Долгопериодные тенденции изменения температуры вод в северной части Атлантического океана по данным океанских реанализов
- Авторы: Сухонос П.А.1, Иванов В.В.2, Дианский Н.А.2,3,4
-
Учреждения:
- Институт природно-технических систем
- Московский государственный университет им. М. В. Ломоносова
- Институт вычислительной математики им. Г. И. Марчука
- Государственный океанографический институт им. Н. Н. Зубова
- Выпуск: Том 515, № 2 (2024)
- Страницы: 289-295
- Раздел: ОКЕАНОЛОГИЯ
- Статья получена: 31.01.2025
- Статья опубликована: 15.10.2024
- URL: https://gynecology.orscience.ru/2686-7397/article/view/649952
- DOI: https://doi.org/10.31857/S2686739724040145
- ID: 649952
Цитировать
Аннотация
Приводятся результаты оценки долгопериодных изменений температуры вод в северной части Атлантического океана (0°–70° с. ш., 8°–80° з. д.) по данным океанских реанализов и объективных анализов за периоды 1961–2011 гг. и 1980–2011 гг. Полученные оценки основаны на применении непараметрического метода регрессионного анализа (квантильной регрессии) к среднемесячной температуре океана для значения квантиля 0.5. В период 1961–2011 гг. потепление, в основном, отмечалось в верхнем 400-метровом слое в области от экватора до 70° с. ш. За этот 51-летний период рост медианы среднемесячной температуры океана составил в среднем по анализируемой акватории ~0.5°C, а в системе Гольфстрим–Северо-Атлантическое течение ~1°C. В период 1980–2011 гг. потепление в северной части Атлантического океана, в основном, происходило в верхнем 1-км слое в высоких широтах (50°–65° с. ш.). За этот 32-летний период рост медианы среднемесячной температуры океана в субполярном круговороте в верхнем 400-метровом слое составил ~1°C.
Ключевые слова
Об авторах
П. А. Сухонос
Институт природно-технических систем
Автор, ответственный за переписку.
Email: pasukhonis@mail.ru
Россия, Севастополь
В. В. Иванов
Московский государственный университет им. М. В. Ломоносова
Email: pasukhonis@mail.ru
Россия, Москва
Н. А. Дианский
Московский государственный университет им. М. В. Ломоносова; Институт вычислительной математики им. Г. И. Марчука; Государственный океанографический институт им. Н. Н. Зубова
Email: pasukhonis@mail.ru
Россия, Москва; Москва; Москва
Список литературы
- Добролюбов С.А. Океан и изменения климата // Партнерство цивилизаций. 2020. № 1–2. С. 174–178.
- IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, P. 1–34.
- Levitus S., Antonov J.I., Boyer T.P., et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 // Geophysical Research Letters. 2012. V. 39. No. 10.
- Багатинский В.А., Дианский Н.А. Вклады климатических изменений температуры и солености в формирование трендов термохалинной циркуляции Северной Атлантики в 1951–2017 гг. // Вестник МГУ. Серия 3. Физика. Астрономия. 2022. № 3. С. 73–88.
- Lyman J.M., Johnson G.C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice // Journal of Climate. 2014. V. 27. No. 5. P. 1945–1957.
- Polyakov I.V., Alexeev V.A., Bhatt U.S., et al. North Atlantic warming: patterns of long-term trend and multidecadal variability // Climate Dynamics. 2010. V. 34. P. 439–457.
- Gulev S.K., Latif M., Keenlyside N., et al. North Atlantic Ocean control on surface heat flux on multidecadal timescales // Nature. 2013. V. 499. No. 7459. P. 464–467.
- DelSole T., Tippett M.K., Shukla J. A significant component of unforced multidecadal variability in the recent acceleration of global warming // Journal of Climate. 2011. V. 24. No. 3. P. 909–926.
- Good S.A., Martin M.J., Rayner N.A. EN4: quality-controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates // Journal of Geophysical Research: Oceans. 2013. V. 118. No. 12. P. 6704–6716.
- Ishii M., Kimoto M., Kachi M. Historical ocean subsurface temperature analysis with error estimates // Monthly Weather Review. 2003. V. 131. No. 1. P. 51–73.
- Köhl A. Evaluating the GECCO3 1948–2018 ocean synthesis – a configuration for initializing the MPI‐ESM climate model // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. No. 730. P. 2250–2273.
- Balmaseda M.A., Mogensen K., Weaver A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4 // Quarterly Journal of the Royal Meteorological Society. 2013. V. 139. No. 674. P. 1132–1161.
- Chang Y.-S., Zhang S., Rosati A., et al. An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation // Climate Dynamics. 2013. V. 40. No. 3–4. P. 775–803.
- Balmaseda M.A., Vidard A., Anderson D.L.T. The ECMWF Ocean Analysis System: ORA-S3 // Monthly Weather Review. 2008. V. 136. No. 8. P. 3018–3034.
- Zuo H., Balmaseda M.A., Tietsche S., et al. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment // Ocean science. 2019. V. 15. No. 3. P. 779–808.
- Behringer D.W., Xue Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean // Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Ocean, and Land Surface. Seattle, WA, Amer. Meteor. Soc. 2004. [Available online at https://origin.cpc.ncep.noaa.gov/products/people/yxue/pub/13.pdf]
- Carton J.A., Chepurin G.A., Chen L. SODA3: a new ocean climate reanalysis // Journal of Climate. 2018. V. 31. No. 17. P. 6967–6983.
- Koеnkеr R. Quantilе Rеgrеssion. Есonometriс Soсiеty Monographs: Cambridgе, 2005. 349 p.
- Тимофеев А.А., Стерин А.М. Применение метода квантильной регрессии для анализа изменений характеристик климата // Метеорология и гидрология. 2010. № 5. С. 27–41.
- Киктев Д.Б., Крыжов В.Н. О сравнении различных методов оценки статистической значимости линейных трендов // Метеорология и гидрология. 2004. № 11. С. 27–38.
Дополнительные файлы
