Age of Alkaline Ultramafic Explosion Pipes of the Chapinsky Complex (Yenisei Ridge)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The age of formation of explosion pipes of the Chapinsky complex in the Chingasan magmatic belt in the north of the Yenisei Ridge was determined. U-Pb dating of zircon megacrysts from alkaline-ultramafic rocks established values of 657.7 ± 13.4 and 647.6 ± 9.7 Ma for the Natalyinskaya and № 3 pipes, respectively. The intrusion of alkaline-ultramafic explosion pipes of the Chapinsky complex corresponds to the time of manifestation of ultramafic alkaline magmatism along the southern and southwestern margin of the Siberian craton.

Texto integral

Acesso é fechado

Sobre autores

Yu. Danilova

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: jdan@crust.irk.ru
Rússia, Irkutsk

I. Sharygin

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Email: jdan@crust.irk.ru
Rússia, Irkutsk

E. Gladkochub

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Email: jdan@crust.irk.ru
Rússia, Irkutsk

E. Nikolenko

ALROSA (ZIMBABWE)(PRIVATE) LIMITED

Email: jdan@crust.irk.ru
Zimbabwe, Harare

N. Bryansky

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences; Irkutsk State University

Email: jdan@crust.irk.ru
Rússia, Irkutsk; Irkutsk

S. Skuzovatov

Vinogradov Institute of Geochemistry Siberian Branch of the Russian Academy of Sciences

Email: jdan@crust.irk.ru
Rússia, Irkutsk

A. Gladkov

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Email: jdan@crust.irk.ru
Rússia, Irkutsk

A. Ivanov

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Email: jdan@crust.irk.ru
Rússia, Irkutsk

D. Koshkarev

ALROSA

Email: jdan@crust.irk.ru
Rússia, Mirny

F. Letnikov

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Email: jdan@crust.irk.ru

Academician of the RAS

Rússia, Irkutsk

Bibliografia

  1. Метелкин Д. В., Верниковский В. А., Казанский А. Ю. Неопротерозойский этап эволюции Родинии в свете новых палеомагнитных данных по западной окраине Сибирского кратона // Геология и геофизика, 2007. Т. 48. № 1. С. 42–59. https://doi.org/10.1016/j.rgg.2006.12.004
  2. Ножкин А. Д., Туркина О. М., Баянова Т. Б., Бережная Н. Г., Ларионов А. Н., Постников А. А., Травин А. В., Эрнст Р. Е. Неопротерозойский рифтогенный и внутриплитный магматизм Енисейского кряжа как индикатор процессов распада Родинии // Геология и геофизика, 2008. Т. 49. № 7. С. 666–688. https://doi.org/10.1016/j.rgg.2008.06.007
  3. Vernikovskaya A. E., Datsenko V. M. Vernikovsky V. A., Matushkin N. Yu., Laevsky Yu. M., Romanova I. V., Travin A. V., Voronin K. V., Lepekhina E. N. Magmatism evolution and carbonatitegranite association in the neoproterozoic active continental margin of the Siberian craton: Thermochronological reconstructions // Doklady Earth Sciences. 2013. V. 448. № 2. P. 161–167. https://doi.org/10.1134/S1028334X13020177
  4. Vrublevskii, V. V., Reverdatto, V. V., Izokh A. E., Gertner I. F., Yudin D. S., Tishin, P. A. Neoproterozoic carbonatite magmatism of the Yenisei Ridge, Central Siberia: Ar/Ar geochronology of the Penchenga rock complex // Doklady Earth Sciences. 2011. V. 437. № 2. P. 443–448. https://doi.org/10.1134/S1028334X11040088
  5. Карпинский Р. Б. О находке жильных кимберлитов в Енисейском кряже / Материалы по геологии и полезным ископаемым Красноярского края. Красноярск, 1962. С. 235–237.
  6. Динер А. Э., Качевская Г. И., Качевский Л. К. Эталон чапинского комплекса щелочных пикритов (Енисейский кряж). Красноярск: Красгео, 2000. 78 с.
  7. Sun J., Tappe S., Kostrovitsky S. I., Liu C., Skuzovatov S. Yu., Wu F. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields // Chemical Geology, 2018. V. 479. P. 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013
  8. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J. C., Spiegel W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses // Geostandards and Geoanalytical Research. 1995. V. 19. № 1. P. 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
  9. Slama J., Kosler J., Condon D. J., Crowley J. L., Gerdes A., Hanchar J. M., Horstwood M. S. A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M. N., Whitehouse M. J. Plesovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  10. Black L. P., Kamo S. L., Allen C. M., Davis D. W., Aleinikoff J. N., Valley J. W., Mundil R., Campbell I. H., Korsch R. J., Williams I. S., Foudoulis C. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace Element Related Matrix Effect; SHRIMP, ID TIMS, ELA ICP MS and Oxygen Isotope Documentation for a Series of Zircon Standards // Chemical Geology. 2004. 205. V. 1–2. P. 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003
  11. Paton Ch., Hellstrom J. C., Paul P., Woodhead J. D., Hergt J. M. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data // Journal of Analytical Atomic Spectrometry. 2011. V. 26. P. 2508–2518. https://doi.org/10.1039/C1JA10172B
  12. Powerman V. I., Buyantuev M., Ivanov A. V. A Review of Detrital Zircon Data Treatment, and Launch of a New Tool “Dezirteer” along with the Suggested Universal Workflow // Chemical Geology. 2021. V. 583. Art. № 120437. https://doi.org/10.1016/j.chemgeo.2021.120437
  13. Vermeesch P. IsoplotR: A free and open toolbox for geochronology // Geoscience Frontiers. 2018. V. 9. Р. 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
  14. Doroshkevich A. G., Veksler I. V., Izbrodin I. A., Ripp G. S., Khromova E. A., Posokhov V. F., Travin A. V., Vladykin N.V. Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids // Journal Asian Earth Sciences. 2016. V. 26. P. 81–96. https://doi.org/10.1016/j.jseaes.2015.11.011
  15. Savelyeva V. B., Danilova Yu.V., Academician of the Russian Academy of Sciences Letnikov F. A., Demonterova E. I., Yudin D. S., Bazarova E. P., Danilov B. S., Sharygin I. S. Age and Melt Sources of Ultramafic Dykes and Rocks of the Bolshetagninskii Alkaline Carbonatite Massif (Urik-Iya Graben, SW Margin of the Siberian Craton) // Doklady Earth Sciences. 2022. V. 505. № 1. P. 452–458. https://doi.org/10.1134/S1028334X22070169
  16. Ashchepkov I, Zhmodik S., Belyanin D., Kiseleva O., Medvedev N., Travin A., Yudin D., Karmanov N. S. Downes H. Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits // Minerals. 2020. V. 10. 404. https://doi.org/10.3390/min10050404
  17. Ярмолюк В. В., Коваленко В. И., Сальникова Е. Б., Никифоров А. В., Котов А. Б., Владыкин Н. В. Позднерифейский рифтогенез и распад Лавразии: данные геохронологических исследований щелочно-ультраосновных комплексов южного обрамления Сибирской платформы // ДАН. 2005. Т. 404. № 3. С. 400–406. https://elibrary.ru/download/elibrary_9155252_77974831.pdf
  18. Kuzmin M. I., Yarmolyuk V. V. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits // Russian Geology and Geophysics. 2014. V. 55. P. 120–143. https://doi.org/10.1016/j.rgg.2014.01.002
  19. Tappe S., Foley S.F., Stracke A., Romer R. L., Kjarsgaard B. A., Heaman L. M., Joyce N. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives // Earth and Planetary Science Letters. 2007. 256. P. 433–454. https://doi.org/10.1016/j.epsl.2007.01.036

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the geological structure of the Chapinsky ultrabasic alkaline complex in the structure of the Yenisei Ridge (a): 1 - alluvial deposits; 2 - Early Paleozoic sedimentary deposits; 3 - volcanogenic-sedimentary deposits of the Chapa series; 4 - Neoproterozoic terrigenous and volcanogenic-terrigenous complexes; 5 - Early Proterozoic metamorphosed carbonate-terrigenous deposits; 6 - Archean undissected metamorphic complexes. 7-10 magmatic formations: 7 - Chapinsky CSM: explosion pipes (a), stokes (b), sills (c), dikes (d) (out of scale); 8 - Orlovsky subvolcanic complex of basalt-andesite-rhyolite composition; 9 - Garevsky ultrametamorphic complex of granite-granite-gneisses; 10 - Shumikhinsky metapicritic-basalt subvolcanic complex. 11 - faults: Ishimbinsky deep fault (a), minor faults (b), tectonic disturbances (c). The inset (b) shows the marginal structures of the southern and southwestern margins of the Siberian Craton: I - Prisayan basement ledge; II - Uriksko-Iisky graben, including the Ziminsky SCR (H); III - Yenisei ridge, including the Chapin SCR (C)

Baixar (120KB)
3. Fig. 2. Mineral relationships in the rocks of the Nataliinskaya, No. 3, and Glubokaya pipes. Photographs of slits (a-d), images in backscattered electrons (e-h). Mineral symbols: Ap - apatite, Bdy - baddeleyite, Cal - calcite, Chl - chlorite, Dol - dolomite, Mag - magnetite, Ol - olivine, Phl - phlogopite, Py - pyrite, Qz - quartz, Spl - spinel, Srp - serpentine, Zrn - zircon

Baixar (97KB)
4. Fig. 3. U-Pb-age of zircon megacrysts from explosion tubes of the Chapinsky CSF field. Cathodoluminescence images: a - Natalinskaya pipe; b - pipe No. 3; c - kimberlite [13], d and e - concordia diagrams for zircon megacrysts

Baixar (74KB)
5. Supplementary
Baixar (24KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024