The role of storage lipids in vertical migrations of the beaked redfish (Sebastes mentella) in the North Atlantic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The content of the main classes of storage lipids – triacylglycerols, cholesterol esters and waxes – in the muscles and liver of the beaked redfish (Sebastes mentella) and their changes in the depth gradient and in different areas of the North Atlantic were studied. Significant differences in the quantitative content of reserve lipids in beaked redfish’s from different fishing horizons were established. The analyzed changes the lipids in tissues and organs of fishes with increasing depth indicate the use of triacylglycerols, cholesterol esters and waxes as energy sources, as well as for maintaining buoyancy of the organism during vertical migration. The results of the study can be used for further study of the migration biochemical mechanisms of the commercial sea bass species of the North Atlantic – the beaked redfish, as well as other aquatic organisms with similar swimming activity. Reliable differences in the quantitative content of reserve lipids in sea bass from different fishing horizons were established.

About the authors

V. P. Voronin

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: voronen-viktor@mail.ru
Russian Federation, Petrozavodsk

A. Y. Rolskii

Polar Branch of the “Russian Federal Research Institute of Fisheries and Oceanography (VNIRO)”

Email: voronen-viktor@mail.ru
Russian Federation, Murmansk

A. M. Orlov

Shirshov Institute of Oceanology of the Russian Academy of Sciences; A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: voronen-viktor@mail.ru
Russian Federation, Moscow; Moscow

S. A. Murzina

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: voronen-viktor@mail.ru
Russian Federation, Petrozavodsk

References

  1. Мантейфель Б.П. Вертикальные миграции морских организмов. Об адаптивном значении вертикальных миграций рыб планктофагов // Труды Института экологии и эволюции животных АН СССР. – 1961. – Т. 39. – С. 5–46.
  2. Михеев В.Н. Неоднородность среды и трофические отношения у рыб. М.: Наука, 2006. – 191 с
  3. Hochachka P.W., Somero G.N. Biochemical adaptation: mechanism and process in physiological evolution. N.Y.: Oxford University Press, 2002. – 466 p.
  4. Сиделева В.Г., Козлова Т.А. Сравнительное изучение эндемичных коттоидных рыб (Cottidae, Comephoridae) в связи с их приспособлением к обитанию в пелагиали озера Байкал // Труды Зоологического Института РАН. – 2010. – Т. 314, № 4. – С. 433–447.
  5. Lee R.F., Nevenzel J.C., Paffenhofer G.-A. Importance of wax esters and other lipids in the marine food chain: Phytoplankton and copepods // Marine Biology. – 1971. – Vol. 9, N. 2. – P. 99–108.
  6. Phleger C.F. Biochemical aspects of buoyancy in fishes. Amsterdam: Elsevier, 1991. – P. 209–247.
  7. Phleger C.F. Buoyancy in marine fishes: Direct and indirect role of lipids // American Zoologist. – 1998. – Vol. 38, N. 2. – P. 321–330.
  8. Мельников С.П. Океанический окунь-клювач Северной Атлантики: биология и промысел. Мурманск: Издательство ПИНРО, 2006. – 111 с.
  9. Planque B., Kristinsson K., Astakhov A., et al. Monitoring beaked redfish (Sebastes mentella) in the North Atlantic, current challenges and future prospects// Aquatic Living Resources. – 2013. – Vol. 26, N. 4. – P. 293–306.
  10. Voronin V.P., Nemova N.N., Ruokolainen T.R., et al. Into the deep: New data on the lipid and fatty acid profile of redfish Sebastes mentella inhabiting different depths in the Irminger sea // Biomolecules. – 2021. – Vol. 11, N. 5. – Article ID. 704.
  11. Gauthier S. Target Strength of encaged Atlantic redfish (Sebastes spp.) // ICES Journal of Marine Science. – 2001. – Vol. 58, N. 3. – P. 562–568.
  12. Gauthier S., Rose G.A. An hypothesis on endogenous hydrostasis in Atlantic redfish (Sebastes spp.) // Fisheries Research. – 2002. – Vol. 58, N. 2. – P. 227–230.
  13. Working group on international deep pelagic ecosystem surveys (WGIDEEPS) // ICES Scientific Reports. – 2021. – Vol. 3:43. – 32 p.
  14. Folch J., Lees М., Sloane Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues // Journal of Biological Chemistry. – 1957. – Vol. 226, N. 5. – P. 497–509.
  15. Olsen R.E., Henderson R.J. The rapid analysis of neutral and polar marine lipids using double-development HPTLC and scanning densitometry // Journal of Experimental Marine Biology and Ecology. – 1989. – Vol. 129, N. 2. – P. 189–197.
  16. Толстова Ю.Н. Основы многомерного шкалирования: учебное пособие. М.: КДУ, 2006. – 160 с.
  17. Wood S.N. Low‐Rank scale‐invariant tensor product smooths for generalized additive mixed models // Biometrics. – 2006. – Vol. 62, N. 4. – P. 1025-1036.
  18. Del Raye G., Jorgensen S.J., Krumhansl K., et al. Travelling light: white sharks (Carcharodon carcharias) rely on body lipid stores to power ocean-basin scale migration // Proceedings of the Royal Society B: Biological Sciences. – 2013. – Vol. 280, N. 1766. – Article ID. 20130836.
  19. Campbell R., Dower J. Role of lipids in the maintenance of neutral buoyancy by zooplankton // Marine Ecology Progress Series. – 2003. – Vol. 263. – P. 93–99.
  20. Sargent J.R., Gatten R.R., McIntosh R. Wax esters in the marine environment – their occurrence, formation, transformation and ultimate fates // Marine Chemistry. – 1977. – Vol. 5, N. 4–6. – P. 573–584.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences