiative strategic plan-National nanotechnology initiative. 2021. Available from: https://www.nano.gov/2021 strategicplan Accessed on 9th March, 2022.
  689. Matar GH, Akyüz G, Kaymazlar E, Andac M. An investigation of green synthesis of silver nanoparticles using turkish honey against pathogenic bacterial strains. Biointerface Res Appl Chem 2022; 13(2): 195. doi: 10.33263/BRIAC132.195
  690. Aldosary SK, El-Rahman SNA, Al-Jameel SS, Alromihi NM. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Braz J Biol 2023; 83: e244675. doi: 10.1590/1519-6984.244675 PMID: 34586190
  691. Zhou W, Bai T, Wang L, et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater 2023; 20: 64-80. doi: 10.1016/j.bioactmat.2022.05.015 PMID: 35633877
  692. Dikbas C, Yavuz O, Ay H, Andac M. Green synthesis of silver nanoparticles using common poppy (Papaver rhoeas L.) and evaluation of their potential antibacterial activity. Vet Stn 2022; 54(1): 47-58. doi: 10.46419/vs.54.1.2
  693. Emelyanov VM, Dobrovolskaya TA, Yemelyanov VV. Mathematical transformation of multidimensional correlated data into uncorrelated raman spectra to increase the sensitivity of identification with silver nanoparticles. Biointerface Res Appl Chem 2022; 13(2): 139. doi: 10.33263/BRIAC132.139
  694. Wang Z, Zhang L, Wang X. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. J Environ Sci 2023; 125: 616-29. doi: 10.1016/j.jes.2021.12.027 PMID: 36375944
  695. De Oliveira Bianchi JR, De Souza SM, Santos IJB. Post-Harvest application of tara gum coating incorporated with silver nanoparticles for preservation of banana. Biointerface Res Appl Chem 2022; 13(1): 81. doi: 10.33263/BRIAC131.081
  696. Waiezi S, Malek NANN, Asraf MH, Sani NS. Preparation, characterization, and antibacterial activity of green-biosynthesised silver nanoparticles using clinacanthus nutans extract. Biointerface Res Appl Chem 2022; 13(2): 171. doi: 10.33263/BRIAC132.171
  697. Akyüz G, Kaymazlar E, Ay H, Andaç M, Andaç Ö. Use of silver nanoparticles loaded locust bean gum coatings to extend the shelf-life of fruits. Biointerface Res Appl Chem 2022; 13(3): 289. doi: 10.33263/BRIAC133.289
  698. Rasheed M, Asghar R, Firdoos S, et al. A Systematic review of circulatory microRNAs in major depressive disorder: Potential biomarkers for disease prognosis. Int J Mol Sci 2022; 23(3): 1294. doi: 10.3390/ijms23031294 PMID: 35163214
  699. Davydova A, Vorobyeva M. Aptamer-based biosensors for the colorimetric detection of blood biomarkers: Paving the way to clinical laboratory testing. Biomedicines 2022; 10(7): 1606. doi: 10.3390/biomedicines10071606 PMID: 35884911
  700. Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel potential biomarkers for diseases-a review. Int J Mol Sci 2022; 23(5): 2461. doi: 10.3390/ijms23052461 PMID: 35269604
  701. Davarinejad O, Najafi S, Zhaleh H, et al. MiR-574-5P, miR-1827, and miR-4429 as potential biomarkers for schizophrenia. J Mol Neurosci 2022; 72(2): 226-38. doi: 10.1007/s12031-021-01945-0 PMID: 34811713
  702. Dar MA, Arafah A, Bhat KA, et al. Multiomics technologies: Role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; elac017. doi: 10.1093/bfgp/elac017 PMID: 35809340
  703. Liu J, Jiao L, Zhong X, et al. Platelet activating factor receptor exaggerates microglia-mediated microenvironment by IL10-STAT3 signaling: A novel potential biomarker and target for diagnosis and treatment of Alzheimer’s Disease. Front Aging Neurosci 2022; 14: 856628. doi: 10.3389/fnagi.2022.856628 PMID: 35572136
  704. Wang X, Wang L, Yu B. UBE2D1 and COX7C as potential biomarkers of diabetes-related sepsis. BioMed Res Int 2022; 2022: 9463717. doi: 10.1155/2022/9463717 PMID: 35445133
  705. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat Rev Genet 2016; 17(5): 257-71. doi: 10.1038/nrg.2016.10 PMID: 26996076
  706. Kim DW, Lee JH, Kim JK, Jeong U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 2020; 12(1): 6. doi: 10.1038/s41427-019-0176-0
  707. Moßhammer M, Kühl M, Koren K. Possibilities and challenges for quantitative optical sensing of hydrogen peroxide. Chemosensors 2017; 5(4): 28. doi: 10.3390/chemosensors5040028
  708. Zhang Y, Fu YY, Zhu DF, Xu JQ, He QG, Cheng JG. Recent advances in fluorescence sensor for the detection of peroxide explosives. Chin Chem Lett 2016; 27(8): 1429-36. doi: 10.1016/j.cclet.2016.05.019
  709. Rajput N. Development of nanotechnology in India: A review. IOSR J Appl Physics 2017; 9(3): 45-50. doi: 10.9790/4861-0903034550
  710. Kumar A. Research; Countries, IS for D Nanotechnology Development in India: An Overview; RIS discussion papers. New Delhi: Research and Information System for Developing Countries 2014.
  711. Ahmad S, Majhi PK, Kothari R, Singh RP. Industrial Wastewater Footprinting: A Need for Water Security in Indian Context. In: Shukla V, Kumar N, Eds. Environmental Concerns and Sustainable Development. Singapore: Springer 2020; pp. 197-212. doi: 10.1007/978-981-13-5889-0_10
  712. Lee S, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865. doi: 10.3390/ijms20040865 PMID: 30781560
  713. Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev 2014; 3(2): 111-22. doi: 10.1515/ntrev-2013-0013 PMID: 26082884
  714. Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9(2): 79-89. doi: 10.1007/s12551-016-0246-2 PMID: 28510082
  715. Nikore M, Mittal M. Arresting India’s Water Crisis: The economic case for wastewater use. New Delhi: Observer Research Foundation 2021.
  716. Patnaik R. Impact of industrialization on environment and sustainable solutions-reflections from a South Indian Region. IOP Conf Ser Earth Environ Sci 2018; 120: 012016. doi: 10.1088/1755-1315/120/1/012016
  717. Pal J, Pramanik AK, Goswami M, Saha AK, Sen B. Regular clocking based emerging technique in QCA targeting low power nano circuit. Int J Electron 2021; 1550-72. doi: 10.1080/00207217.2021.1972473
  718. Kavitha SS, Kaulgud N. Quantum Dot Cellular Automata (QCA) Design for the Realization of Basic Logic Gates. Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017; 314-7. doi: 10.1109/ICEECCOT.2017.8284519
  719. Yang Y, Alencar LMR, Pijeira MSO, et al. 223 Ra RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Deliv 2022; 29(1): 186-91. doi: 10.1080/10717544.2021.2005719 PMID: 35191342
  720. Pal K, Asthana N, Aljabali AA, et al. de A critical review on multifunctional smart materials ‘Nanographene’ emerging avenue: Nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 2021; 0: 1-17. doi: 10.1080/10408436.2021.1935717
  721. Ricardo Barbosa de Lima N, Gomes Souza Junior F,, Gaëlle Roullin V, Pal K. Amphipathic Au-sulfur-poly (ethylene glycol)-b-poly (butylene succinate) system prepared by interfacial reaction as in-silico photosensitizer and antineoplastic carrier. J Drug Deliv Sci Technol 2021; 64: 102584. doi: 10.1016/j.jddst.2021.102584
  722. v R, Pal K, Zaheer T, et al. Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Ther Deliv 2020; 11(8): 521-34. doi: 10.4155/tde-2020-0071
  723. de Lima NRB, de Souza FG. Junior, Roullin VG, Pal K, da Silva ND. Head and neck cancer treatments from chemotherapy to magnetic systems: Perspectives and challenges. Curr Radiopharm 2022; 15(1): 2-20. doi: 10.2174/1874471014999210128183231 PMID: 33511961
  724. Moraes RS, Saez V, Hernandez JAR, de Souza Júnior FG. Hyperthermia system based on extrinsically magnetic poly (Butylene Succinate). Macromol Symp 2018; 381(1): 1800108. doi: 10.1002/masy.201800108
  725. de Araújo Segura TC, Pereira ED, Icart LP, Fernandes E, Esperandio de Oliveira G, Gomes de Souza F Jr. Hyperthermic agent prepared by one-pot modification of maghemite using an aliphatic polyester model. Polym Sci Ser B 2018; 60(6): 806-15. doi: 10.1134/S1560090418060106
  726. Magne TM, da Silva de Barros AO, de Almeida Fechine PB, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Lycopene as a multifunctional platform for the treatment of cancer and inflammation. Rev Bras Farmacogn 2022; 32(3): 321-30. doi: 10.1007/s43450-022-00250-0
  727. Lange J, Souza FG Jr, Nele M, et al. Molecular dynamic simulation of oxaliplatin diffusion in Poly(Lactic Acid-Co-Glycolic Acid). Part A: Parameterization and validation of the force-field CVFF. Macromol Theory Simul 2015. doi: 10.1002/mats.201500049
  728. Neto WS, Simões Dutra GV, de Sousa Brito Neta M, et al. Nanodispersions of magnetic poly(vinyl pivalate) for biomedical applications: Synthesis and in vitro evaluation of its cytotoxicity in cancer cells. Mater Today Commun 2021; 27: 102333. doi: 10.1016/j.mtcomm.2021.102333
  729. Souza BNRF, Ribeiro ERFR, da Silva de Barros AO, et al. Nanomicelles of radium dichloride 223RaRaCl2 co-loaded with radioactive gold 198AuAu nanoparticles for targeted alpha–beta radionuclide therapy of osteosarcoma. Polymers 2022; 14(7): 1405. doi: 10.3390/polym14071405 PMID: 35406278
  730. Peña Icart L, Fernandes dos Santos E, Agüero Luztonó L, et al. Paclitaxel-Loaded PLA/PEG/Magnetite anticancer and hyperthermic agent prepared from materials obtained by the Ugi’s multicomponent reaction. Macromol Symp 2018; 380(1): 1800094. doi: 10.1002/masy.201800094
  731. Charelli LE, de Mattos GC, de Jesus Sousa-Batista A, Pinto JC, Balbino TA. Polymeric nanoparticles as therapeutic agents against coronavirus disease. J Nanopart Res 2022; 24(1): 12. doi: 10.1007/s11051-022-05396-5 PMID: 35035277
  732. Neto W, Peña L, Ferreira G, Junior F, Machado F. Target delivery from modified polymers to cancer treatment. Curr Org Chem 2016; 21(1): 4-20. doi: 10.2174/1385272820666160510151442
  733. Fg SJ. The use of biosensor as a new trend in cancer: Bibliometric analysis from 2007 to 2017. Res Dev Mat Sci 2018; 7(5): 1-15. doi: 10.31031/RDMS.2018.07.000675

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024