Thin Ga-doped ZnO Film with Enhanced Dual Visible Lines Emission


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:In this study, a simple and facile route was employed to prepare a highly transparent and luminescent ultra-thin gallium doped ZnO film (GZO).

Methods:The thin GZO film has been deposited using the simultaneously ultrasonic vibration and sol-gel spin-spray coating technique. The structural and optical properties of pure and doped thin films were investigated by various methods, such as X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), UV-Vis, and PL spectroscopy.

Results:XRD results indicated that both pure and doped ZnO films had a hexagonal wurtzite structure with (101) preferred orientation. XPS and EDX studies confirmed the incorporation and presence of Ga ions into the ZnO lattice structure. The doped sample showed nearly 90% of transparency, and a strong blue-green emission in the visible region.

Conclusion:The obtained results proved that the prepared thin film could be a novel candidate for optoelectronic applications.

Негізгі сөздер

Авторлар туралы

Sanaz Alamdari

Department of Nanotechnology, Faculty of New Sciences and Technologies,, Semnan University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Mohammad Mansourian

Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University

Email: info@benthamscience.net

Morteza Ghamsari

Photonics & Quantum Technologies Research School,, Nuclear Science and Technology Research Institute

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Miao J, Fan T. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon 2023; 202: 495-527. doi: 10.1016/j.carbon.2022.11.018
  2. Ahn K, Kim GH, Kim SJ, et al. Highly conductive p-type transparent conducting electrode with sulfur-doped copper iodide. Chem Mater 2022; 34(23): 10517-27. doi: 10.1021/acs.chemmater.2c02603
  3. Suthar D, Chuhadiya S, Sharma R. Himanshu, Dhaka MS. An overview on the role of ZnTe as an efficient interface in CdTe thin film solar cells: A review. Mater Adv 2022; 3(22): 8081-107. doi: 10.1039/D2MA00817C
  4. Ghamsari MS, Alamdari S, Razzaghi D, Arshadi Pirlar M. ZnO nanocrystals with narrow-band blue emission. J Lumin 2019; 205: 508-18. doi: 10.1016/j.jlumin.2018.09.064
  5. Vafaee M, Sasani Ghamsari M, Radiman S. Highly concentrated zinc oxide nanocrystals sol with strong blueemission. J Lumin 2011; 131(1): 155-8. doi: 10.1016/j.jlumin.2010.09.042
  6. Alamdari S, Jafar Tafreshi M, Sasani Ghamsari M. Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow- band Cyan emission. J Semicond 2022; 43(12): 122301.
  7. Das HS, Das R, Nandi PK, Biring S, Maity SK. Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications. Appl Phys, A Mater Sci Process 2021; 127(4): 225. doi: 10.1007/s00339-021-04339-6
  8. Efafi B, Sasani Ghamsari M, Majles Ara MH. Sol–gel derived AZO thin film with unusual narrow dual emission. J Lumin 2014; 154: 32-5. doi: 10.1016/j.jlumin.2014.03.062
  9. Alamdari S, Tafreshi MJ, Ghamsari MS. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Mater Lett 2017; 197: 94-7. doi: 10.1016/j.matlet.2017.03.113
  10. Sasani Ghamsari M, Vafaee M. Sol–gel derived zinc oxide buffer layer for use in random laser media. Mater Lett 2008; 62(12-13): 1754-6. doi: 10.1016/j.matlet.2007.09.081
  11. Alamdari S, Karkhaneh A, Jafar Tafreshi M, Sasani Ghamsari M. Ultra-thin Hafnium doped ZnO films with enhanced optical transparency and electrical conductivity. Mater Res Express 2019; 6(5): 055020. doi: 10.1088/2053-1591/ab0224
  12. Alamdari S, Tafreshi MJ, Ghamsari MS. Strong yellow-orange emission from aluminum and Indium co-doped ZnO nanostructures with potential for increasing the color gamut of displays. Appl Phys, A Mater Sci Process 2019; 125(3): 165. doi: 10.1007/s00339-019-2451-x
  13. Sha R, Basak A, Maity PC, Badhulika S. ZnO nano-structured based devices for chemical and optical sensing applications. Sensors and Actuators Reports 2022; 4: 100098. doi: 10.1016/j.snr.2022.100098
  14. Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv 2022; 4(8): 1868-925. doi: 10.1039/D1NA00880C PMID: 36133407
  15. Rodriguez-Davila RA, Chapman RA, Shamsi ZH, Castillo SJ, Young CD, Quevedo-Lopez MA. Low temperature, highly stable ZnO thin-film transistors. Microelectron Eng 2023; 279: 112063. doi: 10.1016/j.mee.2023.112063
  16. Badgujar AC, Yadav BS, Jha GK, Dhage SR. Room temperature sputtered aluminum-doped ZnO thin film transparent electrode for application in solar cells and for low- band-gap optoelectronic devices. ACS Omega 2022; 7(16): 14203-10. doi: 10.1021/acsomega.2c00830 PMID: 35559177
  17. Koralli P, Fiat Varol S, Mousdis G, Mouzakis DE, Merdan Z, Kompitsas M. Comparative studies of undoped/Al-doped/In-doped ZnO transparent conducting oxide thin films in optoelectronic applications. Chemosensors (Basel) 2022; 10(5): 162. doi: 10.3390/chemosensors10050162
  18. Caballero-Güereca CE, Cruz MRA, Luévano-Hipólito E, Torres-Martínez LM. Transparent ZnO thin films deposited by dip-coating technique: Analyses of their hydrophobic properties. Surf Interfaces 2023; 37: 102705. doi: 10.1016/j.surfin.2023.102705
  19. González S, Vescio G, Frieiro JL, et al. Inkjet-printed p-NiO/n-ZnO heterojunction diodes for photodetection applications. Adv Mater Interfaces 2023; 10(15): 2300035. doi: 10.1002/admi.202300035
  20. Alamdari S, Ghamsari MS, Tafreshi MJ. Optimization of Gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications. Ceram Int 2020; 46(4): 4484-92. doi: 10.1016/j.ceramint.2019.10.175
  21. Alamdari S, Sasani Ghamsari M, Majles Ara MH, Efafi B. Highly concentrated IZO colloidal nanocrystals with blue/orange/red three-colors emission. Mater Lett 2017; 8: 202-4.
  22. Jo G, Koh JH. Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications. Ceram Int 2019; 45(5): 6190-7. doi: 10.1016/j.ceramint.2018.12.096
  23. Alanazi TI. Current spray-coating approaches to manufacture perovskite solar cells. Results Phys 2023; 44: 106144. doi: 10.1016/j.rinp.2022.106144
  24. Soltani-kordshuli F, Zabihi F, Eslamian M. Graphene-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Eng Sci Tech Int J 2016; 19(3): 1216-23. doi: 10.1016/j.jestch.2016.02.003
  25. Rahimzadeh A, Eslamian M. Stability of thin liquid films subjected to ultrasonic vibration and characteristics of the resulting thin solid films. Chem Eng Sci 2017; 158: 587-98. doi: 10.1016/j.ces.2016.11.006
  26. Zabihi F, Eslamian M. Substrate vibration-assisted spray coating (SVASC): Significant improvement in nano-structure, uniformity, and conductivity of PEDOT:PSS thin films for organic solar cells. J Coat Technol Res 2015; 12(4): 711-9. doi: 10.1007/s11998-015-9682-3
  27. Mi H, Chen T, Deng Z, Li S, Liu J, Liu D. Microstructure and mechanical properties of TiC/TiB composite ceramic coatings in-situ synthesized by ultrasonic vibration-assisted laser cladding. Coatings 2022; 12(1): 99. doi: 10.3390/coatings12010099
  28. Zabihi F, Ahmadian-Yazdi MR, Eslamian M. Photocatalytic graphene-TiO2 thin films fabricated by low-temperature ultrasonic vibration-assisted spin and spray coating in a sol-gel process. Catalysts 2017; 7(5): 136. doi: 10.3390/catal7050136
  29. Ponja SD, Sathasivam S, Parkin IP, Carmalt CJ. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci Rep 2020; 10(1): 638. doi: 10.1038/s41598-020-57532-7 PMID: 31959884
  30. Kuo SY, Chen WC, Lai FI, et al. Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J Cryst Growth 2006; 287(1): 78-84. doi: 10.1016/j.jcrysgro.2005.10.047
  31. Rodrigues J, Ben Sedrine N, Correia MR, Monteiro T. Photoluminescence investigations of ZnO micro/nanostructures. Mater Today Chem 2020; 16: 100243. doi: 10.1016/j.mtchem.2020.100243
  32. Musavi E, Khanlary M, Khakpour Z. Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO:Al nano-crystalline films. J Lumin 2019; 216: 116696. doi: 10.1016/j.jlumin.2019.116696
  33. Kabir A, Bouanane I, Boulainine D, Zerkout S, Schmerber G, Boudjema B. Photoluminescence study of deep level defects in ZnO thin films. Silicon 2019; 11(2): 837-42. doi: 10.1007/s12633-018-9876-2
  34. Mondal P. Effect of Oxygen vacancy induced defect on the optical emission and excitonic lifetime of intrinsic ZnO. Opt Mater 2019; 98: 109476. doi: 10.1016/j.optmat.2019.109476
  35. Zhang M, Averseng F, Krafft JM, Borghetti P, Costentin G, Stankic S. Controlled formation of native defects in ultrapure ZnO for the assignment of green emissions to oxygen vacancies. J Phys Chem C 2020; 124(23): 12696-704. doi: 10.1021/acs.jpcc.0c01078

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024