Intranasal Delivery of Lipid Nanoparticles: A Ground-breaking Approach for Brain Targeting


Cite item

Full Text

Abstract

Abstract:In the present scenario, various novel delivery systems are available for drug delivery to systemic circulation. So, to accomplish a greater therapeutic effect, the nature of the drug delivery is very important. This delivery is one of the innovative approaches where the drug is targeted to the brain through the nasal cavity. As we know, the human brain is the most crucial part of the body that controls various functions of our system. So, safely reaching the targeted site of the brain is necessary to achieve brain specificity. This delivery system helps us to tackle the problems that may arise in the other delivery system and helps the drug reach the brain without any difficulties. The major obstacles we faced during this delivery were the blood-brain barrier (BBB) and the brain-cerebrospinal fluid barrier. So, if we target the drug to the brain, then we have to overcome these challenges, and before that, we must have a clear understanding of the targeted site and the mechanism behind the drug targeting. Advancements in science and technology have helped discover many recent strategies and formulations available for intranasal delivery. The development of lipid nanoparticles is one of the primitive approaches for targeting any type of drug(hydrophilic/lipophilic) in the brain. So, the aim of this review mainly focused on the mechanism of intranasal delivery, the devices used, and some recent strategies like the development of lipid nanoparticles, surface-modified lipid nanocarriers, and noseto-brain patches. This review article also includes a few FDA-approved formulations for nose-to-brain delivery and their regulatory aspects related to clinical trials and future perspectives.

About the authors

Devashish Jena

Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh,

Email: info@benthamscience.net

Nimisha Srivastava

Amity Institute of Pharmacy, Amity University Uttar Pradesh,

Author for correspondence.
Email: info@benthamscience.net

Mohd Yasir

Department of Pharmacy (Pharmaceutics), College of Health Sciences, Arsi University

Email: info@benthamscience.net

Deblina Dan

Amity Institute of Pharmacy, Amity University Uttar Pradesh

Email: info@benthamscience.net

References

  1. Tan MSA, Parekh HS, Pandey P, Siskind DJ, Falconer JR. Nose-to-brain delivery of antipsychotics using nanotechnology: A review. Expert Opin Drug Deliv 2020; 17(6): 839-53. doi: 10.1080/17425247.2020.1762563 PMID: 32343186
  2. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379(1): 146-57. doi: 10.1016/j.ijpharm.2009.06.019 PMID: 19555750
  3. Battaglia L, Panciani PP, Muntoni E, et al. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin Drug Deliv 2018; 15(4): 369-78. doi: 10.1080/17425247.2018.1429401 PMID: 29338427
  4. Naik A, Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. BioMed Res Int 2014; 2014: 847547. doi: 10.1155/2014/847547
  5. Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72. doi: 10.1517/17425247.2013.790887 PMID: 23586809
  6. Espinoza LC, Silva-Abreu M, Clares B, et al. Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics 2019; 11(2): 64. doi: 10.3390/pharmaceutics11020064 PMID: 30717264
  7. Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther 2019; 370(3): 593-601. doi: 10.1124/jpet.119.258152 PMID: 31126978
  8. Ong WY, Shalini SM, Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem 2014; 21(37): 4247-56. doi: 10.2174/0929867321666140716103130 PMID: 25039773
  9. Patel Z, Patel B, Patel S, Pardeshi C. Nose to brain targeted drug delivery bypassing the blood-brain barrier: An overview. Drug Invent Today 2012; 4(12): 2012.
  10. Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018; 23(5): 1079-88. doi: 10.1016/j.drudis.2018.01.005 PMID: 29330120
  11. Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281: 139-77. doi: 10.1016/j.jconrel.2018.05.011 PMID: 29772289
  12. Froelich A. Osmałek T, Jadach B, Puri V, Michniak-Kohn B. Microemulsion-based media in nose-to-brain drug delivery. Pharmaceutics 2021; 13(2): 201. doi: 10.3390/pharmaceutics13020201 PMID: 33540856
  13. Palhazi P, Daniel RK, Kosins AM. The osseocartilaginous vault of the nose: Anatomy and surgical observations. Aesthet Surg J 2015; 35(3): 242-51. doi: 10.1093/asj/sju079 PMID: 25805276
  14. Van Cauwenberge P, Sys L, De Belder T, Watelet JB. Anatomy and physiology of the nose and the paranasal sinuses. Immunol Allergy Clin North Am 2004; 24(1): 1-17. doi: 10.1016/S0889-8561(03)00107-3 PMID: 15062424
  15. Jankowski R. Revisiting human nose anatomy: Phylogenic and ontogenic perspectives. Laryngoscope 2011; 121(11): 2461-7. doi: 10.1002/lary.21368 PMID: 22020897
  16. Oneal RM, Beil RJ Jr, Izenberg PH, Schlesinger J. Surgical anatomy of the nose. Oper Tech Plast Reconstr Surg 2000; 7(4): 158-67. doi: 10.1053/otpr.2000.22770
  17. Steele NP, Thomas JR. Surgical anatomy of the nose InRhinology and facial plastic surgery. Berlin, Heidelberg: Springer 2009; pp. 5-12. doi: 10.1007/978-3-540-74380-4_1
  18. Cheesman K, Burdett E. Anatomy of the nose and pharynx. Anaesth Intensive Care Med 2011; 12(7): 283-6. doi: 10.1016/j.mpaic.2011.04.013
  19. Parvathi M. Intranasal drug delivery to brain: An overview. Int J Res Pharm Chem 2012; 2(3): 889-95.
  20. Salamon G, Huang YP. Radiologic anatomy of the brain. Singapore: Springer Science & Business Media 2012.
  21. Jones LK. Anatomy and brain development. In: Neurocounseling: Brain‐Based Clinical Approaches. Wiley Online Library 2017; pp. 1-26. doi: 10.1002/9781119375487.ch1
  22. Friston K, Buzsáki G. The functional anatomy of time: what and when in the brain. Trends Cogn Sci 2016; 20(7): 500-11. doi: 10.1016/j.tics.2016.05.001 PMID: 27261057
  23. Aderibigbe B. In situ-based gels for nose-to-brain delivery for the treatment of neurological diseases. Pharmaceutics 2018; 10(2): 40. doi: 10.3390/pharmaceutics10020040 PMID: 29601486
  24. Nguyen TTL, Maeng HJ. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics 2022; 14(3): 572. doi: 10.3390/pharmaceutics14030572 PMID: 35335948
  25. Yasir M, Vir Singh Sara U, Som I, Gaur P, Singh M. Nose to brain drug delivery: A novel approach through solid lipid nanoparticles. Curr Nanomed 2016; 6(2): 105-32. doi: 10.2174/2468187306666160603120318
  26. Schwarz B, Merkel OM. Nose-to-brain delivery of biologics. Ther Deliv 2019; 10(4): 207-10. doi: 10.4155/tde-2019-0013 PMID: 30991920
  27. Patel HP, Gandhi PA, Chaudhari PS, et al. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies. J Drug Deliv Sci Technol 2021; 64: 102533. doi: 10.1016/j.jddst.2021.102533
  28. Huang G, Xie J, Shuai S, et al. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm 2021; 594: 120182. doi: 10.1016/j.ijpharm.2020.120182 PMID: 33346126
  29. Nagaraja S, Basavarajappa GM, Karnati RK, Bakir EM, Pund S. Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules. Pharmaceutics 2021; 13(8): 1216. doi: 10.3390/pharmaceutics13081216 PMID: 34452177
  30. Trapani A, Corbo F, Agrimi G, et al. Oxidized alginate dopamine conjugate: In vitro characterization for nose-to-brain delivery application. Materials 2021; 14(13): 3495. doi: 10.3390/ma14133495 PMID: 34201634
  31. Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics 2018; 10(1): 34. doi: 10.3390/pharmaceutics10010034 PMID: 29543755
  32. Rinaldi F, Hanieh P, Chan L, et al. Chitosan glutamate-coated niosomes: A proposal for nose-to-brain delivery. Pharmaceutics 2018; 10(2): 38. doi: 10.3390/pharmaceutics10020038 PMID: 29565809
  33. Dalpiaz A, Pavan B. Nose-to-brain delivery of antiviral drugs: A way to overcome their active efflux? Pharmaceutics 2018; 10(2): 39. doi: 10.3390/pharmaceutics10020039 PMID: 29587409
  34. Ladel S, Flamm J, Zadeh AS, et al. Allogenic Fc domain-facilitated uptake of IgG in nasal lamina propria: Friend or foe for intranasal CNS delivery? Pharmaceutics 2018; 10(3): 107. doi: 10.3390/pharmaceutics10030107 PMID: 30050027
  35. Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018; 10(3): 116. doi: 10.3390/pharmaceutics10030116 PMID: 30081536
  36. Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018; 10(4): 269. doi: 10.3390/pharmaceutics10040269 PMID: 30544966
  37. Rassu G, Porcu E, Fancello S, et al. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics 2018; 11(1): 8. doi: 10.3390/pharmaceutics11010008 PMID: 30597930
  38. Tzeyung A, Md S, Bhattamisra S, et al. Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics 2019; 11(1): 26. doi: 10.3390/pharmaceutics11010026 PMID: 30634665
  39. Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview. Pharmaceutics 2019; 11(3): 118. doi: 10.3390/pharmaceutics11030118 PMID: 30871237
  40. Bonferoni M, Ferraro L, Pavan B, et al. Uptake in the central nervous system of geraniol oil encapsulated in chitosan oleate following nasal and oral administration. Pharmaceutics 2019; 11(3): 106. doi: 10.3390/pharmaceutics11030106 PMID: 30832389
  41. Martins PP, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm 2019; 570: 118635. doi: 10.1016/j.ijpharm.2019.118635 PMID: 31445062
  42. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128: 337-62. doi: 10.1016/j.ejpb.2018.05.009 PMID: 29733950
  43. Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015; 41(12): 1922-34. doi: 10.3109/03639045.2015.1052081 PMID: 26057769
  44. Giunchedi P, Gavini E, Bonferoni MC. Nose-to-brain delivery. Pharmaceutics 2020; 12(2): 138. doi: 10.3390/pharmaceutics12020138 PMID: 32041344
  45. Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin Immunopathol 2009; 31(4): 497-511. doi: 10.1007/s00281-009-0177-0
  46. Gizurarson S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol Pharm Bull 2015; 38(4): 497-506. doi: 10.1248/bpb.b14-00398 PMID: 25739664
  47. Illum L. Nasal drug delivery: New developments and strategies. Drug Discov Today 2002; 7(23): 1184-9. doi: 10.1016/S1359-6446(02)02529-1 PMID: 12547019
  48. Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst 2018; 35(5): 433-67. doi: 10.1615/CritRevTherDrugCarrierSyst.2018024697
  49. Warnken ZN, Smyth HDC, Watts AB, Weitman S, Kuhn JG, Williams RO III. Formulation and device design to increase nose to brain drug delivery. J Drug Deliv Sci Technol 2016; 35: 213-22. doi: 10.1016/j.jddst.2016.05.003
  50. Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol 2016; 32: 77-87. doi: 10.1016/j.jddst.2015.05.002
  51. Salade L, Wauthoz N, Vermeersch M, Amighi K, Goole J. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery. Eur J Pharm Biopharm 2018; 129: 257-66. doi: 10.1016/j.ejpb.2018.06.011 PMID: 29902517
  52. Wingrove J, Swedrowska M, Scherließ R, et al. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. J Control Release 2019; 302: 140-7. doi: 10.1016/j.jconrel.2019.03.032 PMID: 30953665
  53. Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv 2014; 21(2): 75-86. doi: 10.3109/10717544.2013.838713 PMID: 24102636
  54. Pandey M, Choudhury H, Verma RK, et al. Nanoparticles based intranasal delivery of drug to treat Alzheimer’s disease: A recent update. CNS Neurol Disord 2020; 19(9): 648-62. doi: 10.2174/1871527319999200819095620
  55. Patel AA, Patel RJ, Patel SR. Nanomedicine for intranasal delivery to improve brain uptake. Curr Drug Deliv 2018; 15(4): 461-9. doi: 10.2174/1567201814666171013150534 PMID: 29034836
  56. Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opin Drug Deliv 2013; 10(7): 1003-22. doi: 10.1517/17425247.2013.766714 PMID: 23373728
  57. Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics 2019; 11(10): 540. doi: 10.3390/pharmaceutics11100540 PMID: 31627301
  58. Salade L, Wauthoz N, Deleu M, et al. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. Int J Nanomedicine 2017; 12: 8531-43. doi: 10.2147/IJN.S147650 PMID: 29238190
  59. Hussain G, Zhang L, Rasul A, et al. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules 2018; 23(4): 814. doi: 10.3390/molecules23040814 PMID: 29614843
  60. Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol 2020; 8: 626882. doi: 10.3389/fbioe.2020.626882 PMID: 33409272
  61. Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565: 258-68. doi: 10.1016/j.ijpharm.2019.05.032 PMID: 31095983
  62. Bonferoni M, Rossi S, Sandri G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019; 11(2): 84. doi: 10.3390/pharmaceutics11020084 PMID: 30781585
  63. Pandey YR, Kumar S, Gupta BK, Ali J, Baboota S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: Formulation, behavioural and biochemical estimation. Nanotechnology 2016; 27(2): 025102. doi: 10.1088/0957-4484/27/2/025102 PMID: 26629830
  64. Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303. doi: 10.4103/1735-5362.235156 PMID: 30065762
  65. Patel S, Chavhan S, Soni H, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 2011; 19(6): 468-74. doi: 10.3109/1061186X.2010.523787 PMID: 20958095
  66. Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr Drug Metab 2020; 21(14): 1136-43. doi: 10.2174/1389200221666200719003304 PMID: 32682366
  67. Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci 2018; 2018: 1-15. doi: 10.1155/2018/6847971 PMID: 30651728
  68. Abbas H, Refai H, El Sayed N, Rashed LA, Mousa MR, Zewail M. Superparamagnetic iron oxide loaded chitosan coated bilosomes for magnetic nose to brain targeting of resveratrol. Int J Pharm 2021; 610: 121244. doi: 10.1016/j.ijpharm.2021.121244 PMID: 34737114
  69. Elsheikh MA, El-Feky YA, Al-Sawahli MM, Ali ME, Fayez AM, Abbas H. A brain-targeted approach to ameliorate memory disorders in a sporadic alzheimer’s disease mouse model via intranasal luteolin-loaded nanobilosomes. Pharmaceutics 2022; 14(3): 576. doi: 10.3390/pharmaceutics14030576 PMID: 35335952
  70. El Taweel MM, Aboul-Einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery. Pharmaceutics 2021; 13(11): 1828. doi: 10.3390/pharmaceutics13111828 PMID: 34834242
  71. Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15. PMID: 26834457
  72. Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 2012; 34(2): 272-9. doi: 10.1016/j.etap.2012.04.012 PMID: 22613079
  73. Praveen A, Aqil M, Imam SS, Ahad A, Moolakkadath T, Ahmad FJ. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: Formulation design, characterization and nasal toxicity study. Colloids Surf B Biointerfaces 2019; 174: 553-62. doi: 10.1016/j.colsurfb.2018.11.025 PMID: 30502666
  74. Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M. Retracted Article: Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S192-207.
  75. Iqbal R, Ahmed S, Jain GK, Vohora D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int J Pharm 2019; 565: 20-32. doi: 10.1016/j.ijpharm.2019.04.076 PMID: 31051232
  76. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008; 358(1-2): 285-91. doi: 10.1016/j.ijpharm.2008.03.029 PMID: 18455333
  77. Bhatt R, Singh D, Prakash A, Mishra N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv 2015; 22(7): 931-9. doi: 10.3109/10717544.2014.880860 PMID: 24512295
  78. Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv 2016; 23(4): 1326-34. doi: 10.3109/10717544.2014.975382 PMID: 25367836
  79. Sita VG, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol 2020; 58: 101791. doi: 10.1016/j.jddst.2020.101791
  80. Alam Khan S, Jawaid Akhtar M. Structural modification and strategies for the enhanced doxorubicin drug delivery. Bioorg Chem 2022; 120: 105599. doi: 10.1016/j.bioorg.2022.105599 PMID: 35030480
  81. Savale S, Mahajan H. Nose to brain: A versatile mode of drug delivery system. Asian J Biomater Res 2017; 3: 16-38.
  82. Sarvaiya J, Agrawal YK. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72: 454-65. doi: 10.1016/j.ijbiomac.2014.08.052 PMID: 25199867
  83. Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine 2016; 11: 6547-59. doi: 10.2147/IJN.S120939 PMID: 27994458
  84. Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GAS. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surf B Biointerfaces 2012; 100: 146-54. doi: 10.1016/j.colsurfb.2012.05.010 PMID: 22766291
  85. Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7. doi: 10.1080/10717544.2019.1636420 PMID: 31290705
  86. Wen Z, Yan Z, Hu K, et al. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 2011; 151(2): 131-8. doi: 10.1016/j.jconrel.2011.02.022 PMID: 21362449
  87. Samia O, Hanan R, Kamal ET. Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 2012; 19(1): 58-67. doi: 10.3109/10717544.2011.644349 PMID: 22191715
  88. N2B-patch. Available From: http://www.n2b-patch.eu/18-08-22/
  89. Choi YM, Kim K. Transnasal microemulsions containing diazepam. US10/869195, 2005.
  90. Wermeling D. System and method for intranasal administration of lorazepam. WO2002089751A1, 2001.
  91. Shantha TR. Alzheimer's disease treatment with multiple therapeutic agents delivered to the olfactory region through a special delivery catheter and iontophoresis. US13/945087, 2014.
  92. Frey W. Method for administering brain-derived neurotrophic factor to the brain. US10/464398, 2003.
  93. Hoekman JD, Ho RJ. Circumferential aerosol device for delivering drugs to olfactory epithelium and brain. US13/817614, 2013.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers