Nanorevolution Unleashing the Power of Nanotechnology


如何引用文章

全文:

详细

:Nanotechnology, the manipulation of matter at the nanoscale, has been an extraordinary scientific frontier that has revolutionized various fields, with one of the most promising applications being in the realm of medicine. Nanomedicine, an interdisciplinary field at the intersection of nanotechnology and medicine, holds tremendous potential to transform the landscape of healthcare, diagnosis, and treatment. This abstract delves into the burgeoning advancements of nanotechnology in nanomedicine, highlighting its significance, potential benefits, and ethical considerations.

:The primary focus of nanomedicine is to engineer and utilize nanoscale materials, such as nanoparticles and nanostructures, to improve the effectiveness and precision of medical interventions. Nano-sized drug delivery systems can target specific cells or tissues, enhancing therapeutic outcomes and reducing side effects. These nanocarriers can penetrate biological barriers and accumulate at disease sites, enabling more efficient drug delivery and increasing the bioavailability of therapeutic agents. Furthermore, nanotechnology has opened new horizons in medical imaging. Nanoparticles can be engineered to be responsive to certain diseases or conditions, providing valuable information for early detection and precise diagnosis. Novel contrast agents based on nanomaterials have the potential to revolutionize imaging techniques, offering higher sensitivity and specificity, ultimately leading to improved patient outcomes.

:Beyond diagnostics and drug delivery, nanotechnology is fostering breakthroughs in regenerative medicine. Nanomaterials can act as scaffolds, guiding tissue repair and promoting cellular regeneration. By harnessing the unique properties of nanoscale materials, tissue engineering, and organ transplantation may witness unparalleled advancements, bringing hope to countless patients awaiting life-saving treatments. However, the unprecedented potential of nanomedicine also raises ethical concerns that demand careful consideration. As nanotechnology progresses, concerns about the safety of nanomaterials, potential toxicity, and long-term effects must be addressed to ensure responsible and sustainable development.

作者简介

Divyesh Shastri

Department of Pharmaceutics and Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, A constituent of College of Kadi Sarva Vishwavidyalaya

编辑信件的主要联系方式.
Email: info@benthamscience.net

Shivani Gandhi

Department of Pharmaceutics and Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, A constituent of College of Kadi Sarva Vishwavidyalaya

Email: info@benthamscience.net

参考

  1. Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci 2011; 12(5): 3303-21. doi: 10.3390/ijms12053303 PMID: 21686186
  2. Nanjwade BK, Hundekar YR, Kamble MS, Srichana T. Development of cuboidal nanomedicine by nanotechnology. Austin J Nanomed Nanotechnol 2014; 2(4): 1023.
  3. Freitas RA Jr. Nanotechnology, nanomedicine and nanosurgery. Int J Surg 2005; 3(4): 243-6. doi: 10.1016/j.ijsu.2005.10.007 PMID: 17462292
  4. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006; 24(10): 1211-7. doi: 10.1038/nbt1006-1211 PMID: 17033654
  5. Prasad PN. Introduction to nanomedicine and nanobioengineering. John Wiley & Sons 2012.
  6. Logothetidis S. Nanomedicine: The medicine of tomorrow.In: InNanomedicine and Nanobiotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg 2011.
  7. Abeer S. Future medicine: Nanomedicine. Jimsa 2012; 25(3): 187-92.
  8. Miller J. Beyond biotechnology: FDA regulation of nanomedicine. Colum Sci & Tech L Rev 2003; 4: E5. PMID: 15977335
  9. Kumar V, Choudhary AK, Kumar P, Sharma S. Nanotechnology: Nanomedicine, nanotoxicity and future challenges. Nanosci Nanotechnol Asia 2018; 9(1): 64-78. doi: 10.2174/2210681208666180125143953
  10. Krukemeyer MG, Krenn V, Huebner F, Wagner W, Resch R. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J Nanomed Nanotechnol 2015; 6(6): 336.
  11. Letfullin RR, George TF, Letfullin RR, George TF. Introduction to nanomedicine. Computational Nanomedicine and Nanotechnology: Lectures with Computer Practicums 2016; 1-61. doi: 10.1007/978-3-319-43577-0_1
  12. Kargozar S, Mozafari M. Nanotechnology and nanomedicine: Start small, think big. Mater Today Proc 2018; 5(7): 15492-500. doi: 10.1016/j.matpr.2018.04.155
  13. Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: Going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92. doi: 10.2174/138161210791208992 PMID: 20222866
  14. Sharon M. Ed History of nanotechnology: from prehistoric to modern times. John Wiley & Sons 2019. doi: 10.1002/9781119460534
  15. Walker B Jr, Mouton CP. Nanotechnology and nanomedicine: A primer. J Natl Med Assoc 2006; 98(12): 1985-8. PMID: 17225846
  16. Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of plant origin for the treatment of metabolic disorders. Front Bioeng Biotechnol 2022; 9: 811917. doi: 10.3389/fbioe.2021.811917 PMID: 35223819
  17. Setyawati MI, Tay CY, Bay BH, Leong DT. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017; 11(5): 5020-30. doi: 10.1021/acsnano.7b01744 PMID: 28422481
  18. Baer DR, Burrows PE, El-Azab AA. Enhancing coating functionality using nanoscience and nanotechnology. Progress in Organic Coatings 2003; 47(3-4): 342-56. doi: 10.1016/S0300-9440(03)00127-9
  19. Roco MC, Bainbridge WS. Societal implications of nanoscience and nanotechnology: Maximizing human benefit. J Nanopart Res 2005; 7(1): 1-13. doi: 10.1007/s11051-004-2336-5
  20. Avval ZM, Malekpour L, Raeisi F, et al. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 2020; 52(1): 157-84. doi: 10.1080/03602532.2019.1697282 PMID: 31834823
  21. Namiki Y, Fuchigami T, Tada N, et al. Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res 2011; 44(10): 1080-93. doi: 10.1021/ar200011r PMID: 21786832
  22. Surnar B, Basu U, Banik B, et al. Nanotechnology-mediated crossing of two impermeable membranes to modulate the stars of the neurovascular unit for neuroprotection. Proc Natl Acad Sci 2018; 115(52): E12333-42. doi: 10.1073/pnas.1816429115 PMID: 30530697
  23. Mukherjee A, Paul M, Mukherjee S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 2019; 11(5): 597. doi: 10.3390/cancers11050597 PMID: 31035440
  24. Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ. Nanotechnology for regenerative medicine. Biomed Microdevices 2010; 12(4): 575-87. doi: 10.1007/s10544-008-9264-6 PMID: 19096767
  25. Goudarzi R, Dehpour AR, Partoazar A. Nanomedicine and regenerative medicine approaches in osteoarthritis therapy. Aging Clin Exp Res 2022; 34(10): 2305-15. doi: 10.1007/s40520-022-02199-5 PMID: 35867240
  26. Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: The materials side. Trends Biotechnol 2008; 26(1): 39-47. doi: 10.1016/j.tibtech.2007.10.005 PMID: 18036685
  27. Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. InNanotechnologies in preventive and regenerative medicine 2018; 1-92.
  28. Veiseh O, Kievit FM, Ellenbogen RG, Zhang M. Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 2011; 63(8): 582-96. doi: 10.1016/j.addr.2011.01.010 PMID: 21295093
  29. Vizirianakis IS. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine 2011; 7(1): 11-7. doi: 10.1016/j.nano.2010.11.002 PMID: 21094279
  30. dos Santos J, de Oliveira RS, de Oliveira TV, et al. 3D printing and nanotechnology: A multiscale alliance in personalized medicine. Adv Funct Mater 2021; 31(16): 2009691. doi: 10.1002/adfm.202009691
  31. Demchenko AP. Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl Fluoresc 2013; 1(2): 022001. doi: 10.1088/2050-6120/1/2/022001 PMID: 29148443
  32. Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010; 39(11): 4326-54. doi: 10.1039/b915139g PMID: 20697629
  33. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112(5): 2739-79. doi: 10.1021/cr2001178 PMID: 22295941
  34. Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ. Advances in the application of magnetic nanoparticles for sensing. Adv Mater 2019; 31(48): 1904385. doi: 10.1002/adma.201904385 PMID: 31538371
  35. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021; 21(4): 1109. doi: 10.3390/s21041109 PMID: 33562639
  36. Wang X, Li F, Guo Y. Recent trends in nanomaterial-based biosensors for point-of-care testing. Front Chem 2020; 8: 586702. doi: 10.3389/fchem.2020.586702 PMID: 33195085
  37. Kilasoniya A, Garaeva L, Shtam T, et al. Potential of plant exosome vesicles from grapefruit and tomato juices as functional ingredients and targeted drug delivery vehicles. Antioxidants 2023; 12(4): 943. doi: 10.3390/antiox12040943 PMID: 37107317
  38. Yang W, Wei Z, Nie Y, Tian Y. Optical detection and imaging of nonfluorescent matter at the single-molecule/particle level. J Phys Chem Lett 2022; 13(41): 9618-31. doi: 10.1021/acs.jpclett.2c02228 PMID: 36214484
  39. Ye F, Zhao Y, El-Sayed R, Muhammed M, Hassan M. Advances in nanotechnology for cancer biomarkers. Nano Today 2018; 18: 103-23. doi: 10.1016/j.nantod.2017.12.008
  40. Banerjee HN, Verma M. Use of nanotechnology for the development of novel cancer biomarkers. Expert Rev Mol Diagn 2006; 6(5): 679-83. doi: 10.1586/14737159.6.5.679 PMID: 17009903
  41. Kolesova EP, Egorova VS, Syrocheva AO, et al. Proteolytic resistance determines albumin nanoparticle drug delivery properties and increases cathepsin B, D, and G expression. Int J Mol Sci 2023; 24(12): 10245. doi: 10.3390/ijms241210245 PMID: 37373389
  42. Martinez JO, Parodi A, Liu X, Kolonin MG, Ferrari M, Tasciotti E. Evaluation of cell function upon nanovector internalization. Small 2013; 9: 1696. doi: 10.1002/smll.201202001
  43. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013; 339(6122): 971-5. doi: 10.1126/science.1229568 PMID: 23430657
  44. Zain M, Yasmeen H, Yadav SS, et al. Applications of nanotechnology in biological systems and medicine.In: InNanotechnology for hematology, blood transfusion, and artificial blood. Elsevier 2022; pp. 215-35. doi: 10.1016/B978-0-12-823971-1.00019-2
  45. Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. Nat Rev Mater 2022; 8(2): 123-38. doi: 10.1038/s41578-022-00517-x PMID: 37206669
  46. Kailasa SK, Mehta VN, Koduru JR, et al. An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: Promising biotools for the rapid diagnosis of COVID-19. Analyst 2021; 146(5): 1489-513. doi: 10.1039/D0AN01528H PMID: 33543178
  47. Zhang F, Nangreave J, Liu Y, Yan H. Structural DNA nanotechnology: State of the art and future perspective. J Am Chem Soc 2014; 136(32): 11198-211. doi: 10.1021/ja505101a PMID: 25029570
  48. Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater 2018; 1811(1): 1-9. PMID: 29926442
  49. Yang D, Hartman MR, Derrien TL, et al. DNA materials: Bridging nanotechnology and biotechnology. Acc Chem Res 2014; 47(6): 1902-11. doi: 10.1021/ar5001082 PMID: 24884022
  50. Ohno H, Saito H. RNA and RNP as building blocks for nanotechnology and synthetic biology. Prog Mol Biol Transl Sci 2016; 139: 165-85. doi: 10.1016/bs.pmbts.2015.12.004 PMID: 26970194
  51. Yaradoddi J, Kontro MH, Ganachari SV, et al. RNA nanotechnology. Handbook of ecomaterials. 2019.
  52. Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: A review. J Nanophotonics 2008; 2(1): 021875. doi: 10.1117/1.2992045
  53. Sharifi M, Attar F, Saboury AA, et al. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312: 170-89. doi: 10.1016/j.jconrel.2019.08.032 PMID: 31472191
  54. Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009; 457(7225): 71-5. doi: 10.1038/nature07593 PMID: 19122638
  55. Iida T, Ishihara H. Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition. Phys Rev Lett 2003; 90(5): 057403. doi: 10.1103/PhysRevLett.90.057403 PMID: 12633396
  56. Fedoruk M, Meixner M, Carretero-Palacios S, Lohmüller T, Feldmann J. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 2013; 7(9): 7648-53. doi: 10.1021/nn402124p PMID: 23941522
  57. Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 2004; 101(39): 14036-9. doi: 10.1073/pnas.0406115101 PMID: 15381774
  58. Li H, Rothberg LJ. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 2004; 76(18): 5414-7. doi: 10.1021/ac049173n PMID: 15362900
  59. Demirer GS, Silva TN, Jackson CT, et al. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat Nanotechnol 2021; 16(3): 243-50. doi: 10.1038/s41565-021-00854-y PMID: 33712738
  60. Ahmar S, Mahmood T, Fiaz S, et al. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci 2021; 12: 663849. doi: 10.3389/fpls.2021.663849 PMID: 34122485
  61. Jie Chen, Wong STC. Nanotechnology for genomic signal processing in cancer research - A focus on the genomic signal processing hardware design of the nanotools for cancer ressearch. IEEE Signal Process Mag 2007; 24(1): 111-21. doi: 10.1109/MSP.2007.273064
  62. Ferrari M. BioMEMS and biomedical nanotechnology: Volume II: micro/nano technologies for genomics and proteomics. In: Springer Science & Business Media. 2007.
  63. Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Res 2019; 12(10): 2437-50. doi: 10.1007/s12274-019-2465-x
  64. Mohamadi MR, Mahmoudian L, Kaji N, Tokeshi M, Chuman H, Baba Y. Nanotechnology for genomics & proteomics. Nano Today 2006; 1(1): 38-45. doi: 10.1016/S1748-0132(06)70021-4
  65. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 2009; 4(4): 265-70. doi: 10.1038/nnano.2009.12 PMID: 19350039
  66. Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev A, Timp G. Nanopore sequencing: Electrical measurements of the code of life. IEEE Trans Nanotechnol 2010; 9(3): 281-94. doi: 10.1109/TNANO.2010.2044418 PMID: 21572978
  67. Ying YL, Hu ZL, Zhang S, et al. Nanopore-based technologies beyond DNA sequencing. Nat Nanotechnol 2022; 17(11): 1136-46. doi: 10.1038/s41565-022-01193-2 PMID: 36163504
  68. Marie R, Pedersen JN, Bauer DLV, et al. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc Natl Acad Sci 2013; 110(13): 4893-8. doi: 10.1073/pnas.1214570110 PMID: 23479649
  69. Cheng J, Liu Y, Zhao Y, et al. Nanotechnology-assisted isolation and analysis of circulating tumor cells on microfluidic devices. Micromachines 2020; 11(8): 774. doi: 10.3390/mi11080774 PMID: 32823926
  70. Ruggiero E, Lago S, Šket P, et al. A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription. Nucleic Acids Res 2019; 47(21): 11057-68. doi: 10.1093/nar/gkz937 PMID: 31665504
  71. Palmblad M, van Eck NJ, Bergquist J. Capillary electrophoresis-A bibliometric analysis. Trends Analyt Chem 2022; 116899.
  72. Weber MU, Petkowski JJ, Weber RE, et al. Chip for dielectrophoretic microbial capture, separation and detection II: Experimental study. Nanotechnology 2023; 34(17): 175502. doi: 10.1088/1361-6528/acb321 PMID: 36640445
  73. Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 2015; 5(1): 13957. doi: 10.1038/srep13957 PMID: 26355750
  74. Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. nature 2008; 452(7189): 872-6.
  75. Dutta P, Kumari A, Mahanta M, et al. Advances in nanotechnology as a potential alternative for plant viral disease management. Front Microbiol 2022; 13: 935193. doi: 10.3389/fmicb.2022.935193 PMID: 35847105
  76. Xue HY, Liu S, Wong HL. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 2014; 9(2): 295-312. doi: 10.2217/nnm.13.204 PMID: 24552562
  77. Ren J, Cai R, Wang J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas. Nano Lett 2019; 19(7): 4692-701. doi: 10.1021/acs.nanolett.9b01774 PMID: 31244235
  78. Evangelopoulos M, Parodi A, Martinez J, Tasciotti E. Trends towards biomimicry in theranostics. Nanomaterials 2018; 8(9): 637. doi: 10.3390/nano8090637 PMID: 30134564
  79. Lee CS, Singh RK, Hwang HS, et al. Materials-based nanotherapeutics for injured and diseased bone. Prog Mater Sci 2023; 135: 101087. doi: 10.1016/j.pmatsci.2023.101087
  80. Al Badri YN, Chaw CS, Elkordy AA. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics 2023; 15(1): 294. doi: 10.3390/pharmaceutics15010294 PMID: 36678922
  81. Muppala V, Farran B, Nagaraju GP. Pyroptosis-based nanotherapeutics: Possible mechanisms for cancer treatment. Life Sci 2022; 308: 120970. doi: 10.1016/j.lfs.2022.120970 PMID: 36115581
  82. Zhu H, Mah Jian Qiang J, Wang CG, et al. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18: 471-91. doi: 10.1016/j.bioactmat.2022.03.034 PMID: 35415299
  83. Hu CMJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: Clinical development and advances in stealth functionalization strategies. Nanoscale 2014; 6(1): 65-75. doi: 10.1039/C3NR05444F PMID: 24280870
  84. Voci S, Gagliardi A, Fresta M, Cosco D. Antitumor features of vegetal protein-based nanotherapeutics. Pharmaceutics 2020; 12(1): 65. doi: 10.3390/pharmaceutics12010065 PMID: 31952147
  85. Cheng L, Yang L, Meng F, Zhong Z. Protein nanotherapeutics as an emerging modality for cancer therapy. Adv Healthc Mater 2018; 7(20): 1800685. doi: 10.1002/adhm.201800685 PMID: 30240152
  86. Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 2011; 32(1): 173-87. doi: 10.1016/j.peptides.2010.10.003 PMID: 20934475
  87. Flynn T, Wei C. The pathway to commercialization for nanomedicine. Nanomedicine 2005; 1(1): 47-51. doi: 10.1016/j.nano.2004.11.010 PMID: 17292057
  88. Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C. Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 2005; 1(2): 150-8. doi: 10.1016/j.nano.2005.03.009 PMID: 17292072
  89. Bosetti R. Cost–effectiveness of nanomedicine: The path to a future successful and dominant market? Nanomedicine 2015; 10(12): 1851-3. doi: 10.2217/nnm.15.74 PMID: 26139120
  90. Chakraborty M, Jain S, Rani V. Nanotechnology: Emerging tool for diagnostics and therapeutics. Appl Biochem Biotechnol 2011; 165(5-6): 1178-87. doi: 10.1007/s12010-011-9336-6 PMID: 21847590
  91. Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res 2020; 10(3): 721-5. doi: 10.1007/s13346-020-00740-5 PMID: 32166632
  92. Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine 2017; 13(6): 2101-13. doi: 10.1016/j.nano.2017.04.008 PMID: 28428052
  93. Bawa R, Johnson S. Emerging issues in nanomedicine and ethics.In: Nanotechnology & society: Current and emerging ethical issues. Dordrecht: Springer Netherlands 2009; pp. 207-23. doi: 10.1007/978-1-4020-6209-4_11
  94. Varol C, Mildner A, Jung S. Macrophages: Development and tissue specialization. Annu Rev Immunol 2015; 33(1): 643-75. doi: 10.1146/annurev-immunol-032414-112220 PMID: 25861979
  95. Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev 2017; 46(14): 4218-44. doi: 10.1039/C6CS00636A PMID: 28585944
  96. Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and "stealthy" surface: Carrier properties affect the drug circulation time in vivo. Asian J pharma sci 2021; 16(4): 444-58.
  97. Yoo JW, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 2011; 63(14-15): 1247-56. doi: 10.1016/j.addr.2011.05.004 PMID: 21605607
  98. Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2018; 07(Pt A): 1278-93. doi: 10.1016/j.ijbiomac.2017.09.110 PMID: 29017884
  99. Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 1996; 98(9): 2076-85. doi: 10.1172/JCI119013 PMID: 8903327
  100. Grace JA, Herath CB, Mak KY, Burrell LM, Angus PW. Update on new aspects of the renin–angiotensin system in liver disease: Clinical implications and new therapeutic options. Clin Sci 2012; 123(4): 225-39. doi: 10.1042/CS20120030 PMID: 22548407
  101. Campbell F, Bos FL, Sieber S, et al. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS Nano 2018; 12(3): 2138-50. doi: 10.1021/acsnano.7b06995 PMID: 29320626
  102. Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: Issues and future directions. Expert Opin Drug Deliv 2018; 15(11): 1053-65. doi: 10.1080/17425247.2018.1520836 PMID: 30198792
  103. Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396-401. doi: 10.1038/nature18300 PMID: 27281205
  104. Andretto V, Repellin M, Pujol M, et al. Hybrid core-shell particles for mRNA systemic delivery. J Control Release 2023; 353: 1037-49. doi: 10.1016/j.jconrel.2022.11.042 PMID: 36442614
  105. Dirisala A, Uchida S, Toh K, et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci Adv 2020; 6(26): eabb8133. doi: 10.1126/sciadv.abb8133 PMID: 32637625
  106. Liu T, Choi H, Zhou R, Chen IW. RES blockade: A strategy for boosting efficiency of nanoparticle drug. Nano Today 2015; 10(1): 11-21. doi: 10.1016/j.nantod.2014.12.003
  107. Tavares AJ, Poon W, Zhang YN, et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci 2017; 114(51): E10871-80. doi: 10.1073/pnas.1713390114 PMID: 29208719
  108. Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release 2016; 240: 332-48. doi: 10.1016/j.jconrel.2016.01.020 PMID: 26774224
  109. Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response. Proc Natl Acad Sci 2022; 119(34): e2207841119. doi: 10.1073/pnas.2207841119 PMID: 35969778
  110. Parhiz H, Brenner JS, Patel PN, et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release 2022; 344: 50-61. doi: 10.1016/j.jconrel.2021.12.027 PMID: 34953981
  111. Youssef M, Hitti C, Puppin Chaves Fulber J, Kamen AA. Enabling mRNA therapeutics: Current landscape and challenges in manufacturing. Biomolecules 2023; 13(10): 1497. doi: 10.3390/biom13101497 PMID: 37892179
  112. Shchaslyvyi AY, Antonenko SV, Tesliuk MG, Telegeev GD. Current state of human gene therapy: Approved products and vectors. Pharmaceuticals 2023; 16(10): 1416. doi: 10.3390/ph16101416 PMID: 37895887
  113. D’souza AA, Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 2016; 13(9): 1257-75. doi: 10.1080/17425247.2016.1182485 PMID: 27116988
  114. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166(2): 182-94. doi: 10.1016/j.jconrel.2012.12.013 PMID: 23262199
  115. Shen X, Dirisala A, Toyoda M, et al. pH-responsive polyzwitterion covered nanocarriers for DNA delivery. J Control Release 2023; 360: 928-39. doi: 10.1016/j.jconrel.2023.07.038 PMID: 37495117
  116. Dirisala A, Osada K, Chen Q, et al. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials 2014; 35(20): 5359-68. doi: 10.1016/j.biomaterials.2014.03.037 PMID: 24720877
  117. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  118. Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov Today 2018; 23(5): 974-91. doi: 10.1016/j.drudis.2018.01.047 PMID: 29406263
  119. Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: Mechanisms, obstacles and strategies. Nanomedicine 2018; 13(13): 1639-56. doi: 10.2217/nnm-2018-0007 PMID: 30035660
  120. Nassiri Koopaei N, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. Daru 2016; 24(1): 23. doi: 10.1186/s40199-016-0163-8 PMID: 27716350
  121. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25-38. doi: 10.1016/j.addr.2016.04.025 PMID: 27137110
  122. Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines 2021; 9(1): 65. doi: 10.3390/vaccines9010065 PMID: 33478109
  123. Chan WCW, Artzi N, Chen C, et al. Noble nanomedicine: Celebrating groundbreaking mrna vaccine innovations. ACS Nano 2023; 17(20): 19476-7. doi: 10.1021/acsnano.3c09781 PMID: 37819863

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024