Thermal convection modeling of the evolution of the earth core
- 作者: Aranovich L.Y.1, Kotelkin V.D.2
-
隶属关系:
- Institute of Geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 520, 编号 1 (2025)
- 页面: 167-174
- 栏目: PHYSICS OF THE EARTH
- ##submission.dateSubmitted##: 03.06.2025
- ##submission.datePublished##: 30.05.2025
- URL: https://gynecology.orscience.ru/2686-7397/article/view/682419
- DOI: https://doi.org/10.31857/S2686739725010197
- EDN: https://elibrary.ru/GVBVVA
- ID: 682419
如何引用文章
详细
We present a purely thermal convection 2D model of the Earth’s liquid core, occurring on the background of the secular cooling of the planet. The model includes equations of thermal convection in the Boussinesq approximation and the Coriolis force. Metallic iron with 0.9 wt. % Н is chosen for the core composition. The results of modeling show that large vortexes, the 2-D analogues of Taylor columns, are formed in the liquid core prior to crystallization, which might be responsible for the early Earth magnetic field. The early stages of the solid core crystallization are characterized by a chaotic and shapeless growth. Continuing growth of the solid core results in rearrangement of the convection structure decreasing its average velocity but increasing heat flow at the core-mantle boundary due to increased amount of heat of crystallization. The solid core reaches its present size in 0.5 Gy. Averaged temperature profile of the modern liquid core differs significantly from the adiabatic.
全文:

作者简介
L. Aranovich
Institute of Geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences
编辑信件的主要联系方式.
Email: lyaranov@igem.ru
Academician of the RAS
俄罗斯联邦, MoscowV. Kotelkin
Lomonosov Moscow State University
Email: vyacheslav.kotelkin@math.msu.ru
俄罗斯联邦, Moscow
参考
- Aubert J. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth’s core // Geophysical Journal International. 2023. V. 235. P. 468–487. https://doi.org/10.1093/gji/ggad229
- Biggin A., Piispa E., Pesonen L. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation // Nature. 2015. V. 526. P. 245–248. https://doi.org/10.1038/nature15523
- Bono R. K., Tarduno J. A., Nimmo F., Cottrell R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity // Nature Geoscience. 2019. V. 12. P. 143–147. https://doi.org/10.1038/s41561-018-0288-0
- Bouffard M., Choblet G., Labrosse S., Wicht J. Chemical Convection and Stratification in the Earth’s Outer Core // Frontiers in Earth Science. 2019. V. 7: 99. https://doi.org/10.3389/feart.2019.00099
- Braginsky S. Structure of the F layer and reasons for convection in the Earth’s core // Soviet Physics Doklady. 1963. V. 149. P. 8–10.
- Davies C. J., Greenwood S. Dynamics in Earth's Core Arising from Thermo-Chemical Interactions with the Mantle. In: Core‐Mantle Co‐Evolution: An Interdisciplinary Approach. T. Nakagawa, T. Tsuchiya, M. Satish-Kumar, G. Helffrich (Eds.). 2023. https://doi.org/10.1002/9781119526919.ch12
- Deschamps F., Cobden L. Estimating core-mantle boundary temperature from seismic shear velocity and attenuation // Frontiers in Earth Science. 2022. V. 10: 1031507. https://doi.org/10.3389/feart.2022.1031507
- Dziewonski A. M., Anderson D. L. Preliminary reference Earth model // Physics of the Earth and Planetary Interior. 1981. V. 25. P. 297–356. https://doi.org/10.17611/DP/9991844
- Жарков В. Н. Физика земных недр. М.: Наука и образование, 2012. 383 с.
- Hirose K., Tagawa S., Kuwayama Y. et al. Hydrogen limits carbon in liquid iron // Geophysical Research Letters. 2019. V. 46. P. 5190–5197. https://doi.org/10.1029/2019GL082591
- Konôpková Z., McWilliams R. S., Gómez-Pérez N., Goncharov A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions // Nature. 2016. V. 534. P. 99–101. https://doi.org/10.1038/nature18009
- Sakamaki K., Takahashi E., Nakajima Y. et al. Melting phase relation of FeHx up to 20 GPa: Implication for the temperature of the Earth’s core // Physics of the Earth and Planetary Interior. 2009. V. 174. P. 192–201. https://doi.org/10.1016/j.pepi.2008.05.017
- Zhang D., Jackson J. M., Zhao J. et al. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures // Earth and Planetary Science Letters. 2016. V. 447. P. 72‒83. https://doi.org/10.1016/j.epsl.2016.04.026
- Решетняк М. Ю. Параметрическая тепловая модель эволюции Земли // Письма в астрономический журнал. 2021. Т. 47. С. 525–534. https://doi.org/10.31857/S032001082107007X
- Кирдяшкин А. Г., Добрецов Н. Л., Кирдяшкин А. А. Турбулентная конвекция и магнитное поле внешнего ядра Земли // Геология и геофизика. 2000. Т. 41. С. 601‒612.
- Котелкин В. Д., Лобковский Л. И. Общая теория Мясникова эволюции планет и современная термохимическая модель эволюции Земли // Физика Земли. 2007. С. 26‒44.
- Гореликов А. В., Ряховский А. В., Фокин А. С. Численное исследование некоторых нестационарных режимов естественной конвекции во вращающемся сферическом слое // Вычислительная механика сплошных сред. 2012. Т. 5. С. 184‒192. https://doi.org/10.7242/1999-6691/2012.5.2.22
- Jacobs J. A. The Earth's inner core // Nature. 1953. V. 172. P. 297‒298. https://doi.org/10.1038/172297a0
- Aranovich L. Y., Persikov E. S., Bukhtiyarov P. G., Bondarenko G. S. Interaction of Fe3C with Hydrogen: On the Compatibility of Carbon with Hydrogen in Metallic Iron // Petrology. 2021. V. 29. Р. 695–701. https://doi.org/10.1134/S0869591121060072
- Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 392 с.
- Pang G., Koper K. D., Wu S.-M. et al. Enhanced inner core fine-scale heterogeneity towards Earth’s centre // Nature. 2023. V. 620. P. 570‒575. https://doi.org/10.1038/s41586-023-06213-2
- Zotov L., Bizouard Ch., Sidorenkov N. et al. Multidecadal and 6-year variations of LOD // Journal of Physics: Conference Series (JPCS). 2020. 1705. 012002. IOP Proceedings of FAPM 2019 conference.
补充文件
