Nanomedicine as a Better Therapeutic Approach: An Overview


Cite item

Full Text

Abstract

:The fields of nanotechnology and nanomedicine have undergone a revolution. There has been a striking rise in authorized nanomedicines since 1980. Apart from functioning as thera-peutic agents, they also act as carriers for delivering various active pharmaceuticals to target or-gans. The ultimate goal of nanomedicine has always been the generation of translational technol-ogies that can improve current therapies. Nanocrystals, nanotubes, liposomes, exosomes, solid li-pid nanoparticles, polymeric nanoparticles, and metallic and magnetic nanoparticles are examples of nanostructures that are now in the market as well as in ongoing research. The preparation of these nanomaterials requires consideration of a number of difficulties. Only a few of these nano-materials were successful in obtaining marketing permission after passing all required toxicologi-cal and ethical evaluations and making them affordable to users and, at the same time, profitable to investors. Cancer, central nervous system (CNS) diseases, and cardiovascular (CVS) diseases represented the primary targets of nanotechnology applied to medicine. Therefore, this review ar-ticle is focused on providing a summary of several nano-based delivery systems, including their limitations and prospects in different therapeutic fields.

About the authors

Arnab Das

, Himalayan Pharmacy Institute

Email: info@benthamscience.net

Srijita Chakrabarti

, Himalayan Pharmacy Institute

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34. doi: 10.1186/s40580-021-00282-7 PMID: 34727233
  2. Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C 2020; 106: 110302. doi: 10.1016/j.msec.2019.110302 PMID: 31753337
  3. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57. doi: 10.1016/j.jconrel.2014.12.030 PMID: 25545217
  4. Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022; 14(1): 106. doi: 10.3390/pharmaceutics14010106 PMID: 35057002
  5. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14(2): 282-95. doi: 10.1208/s12248-012-9339-4 PMID: 22407288
  6. Falagan-Lotsch P, Grzincic EM, Murphy CJ. New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjug Chem 2017; 28(1): 135-52. doi: 10.1021/acs.bioconjchem.6b00591 PMID: 27973767
  7. Caracciolo G, Vali H, Moore A, Mahmoudi M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 2019; 27: 6-10. doi: 10.1016/j.nantod.2019.06.001
  8. Goel S, Ni D, Cai W. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano 2017; 11(6): 5233-7. doi: 10.1021/acsnano.7b03675 PMID: 28621524
  9. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
  10. Aziz T, Ullah A, Fan H, et al. Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 2021; 29(7): 2062-71. doi: 10.1007/s10924-021-02045-1
  11. Parodi A, Buzaeva P, Nigovora D, et al. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19(1): 354. doi: 10.1186/s12951-021-01100-2 PMID: 34717658
  12. Haider M, Elsherbeny A, Pittalà V, et al. Nanomedicine strategies for management of drug resistance in lung cancer. Int J Mol Sci 2022; 23(3): 1853. doi: 10.3390/ijms23031853 PMID: 35163777
  13. Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47. doi: 10.1016/j.jconrel.2021.02.016 PMID: 33609621
  14. Shi M, Gu A, Tu H, et al. Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: An open-label, randomized, multicenter, phase III trial. Ann Oncol 2021; 32(1): 85-96. doi: 10.1016/j.annonc.2020.10.479 PMID: 33130217
  15. Nano-SMART: Nanoparticles with MR guided SBRT in centrally located lung tumors and pancreatic cancer. Available online: https://ClinicalTrials.gov/show/NCT04789486
  16. Topotecan hydrochloride or cyclodextrin-based polymer-camptothecin CRLX101 in treating patients with recurrent small cell lung cancer. Available online: https://ClinicalTrials.gov/show/NCT01803269
  17. Trial of EP0057, a nanoparticle camptothecin with olaparib in people with relapsed/refractory small cell lung cancer. Available online: https://ClinicalTrials.gov/show/NCT02769962
  18. Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(1): e1479. doi: 10.1002/wnan.1479 PMID: 28544801
  19. Elnaggar Y, Etman S, Abdelmonsif D, Abdallah O. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: Pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 2015; 10: 5459-73. doi: 10.2147/IJN.S87336 PMID: 26346130
  20. Brar B, Ranjan K, Palria A, et al. Nanotechnology in colorectal cancer for precision diagnosis and therapy Front nanotechnol 2021; 16(3): 699266.
  21. Study investigating the ability of plant exosomes to deliver curcumin to normal and colon cancer tissue Available online: https://ClinicalTrials.gov/show/NCT01294072
  22. Hamaguchi T, Tsuji A, Yamaguchi K, et al. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients. Cancer Chemother Pharmacol 2018; 82(6): 1021-9. doi: 10.1007/s00280-018-3693-6 PMID: 30284603
  23. Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today 2018; 23(5): 1007-15. doi: 10.1016/j.drudis.2017.11.010 PMID: 29155026
  24. Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103: 202-17. doi: 10.1016/j.addr.2016.02.008 PMID: 26944096
  25. Tian X, Fan T, Zhao W, et al. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6(9): 2854-69. doi: 10.1016/j.bioactmat.2021.01.023 PMID: 33718667
  26. Jagaran K, Singh M. Nanomedicine for neurodegenerative disorders: Focus on alzheimer’s and parkinson’s diseases. Int J Mol Sci 2021; 22(16): 9082. doi: 10.3390/ijms22169082 PMID: 34445784
  27. Jayaraj R, Chandramohan V, Namasivayam E. Nanomedicine for parkinson disease: Current status and future perspective. Int J Pharm Bio Sci 2013; 4(692): e704.
  28. Manners N, Priya V, Mehata A, et al. Theranostic nanomedicines for the treatment of cardiovascular and related diseases: current strategies and future perspectives. Pharmaceuticals 2022; 15(4): 441. doi: 10.3390/ph15040441 PMID: 35455438
  29. Martín Giménez VM, Kassuha DE, Manucha W. Nanomedicine applied to cardiovascular diseases: Latest developments. Ther Adv Cardiovasc Dis 2017; 11(4): 133-42. doi: 10.1177/1753944717692293 PMID: 28198204
  30. Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. Nanotechnology and vaccine development. AJPS 2014; 9(5): 227-35.
  31. Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2021; 198: 111443. doi: 10.1016/j.colsurfb.2020.111443 PMID: 33203600
  32. Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer. Front Chem 2021; 9(9): 637754. doi: 10.3389/fchem.2021.637754 PMID: 33855009
  33. Hamzawy MA, Abo-youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv 2017; 24(1): 599-607. doi: 10.1080/10717544.2016.1247924 PMID: 28240047
  34. Kamazani FM. Sotoodehnejad nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep 2021; 11(1): 24419. doi: 10.1038/s41598-021-03031-2 PMID: 34952904
  35. Yuan X, Ji W, Chen S, et al. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomedicine 2016; 11: 2119-31. PMID: 27307727
  36. Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J Pharm Sci 2018; 107(11): 2902-13. doi: 10.1016/j.xphs.2018.07.020 PMID: 30055226
  37. Feng Q, Shen Y, Fu Y, et al. Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics 2017; 7(7): 1875-89. doi: 10.7150/thno.18985 PMID: 28638474
  38. Chen YC, Chiang CF, Wu SK, Chen LF, Hsieh WY, Lin WL. Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors. J Control Release 2015; 211(211): 53-62. doi: 10.1016/j.jconrel.2015.05.288 PMID: 26047759
  39. Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004; 99(2): 259-69. doi: 10.1016/j.jconrel.2004.07.006 PMID: 15380635
  40. Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019; 11(13): 6192-205. doi: 10.1039/C8NR08970A PMID: 30874284
  41. Zou H, Li L, Garcia Carcedo I, Xu ZP, Monteiro M, Gu W. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int J Nanomedicine 2016; 11: 1947-58. PMID: 27226714
  42. Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int J Nanomedicine 2021; 16: 2995-3020. doi: 10.2147/IJN.S302238 PMID: 33911862
  43. Yu Z, Li X, Duan J, Yang XD. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomedicine 2020; 15: 6737-48. doi: 10.2147/IJN.S267177 PMID: 32982230
  44. Klippstein R, Wang JTW, El-Gogary RI, et al. Passively targeted curcumin‐loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small 2015; 11(36): 4704-22. doi: 10.1002/smll.201403799 PMID: 26140363
  45. Ortiz R, Cabeza L, Arias JL, et al. Poly (butylcyanoacrylate) and poly (ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J 2015; 17(4): 918-29. doi: 10.1208/s12248-015-9761-5 PMID: 25894746
  46. Wilson B, Samanta MK, Muthu MS, Vinothapooshan G. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease. Ther Deliv 2011; 2(5): 599-609. doi: 10.4155/tde.11.21 PMID: 22833977
  47. Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56. doi: 10.1002/jps.24557
  48. Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3): e32616. doi: 10.1371/journal.pone.0032616 PMID: 22403681
  49. Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G. Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J Neural Transm 2013; 120(6): 903-10. doi: 10.1007/s00702-013-0992-2 PMID: 23420173
  50. Lu L, Wang Y, Zhang F, et al. mri‐visible siRNA nanomedicine directing neuronal differentiation of neural stem cells in stroke. Adv Funct Mater 2018; 28(14): 1706769. doi: 10.1002/adfm.201706769
  51. Song MM, Chen J, Ye SM, et al. Targeted delivery of edaravone by liposomes for the treatment of ischemic stroke. Nanomedicine 2022; 17(11): 741-52. doi: 10.2217/nnm-2021-0490 PMID: 35506304
  52. Kakkar AK, Mueller I, Bassand JP, et al. Risk profiles and antithrombotic treatment of patients newly diagnosed with atrial fibrillation at risk of stroke: Perspectives from the international, observational, prospective GARFIELD registry. PLoS One 2013; 8(5): e63479. doi: 10.1371/journal.pone.0063479 PMID: 23704912
  53. Ghosh S, Derle A, Ahire M, et al. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS One 2013; 8(12): e82529. doi: 10.1371/journal.pone.0082529 PMID: 24367520
  54. Zhao Y, Xin Z, Li N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med 2018; 124: 1-11. doi: 10.1016/j.freeradbiomed.2018.05.082 PMID: 29807160
  55. Barcia E, Boeva L, García-García L, et al. Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv 2017; 24(1): 1112-23. doi: 10.1080/10717544.2017.1359862 PMID: 28782388
  56. Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine 2017; 12(3): 237-53. doi: 10.2217/nnm-2016-0267 PMID: 28093036
  57. Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine 2016; 11: 6547-59. doi: 10.2147/IJN.S120939 PMID: 27994458
  58. Sharma S, Lohan S, Murthy RSR. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 2014; 40(7): 869-78. doi: 10.3109/03639045.2013.789051 PMID: 23600649
  59. Esposito E, Mariani P, Ravani L, et al. Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. Eur J Pharm Biopharm 2012; 80(2): 306-14. doi: 10.1016/j.ejpb.2011.10.015 PMID: 22061262
  60. Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, et al. Low dose curcumin administered in hyaluronic acid-based nanocapsules induces hypotensive effect in hypertensive rats. Int J Nanomedicine 2021; 16: 1377-90. doi: 10.2147/IJN.S291945 PMID: 33658778
  61. Beck-Broichsitter M, Hecker A, Kosanovic D, et al. Prolonged vasodilatory response to nanoencapsulated sildenafil in pulmonary hypertension. Nanomedicine 2016; 12(1): 63-8. doi: 10.1016/j.nano.2015.08.009 PMID: 26393885
  62. Hamilton K, Yazdanian M, Audus K. Contribution of efflux pump activity to the delivery of pulmonary therapeutics. Curr Drug Metab 2002; 3(1): 1-12. doi: 10.2174/1389200023338170 PMID: 11876574
  63. Sun F, Wang G, Pradhan A, et al. Nanoparticle delivery of STAT3 alleviates pulmonary hypertension in a mouse model of alveolar capillary dysplasia. Circulation 2021; 144(7): 539-55. doi: 10.1161/CIRCULATIONAHA.121.053980 PMID: 34111939
  64. Mohamed NA, Abou-Saleh H, Kameno Y, et al. Studies on metal–organic framework (MOF) nanomedicine preparations of sildenafil for the future treatment of pulmonary arterial hypertension. Sci Rep 2021; 11(1): 4336. doi: 10.1038/s41598-021-83423-6 PMID: 33619326
  65. Xue Y, Zeng G, Cheng J, Hu J, Zhang M, Li Y. Engineered macrophage membrane‐enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng Transl Med 2021; 6(2): e10197. doi: 10.1002/btm2.10197 PMID: 34027086
  66. Qiu J, Cai G, Liu X, Ma D. αvβ3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother 2017; 96: 1418-26. doi: 10.1016/j.biopha.2017.10.086 PMID: 29079344
  67. Zhang S, Li J, Hu S, Wu F, Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int J Nanomedicine 2018; 13: 4045-57. doi: 10.2147/IJN.S165590 PMID: 30022826
  68. Tokutome M, Matoba T, Nakano Y, et al. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models. Cardiovasc Res 2019; 115(2): 419-31. doi: 10.1093/cvr/cvy200 PMID: 30084995
  69. Geng T, Song ZY, Xing JX, Wang BX, Dai SP, Xu ZS. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int J Nanomedicine 2020; 15: 2647-58. doi: 10.2147/IJN.S242908 PMID: 32368046
  70. Pautler M, Brenner S. Nanomedicine: Promises and challenges for the future of public health. Int J Nanomedicine 2010; 5: 803-9. PMID: 21042425
  71. Aziz T, Ullah A, Ali A, et al. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139(29): e52624. doi: 10.1002/app.52624
  72. Targuma S, Njobeh PB, Ndungu PG. Current applications of magnetic nanomaterials for extraction of mycotoxins, pesticides, and pharmaceuticals in food commodities. Molecules 2021; 26(14): 4284. doi: 10.3390/molecules26144284 PMID: 34299560
  73. Ojha A, Tiwary D, Oraon R, Singh P. Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: A critical review. Environ Sci Pollut Res Int 2021; 28(24): 30573-94. doi: 10.1007/s11356-021-13939-x PMID: 33909248
  74. Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A. Interactive effects of micro/nanoplastics and nanomaterials/pharmaceuticals: Their ecotoxicological consequences in the aquatic systems. Aquat Toxicol 2021; 232: 105747. doi: 10.1016/j.aquatox.2021.105747 PMID: 33493974
  75. Ullah R, Azam A, Aziz T, et al. Peacock feathers extract use as template for synthesis of Ag and Au nanoparticles and their biological applications. Waste Biomass Valoriz 2022; 13(1): 659-66. doi: 10.1007/s12649-021-01537-4
  76. Stavis SM, Fagan JA, Stopa M, Liddle JA. Nanoparticle manufacturing–heterogeneity through processes to products. ACS Appl Nano Mater 2018; 1(9): 4358-85. doi: 10.1021/acsanm.8b01239

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers