Nanomedicine as a Better Therapeutic Approach: An Overview
- Authors: Das A.1, Chakrabarti S.1
-
Affiliations:
- , Himalayan Pharmacy Institute
- Issue: Vol 14, No 3 (2024)
- Pages: 169-177
- Section: Pharmacology
- URL: https://gynecology.orscience.ru/2468-1873/article/view/675839
- DOI: https://doi.org/10.2174/0124681873283310231228125729
- ID: 675839
Cite item
Full Text
Abstract
:The fields of nanotechnology and nanomedicine have undergone a revolution. There has been a striking rise in authorized nanomedicines since 1980. Apart from functioning as thera-peutic agents, they also act as carriers for delivering various active pharmaceuticals to target or-gans. The ultimate goal of nanomedicine has always been the generation of translational technol-ogies that can improve current therapies. Nanocrystals, nanotubes, liposomes, exosomes, solid li-pid nanoparticles, polymeric nanoparticles, and metallic and magnetic nanoparticles are examples of nanostructures that are now in the market as well as in ongoing research. The preparation of these nanomaterials requires consideration of a number of difficulties. Only a few of these nano-materials were successful in obtaining marketing permission after passing all required toxicologi-cal and ethical evaluations and making them affordable to users and, at the same time, profitable to investors. Cancer, central nervous system (CNS) diseases, and cardiovascular (CVS) diseases represented the primary targets of nanotechnology applied to medicine. Therefore, this review ar-ticle is focused on providing a summary of several nano-based delivery systems, including their limitations and prospects in different therapeutic fields.
About the authors
Arnab Das
, Himalayan Pharmacy Institute
Email: info@benthamscience.net
Srijita Chakrabarti
, Himalayan Pharmacy Institute
Author for correspondence.
Email: info@benthamscience.net
References
- Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34. doi: 10.1186/s40580-021-00282-7 PMID: 34727233
- Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C 2020; 106: 110302. doi: 10.1016/j.msec.2019.110302 PMID: 31753337
- Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57. doi: 10.1016/j.jconrel.2014.12.030 PMID: 25545217
- Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022; 14(1): 106. doi: 10.3390/pharmaceutics14010106 PMID: 35057002
- Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14(2): 282-95. doi: 10.1208/s12248-012-9339-4 PMID: 22407288
- Falagan-Lotsch P, Grzincic EM, Murphy CJ. New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjug Chem 2017; 28(1): 135-52. doi: 10.1021/acs.bioconjchem.6b00591 PMID: 27973767
- Caracciolo G, Vali H, Moore A, Mahmoudi M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 2019; 27: 6-10. doi: 10.1016/j.nantod.2019.06.001
- Goel S, Ni D, Cai W. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano 2017; 11(6): 5233-7. doi: 10.1021/acsnano.7b03675 PMID: 28621524
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
- Aziz T, Ullah A, Fan H, et al. Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 2021; 29(7): 2062-71. doi: 10.1007/s10924-021-02045-1
- Parodi A, Buzaeva P, Nigovora D, et al. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19(1): 354. doi: 10.1186/s12951-021-01100-2 PMID: 34717658
- Haider M, Elsherbeny A, Pittalà V, et al. Nanomedicine strategies for management of drug resistance in lung cancer. Int J Mol Sci 2022; 23(3): 1853. doi: 10.3390/ijms23031853 PMID: 35163777
- Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47. doi: 10.1016/j.jconrel.2021.02.016 PMID: 33609621
- Shi M, Gu A, Tu H, et al. Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: An open-label, randomized, multicenter, phase III trial. Ann Oncol 2021; 32(1): 85-96. doi: 10.1016/j.annonc.2020.10.479 PMID: 33130217
- Nano-SMART: Nanoparticles with MR guided SBRT in centrally located lung tumors and pancreatic cancer. Available online: https://ClinicalTrials.gov/show/NCT04789486
- Topotecan hydrochloride or cyclodextrin-based polymer-camptothecin CRLX101 in treating patients with recurrent small cell lung cancer. Available online: https://ClinicalTrials.gov/show/NCT01803269
- Trial of EP0057, a nanoparticle camptothecin with olaparib in people with relapsed/refractory small cell lung cancer. Available online: https://ClinicalTrials.gov/show/NCT02769962
- Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(1): e1479. doi: 10.1002/wnan.1479 PMID: 28544801
- Elnaggar Y, Etman S, Abdelmonsif D, Abdallah O. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimers disease: Pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 2015; 10: 5459-73. doi: 10.2147/IJN.S87336 PMID: 26346130
- Brar B, Ranjan K, Palria A, et al. Nanotechnology in colorectal cancer for precision diagnosis and therapy Front nanotechnol 2021; 16(3): 699266.
- Study investigating the ability of plant exosomes to deliver curcumin to normal and colon cancer tissue Available online: https://ClinicalTrials.gov/show/NCT01294072
- Hamaguchi T, Tsuji A, Yamaguchi K, et al. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients. Cancer Chemother Pharmacol 2018; 82(6): 1021-9. doi: 10.1007/s00280-018-3693-6 PMID: 30284603
- Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today 2018; 23(5): 1007-15. doi: 10.1016/j.drudis.2017.11.010 PMID: 29155026
- Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103: 202-17. doi: 10.1016/j.addr.2016.02.008 PMID: 26944096
- Tian X, Fan T, Zhao W, et al. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6(9): 2854-69. doi: 10.1016/j.bioactmat.2021.01.023 PMID: 33718667
- Jagaran K, Singh M. Nanomedicine for neurodegenerative disorders: Focus on alzheimers and parkinsons diseases. Int J Mol Sci 2021; 22(16): 9082. doi: 10.3390/ijms22169082 PMID: 34445784
- Jayaraj R, Chandramohan V, Namasivayam E. Nanomedicine for parkinson disease: Current status and future perspective. Int J Pharm Bio Sci 2013; 4(692): e704.
- Manners N, Priya V, Mehata A, et al. Theranostic nanomedicines for the treatment of cardiovascular and related diseases: current strategies and future perspectives. Pharmaceuticals 2022; 15(4): 441. doi: 10.3390/ph15040441 PMID: 35455438
- Martín Giménez VM, Kassuha DE, Manucha W. Nanomedicine applied to cardiovascular diseases: Latest developments. Ther Adv Cardiovasc Dis 2017; 11(4): 133-42. doi: 10.1177/1753944717692293 PMID: 28198204
- Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. Nanotechnology and vaccine development. AJPS 2014; 9(5): 227-35.
- Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2021; 198: 111443. doi: 10.1016/j.colsurfb.2020.111443 PMID: 33203600
- Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer. Front Chem 2021; 9(9): 637754. doi: 10.3389/fchem.2021.637754 PMID: 33855009
- Hamzawy MA, Abo-youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv 2017; 24(1): 599-607. doi: 10.1080/10717544.2016.1247924 PMID: 28240047
- Kamazani FM. Sotoodehnejad nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep 2021; 11(1): 24419. doi: 10.1038/s41598-021-03031-2 PMID: 34952904
- Yuan X, Ji W, Chen S, et al. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomedicine 2016; 11: 2119-31. PMID: 27307727
- Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J Pharm Sci 2018; 107(11): 2902-13. doi: 10.1016/j.xphs.2018.07.020 PMID: 30055226
- Feng Q, Shen Y, Fu Y, et al. Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics 2017; 7(7): 1875-89. doi: 10.7150/thno.18985 PMID: 28638474
- Chen YC, Chiang CF, Wu SK, Chen LF, Hsieh WY, Lin WL. Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors. J Control Release 2015; 211(211): 53-62. doi: 10.1016/j.jconrel.2015.05.288 PMID: 26047759
- Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004; 99(2): 259-69. doi: 10.1016/j.jconrel.2004.07.006 PMID: 15380635
- Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019; 11(13): 6192-205. doi: 10.1039/C8NR08970A PMID: 30874284
- Zou H, Li L, Garcia Carcedo I, Xu ZP, Monteiro M, Gu W. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int J Nanomedicine 2016; 11: 1947-58. PMID: 27226714
- Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int J Nanomedicine 2021; 16: 2995-3020. doi: 10.2147/IJN.S302238 PMID: 33911862
- Yu Z, Li X, Duan J, Yang XD. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomedicine 2020; 15: 6737-48. doi: 10.2147/IJN.S267177 PMID: 32982230
- Klippstein R, Wang JTW, El-Gogary RI, et al. Passively targeted curcumin‐loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small 2015; 11(36): 4704-22. doi: 10.1002/smll.201403799 PMID: 26140363
- Ortiz R, Cabeza L, Arias JL, et al. Poly (butylcyanoacrylate) and poly (ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J 2015; 17(4): 918-29. doi: 10.1208/s12248-015-9761-5 PMID: 25894746
- Wilson B, Samanta MK, Muthu MS, Vinothapooshan G. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimers disease. Ther Deliv 2011; 2(5): 599-609. doi: 10.4155/tde.11.21 PMID: 22833977
- Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimers disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56. doi: 10.1002/jps.24557
- Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimers disease. PLoS One 2012; 7(3): e32616. doi: 10.1371/journal.pone.0032616 PMID: 22403681
- Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G. Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J Neural Transm 2013; 120(6): 903-10. doi: 10.1007/s00702-013-0992-2 PMID: 23420173
- Lu L, Wang Y, Zhang F, et al. mri‐visible siRNA nanomedicine directing neuronal differentiation of neural stem cells in stroke. Adv Funct Mater 2018; 28(14): 1706769. doi: 10.1002/adfm.201706769
- Song MM, Chen J, Ye SM, et al. Targeted delivery of edaravone by liposomes for the treatment of ischemic stroke. Nanomedicine 2022; 17(11): 741-52. doi: 10.2217/nnm-2021-0490 PMID: 35506304
- Kakkar AK, Mueller I, Bassand JP, et al. Risk profiles and antithrombotic treatment of patients newly diagnosed with atrial fibrillation at risk of stroke: Perspectives from the international, observational, prospective GARFIELD registry. PLoS One 2013; 8(5): e63479. doi: 10.1371/journal.pone.0063479 PMID: 23704912
- Ghosh S, Derle A, Ahire M, et al. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS One 2013; 8(12): e82529. doi: 10.1371/journal.pone.0082529 PMID: 24367520
- Zhao Y, Xin Z, Li N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med 2018; 124: 1-11. doi: 10.1016/j.freeradbiomed.2018.05.082 PMID: 29807160
- Barcia E, Boeva L, García-García L, et al. Nanotechnology-based drug delivery of ropinirole for Parkinsons disease. Drug Deliv 2017; 24(1): 1112-23. doi: 10.1080/10717544.2017.1359862 PMID: 28782388
- Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinsons disease targeting therapy. Nanomedicine 2017; 12(3): 237-53. doi: 10.2217/nnm-2016-0267 PMID: 28093036
- Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinsons disease treatment. Int J Nanomedicine 2016; 11: 6547-59. doi: 10.2147/IJN.S120939 PMID: 27994458
- Sharma S, Lohan S, Murthy RSR. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 2014; 40(7): 869-78. doi: 10.3109/03639045.2013.789051 PMID: 23600649
- Esposito E, Mariani P, Ravani L, et al. Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. Eur J Pharm Biopharm 2012; 80(2): 306-14. doi: 10.1016/j.ejpb.2011.10.015 PMID: 22061262
- Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, et al. Low dose curcumin administered in hyaluronic acid-based nanocapsules induces hypotensive effect in hypertensive rats. Int J Nanomedicine 2021; 16: 1377-90. doi: 10.2147/IJN.S291945 PMID: 33658778
- Beck-Broichsitter M, Hecker A, Kosanovic D, et al. Prolonged vasodilatory response to nanoencapsulated sildenafil in pulmonary hypertension. Nanomedicine 2016; 12(1): 63-8. doi: 10.1016/j.nano.2015.08.009 PMID: 26393885
- Hamilton K, Yazdanian M, Audus K. Contribution of efflux pump activity to the delivery of pulmonary therapeutics. Curr Drug Metab 2002; 3(1): 1-12. doi: 10.2174/1389200023338170 PMID: 11876574
- Sun F, Wang G, Pradhan A, et al. Nanoparticle delivery of STAT3 alleviates pulmonary hypertension in a mouse model of alveolar capillary dysplasia. Circulation 2021; 144(7): 539-55. doi: 10.1161/CIRCULATIONAHA.121.053980 PMID: 34111939
- Mohamed NA, Abou-Saleh H, Kameno Y, et al. Studies on metalorganic framework (MOF) nanomedicine preparations of sildenafil for the future treatment of pulmonary arterial hypertension. Sci Rep 2021; 11(1): 4336. doi: 10.1038/s41598-021-83423-6 PMID: 33619326
- Xue Y, Zeng G, Cheng J, Hu J, Zhang M, Li Y. Engineered macrophage membrane‐enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng Transl Med 2021; 6(2): e10197. doi: 10.1002/btm2.10197 PMID: 34027086
- Qiu J, Cai G, Liu X, Ma D. αvβ3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother 2017; 96: 1418-26. doi: 10.1016/j.biopha.2017.10.086 PMID: 29079344
- Zhang S, Li J, Hu S, Wu F, Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int J Nanomedicine 2018; 13: 4045-57. doi: 10.2147/IJN.S165590 PMID: 30022826
- Tokutome M, Matoba T, Nakano Y, et al. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models. Cardiovasc Res 2019; 115(2): 419-31. doi: 10.1093/cvr/cvy200 PMID: 30084995
- Geng T, Song ZY, Xing JX, Wang BX, Dai SP, Xu ZS. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int J Nanomedicine 2020; 15: 2647-58. doi: 10.2147/IJN.S242908 PMID: 32368046
- Pautler M, Brenner S. Nanomedicine: Promises and challenges for the future of public health. Int J Nanomedicine 2010; 5: 803-9. PMID: 21042425
- Aziz T, Ullah A, Ali A, et al. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139(29): e52624. doi: 10.1002/app.52624
- Targuma S, Njobeh PB, Ndungu PG. Current applications of magnetic nanomaterials for extraction of mycotoxins, pesticides, and pharmaceuticals in food commodities. Molecules 2021; 26(14): 4284. doi: 10.3390/molecules26144284 PMID: 34299560
- Ojha A, Tiwary D, Oraon R, Singh P. Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: A critical review. Environ Sci Pollut Res Int 2021; 28(24): 30573-94. doi: 10.1007/s11356-021-13939-x PMID: 33909248
- Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A. Interactive effects of micro/nanoplastics and nanomaterials/pharmaceuticals: Their ecotoxicological consequences in the aquatic systems. Aquat Toxicol 2021; 232: 105747. doi: 10.1016/j.aquatox.2021.105747 PMID: 33493974
- Ullah R, Azam A, Aziz T, et al. Peacock feathers extract use as template for synthesis of Ag and Au nanoparticles and their biological applications. Waste Biomass Valoriz 2022; 13(1): 659-66. doi: 10.1007/s12649-021-01537-4
- Stavis SM, Fagan JA, Stopa M, Liddle JA. Nanoparticle manufacturingheterogeneity through processes to products. ACS Appl Nano Mater 2018; 1(9): 4358-85. doi: 10.1021/acsanm.8b01239
Supplementary files
