Energy conservation equations of motion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A conventional derivation of motion equations in mechanics and field equations in field theory is based on the principle of least action with a proper Lagrangian. With a time-independent Lagrangian, a function of coordinates and velocities that is called energy is constant. This paper presents an alternative approach, namely derivation of a general form of equations of motion that keep the system energy, expressed as a function of generalized coordinates and corresponding velocities, constant. These are Lagrange’s equations with addition of gyroscopic forces. The important fact, that the energy is defined as the function on the tangent bundle of configuration manifold, is used explicitly for the derivation. The Lagrangian is derived from a known energy function. A development of generalized Hamilton’s and Lagrange’s equations without the use of variational principles is proposed. The use of new technique is applied to derivation of some equations.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Vinokurov

Budker Institute of Nuclear Physics Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: N.A.Vinokurov@inp.nsk.su

Corresponding Member of the RAS

Ресей, Novosibirsk

Әдебиет тізімі

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024