Asymptotic structure of the spectrum of a thin Dirichlet single-tee beam

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The asymptotic behaviour of eigenvalues and eigenfunctions of the Dirichlet problem for the Laplace operator in a tee-type junction of two thin parallelepiped plates is examined. The effect of a strong localization is observed for eigenfunctions near junction zones. Comparing with asymptotic results for analogous Neumann problem, the crucial difference between asymptotic behaviour of their spectra is observed.

全文:

受限制的访问

作者简介

S. Nazarov

Institute of Mechanical Engineering Problems of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: srgnazarov@yahoo.co.uk
俄罗斯联邦, Saint-Petersburg

参考

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Three-dimensional (a) and two-dimensional (b) articulations.

下载 (48KB)
3. Fig. 2. T-shaped waveguide (a). Half-strip with a beveled end (b) – letters D and N indicate the type of boundary condition on the sides and end.

下载 (28KB)
4. Fig. 3. Beveled single-T beam (a) and straight I-beam (b).

下载 (52KB)

版权所有 © Russian Academy of Sciences, 2024