Functional activity of the blood system of two migratory species of the Ural

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The presented data on the study of the functional activity of the blood system of migratory species of the fauna of the Urals: Vespertilio murinus [Linnaeus, 1758], and Pipistrellus nathusii Keyserling et [Blasius, 1839]. Multivariate nonparametric analysis of variance of red blood parameters (p < 0.05) of migrating bats and the sedentary pond bat showed significant species differences. In bats, a certain genetically determined multidirectionality in the mobilization of emergency regulation mechanisms of the lymphoid blood system of sedentary and migratory species has been noted.

全文:

受限制的访问

作者简介

L. Kovalchuk

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kovalchuk@ipae.uran.ru
俄罗斯联邦, Yekaterinburg

V. Mishchenko

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences; Federal Research Institute of Viral Infections “Virom” of the Russian Consumer Protection Agency

Email: kovalchuk@ipae.uran.ru
俄罗斯联邦, Yekaterinburg; Yekaterinburg

L. Chernaya

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: kovalchuk@ipae.uran.ru
俄罗斯联邦, Yekaterinburg

V. Snit’ko

South Ural Federal Scientific Centre of Mineralogy and Environmental Geology, Ural Branch of the Russian Academy of Sciences

Email: kovalchuk@ipae.uran.ru
俄罗斯联邦, Ilmen Reserve, Miass

V. Bolshakov

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: kovalchuk@ipae.uran.ru

Аcademician

俄罗斯联邦, Yekaterinburg

参考

  1. Большаков В.Н., Орлов О.Л., Снитько В.П. Летучие мыши Урала. Екатеринбург: Академкнига, 2005.
  2. Снитько В.П., Снитько Л.В. Рукокрылые (Chiroptera, Vespertillionidae) Южного Урала (Челябинская область) // Зоологический журнал. 2017. Т. 96. № 3. С. 320–349.
  3. Снитько В.П. Рукокрылые (Chiroptera) Ильменского заповедника // Plecotus et al. 2001. № 4. C. 69–74.
  4. Alcalde J., Jiménez M., Brila I., et al. Transcontinental 2200 km migration of a Nathusius’ pipistrelle (Pipistrellus nathusii) across Europe // Mammalia. 2021. V. 85 (2). P. 161–163.
  5. Vasenkov D., Desmet J.F., Popov I., et al. Bats can migrate farther than it was previously known: a new longest migration record by Nathusius pipistrelle Pipistrellus nathusii (Chiroptera: Vespertilionidae) // Mammalia. 2022. V. 86 (5). P. 524–526.
  6. Rebelo H., Tarroso P., Jones G. Predicted impact of climate change on European bats in relation to their biogeographic patterns // Global Change Biology. 2010. V. 16 (2). P. 561–576.
  7. Frik W.F., Kingston T., Flanders J. A review of the major threats and challenges to global bat conservation // Annals of the New York Academy of Sciences. 2020. V. 1469 (1). P. 5–25.
  8. Rydell J., Bach L., Dubourg-Savage M.J., et al. Bat mortality at wind turbines in Northwestern Europe // Acta Chiropterologica. 2010. V. 12 (2). P. 261–274.
  9. Russo D., Ancillotto L. Sensitivity of bats to urbanization: a review // Mammalian Biology. 2015. V. 80 (3). P. 205–212.
  10. Frick W.F., Reynolds D.S., Kunz T.H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus // Journal of Animal Ecology. 2010. V. 79 (1). P. 128–136.
  11. Amorim F., Mata V.A., Beja P., et al. Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis) // Mammalian Biology. 2015. V. 80. P. 228–236.
  12. Russo D., Salinas-Ramos V.B., Cistrone L., et al. Do we need to use bats as bioindicators? // Biology. 2021. V. 10 (8). P. 693–708.
  13. Ковальчук Л.А., Мищенко В.А., Черная Л.В. и др. Сезонная изменчивость иммуногематологических параметров периферической крови прудовой ночницы Myotis dasycneme (Boie, 1825), обитающей на Урале // Доклады РАН. Науки о жизни. 2023. Т. 510 (1). С. 278-282.
  14. Стрелков П.П. Оседлые и перелетные виды летучих мышей (Chiroptera) в Европейской части СССР. Сообщение 1 // Бюллетень МОИП. Отдел биологии. 1970. Т. 75 (2). С. 38–52.
  15. Yarri D. The Ethics of Animal Experimentation. Oxford: Oxford UniverPress, 2005.
  16. Chessel D., Dufour A.B., Thioulouse J. The ade 4 package-I: One-table methods // R News. 2004. V. 4. P. 5–10.
  17. Bandouchova H., Zukal J., Linhart P., et al. Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters // PLoS One. 2020. V. 15 (7): e0234784.
  18. Kovalchuk L., Mishenko V., Chernaya L., et al. Haematological parameters of pond bats (Myotis dasycneme Boie, 1825 Chiroptera: Vespertilionidae) in the Ural Mountains // Zoology and Ecology. 2017. V. 27 (2). P. 168–175.
  19. Jenne CN., Urrutia R., Kubes P. Platelets: bridging hemostasis, inflammation, and immunity // International Journal of Laboratory Hematology. 2013. V. 35 (3). P. 254–261.
  20. Scapigliati G., Buonocore F., Mazzini M. Biological activity of cytokines: an evolutionary perspective // Current Pharmaceutical Design. 2006. V. 12. P. 3071–3081.

补充文件

附件文件
动作
1. JATS XML
2. Rice. 1. Indicators of red blood of bats in the space of two main components. PC1, PC2 – axes of principal components, % – percentage of data variance explained by the principal component; arrows reflect the correlation of the principal components with the original indicators; ellipses represent 95% confidence regions.

下载 (105KB)

版权所有 © Russian Academy of Sciences, 2024