Activity of energy and carbohydrate metabolism enzymes in rainbow trout (Оncorhynchus mykiss Walb.) with the introduction of 24-hour lighting in aquaculture conditions of the Southern region of the Russian Federation
- Authors: Rodin M.A.1, Kuznetsova M.V.1, Krupnova M.Y.1, Kuritsyn A.E.1, Nemova N.N.1
-
Affiliations:
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
- Issue: Vol 519, No 1 (2024)
- Pages: 91-97
- Section: Articles
- URL: https://gynecology.orscience.ru/2686-7389/article/view/651387
- DOI: https://doi.org/10.31857/S2686738924060144
- ID: 651387
Cite item
Abstract
The activity of energy and carbohydrate metabolism enzymes (cytochrome c oxidase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glycerophosphate dehydrogenase, lactate dehydrogenase, aldolase) was studied in rainbow trout Oncorhynchus mykiss Walb. grown in aquaculture conditions at an enterprise in North Ossetia-Alania under a regime including 24-hour lighting and night feeding. According to the results of the study, the activity of cytochrome c oxidase and pyruvate kinase in the liver of fish from the experimental group was significantly higher than in the control individuals, indicating an increase in the aerobic metabolism level of ATP synthesis. The activity of aldolase in the organs of fish grown under 24-hour lighting was lower compared to fish from the control group, indicating a decrease in the level of carbohydrate utilization in glycolysis in muscles and the intensity of gluconeogenesis in the liver. The differences revealed suggest that with the introduction of 24-hour lighting and night feeding, metabolic changes are observed in energy and carbohydrate metabolism, facilitating biosynthesis processes and, accordingly, an increase in fish weight.
Keywords
About the authors
M. A. Rodin
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Email: kuznetsovamvi@yandex.ru
Russian Federation, Petrozavodsk
M. V. Kuznetsova
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: kuznetsovamvi@yandex.ru
Russian Federation, Petrozavodsk
M. Y. Krupnova
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Email: kuznetsovamvi@yandex.ru
Russian Federation, Petrozavodsk
A. E. Kuritsyn
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Email: kuznetsovamvi@yandex.ru
Russian Federation, Petrozavodsk
N. N. Nemova
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Email: kuznetsovamvi@yandex.ru
Academician of the RAS
Russian Federation, PetrozavodskReferences
- Boeuf G., Falcon J., Photoperiod and growth in fish // Vie Milieu. 2002. Vol. 51. P. 237–246.
- Noori A., Mojazi Amiri B., Mirvaghefi A., et al. Enhanced growth and retarded gonadal development of farmed rainbow trout, Oncorhynchus mykiss (Walbaum) following a long-day photoperiod // Aquac. Res. 2015. Vol. 46. P. 2398–2406.
- Lundova K., Matousek J., Prokesova M., et al. The effect of timing of extended photoperiod on growth and maturity of brook trout (Salvelinus fontinalis) // Aquac. Res. 2019. Vol. 50, №6. P. 1697–1704.
- Sonmez A.Y., Hisar O., Hisar S.A., et al. The effects of different photoperiod regimes on growth, feed conversion rate and survival of rainbow trout (Oncorhynchus mykiss) fry // J Anim Vet Adv. 2009. Vol. 8. P. 760–763.
- Озернюк Н.Д. Энергетический обмен в раннем онтогенезе рыб // М.: Наука. 1985. 175 с.
- Churova M.V., Shulgina N., Kuritsyn A., et al. Muscle-specific gene expression and metabolic enzyme activities in Atlantic salmon Salmo salar L. fry reared under different photoperiod regimes // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2020. Vol. 239. P. 110330.
- Smith L. Spectrophotometric assay of cytochrome c oxidase // Methods in Biochem Analysis. 1995. Vol. 2. P. 427–434.
- Колб В.Г., Камышников В.С. Клиническая биохимия // Минск: Изд-во Беларусь. 1976. 311 с.
- Кочетов Г.А. Практическое руководство по энзимологии // М.: Высш. шк. 1980. 272 с.
- Bücher T., Pfleiderer G. Pyruvate kinase from muscle // Methods in Enzymology. 1955. Vol. 1. P. 345–440.
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. Vol. 72. P. 248–254.
- Gauthier C., Campbell P., Couture P. Physiological correlates of growth and condition in the yellow perch (Perca flavescens) // Comparative Biochemistry and Physiology. Part A. 2008. Vol. 151. P. 526–532.
- Metón I., Mediavilla D., Caseras A., et al. Effect of diet composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata) // British J. Nutrition. 1999. Vol. 82, №3. P. 223–232.
- Björnsson B.T., Thorarensen H., Hirano T., et al. Photoperiod and temperature affect plasma growth hormone levels, growth, condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during parr-smolt transformation // Aquaculture. 1989. Vol. 82, №1–4. P. 77–91.
- Llewellyn L., Sweeney G.E., Ramsurn V.P., et al. Cloning and unusual expression profile of the aldolase B gene from Atlantic salmon // Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1998. Vol. 1443(3). P. 375–380.
- Tian W.N., Braunstein L.D., Pang J., et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth // J. Biol. Chem. 1998. Vol. 273. P. 10609–10617.
- Harmon J.S., Sheridan M.A. Glucose-stimulated lipolysis in rainbow trout (Oncorhynchus mykiss) liver // J. Fish Physiol. and Biochem. 1992. Vol. 10. P. 189–199.
- Treberg J.R., Lewis J.M., Driedzic W.R. Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus) // Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002. Vol. 132. P. 433–438.
- Biswas A.K., Seoka M., Inoue Y., et al. Photoperiod influences the growth, food intake, feed efficiency and digestibility of red sea bream (Pagrus major) // Aquaculture. 2005. Vol. 250, №3–4. P. 666–673.
- Kuznetsova M.V., Rodin M.A., Shulgina N.S., et al. The Influence of Different Lighting and Feeding Regimes on the Activity of Metabolic Enzymes in Farmed Atlantic Salmon Fingerlings // Russian Journal of Developmental Biology. 2023. Т. 54, №2. С. 147–155.
Supplementary files
