Synthesis of symmetrical 1,3-bis(polyfluorophenyl)ureas based on polyfluorobenzoic acid chlorides with potential antimicrobial action
- Authors: Baranovskiy A.D.1, Shchegolkov E.V.1, Burgart Y.V.1, Gerasimova N.A.2, Evstigneeva N.P.2, Saloutin V.I.1
-
Affiliations:
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
- Ural Research Institute for Dermatology, Venereology and Immunopathology
- Issue: Vol 523, No 1 (2025)
- Pages: 11-17
- Section: CHEMISTRY
- URL: https://gynecology.orscience.ru/2686-9535/article/view/695812
- DOI: https://doi.org/10.7868/S3034511125040024
- ID: 695812
Cite item
Full Text
Abstract
About the authors
A. D. Baranovskiy
I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences620066 Ekaterinburg, Russian Federation
E. V. Shchegolkov
I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences620066 Ekaterinburg, Russian Federation
Ya. V. Burgart
I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences620066 Ekaterinburg, Russian Federation
N. A. Gerasimova
Ural Research Institute for Dermatology, Venereology and Immunopathology620076 Ekaterinburg, Russian Federation
N. P. Evstigneeva
Ural Research Institute for Dermatology, Venereology and Immunopathology620076 Ekaterinburg, Russian Federation
V. I. Saloutin
I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
Email: saloutin@ios.uran.ru
620066 Ekaterinburg, Russian Federation
References
- Amii H., Uneyama K. // Chem. Rev. 2009. V. 109. № 5. P. 2119–2183. https://doi.org/10.1021/cr800388c
- Shteingarts V.D. // J. Fluorine Chem. 2007. V. 128. № 7. P. 797–805. https://doi.org/10.1016/j.jfluchem.2007.02.019
- Ahrens T., Kohlmann J., Ahrens M., Braun T. // Chem. Rev. 2015. V. 115. № 2. P. 931–972. https://doi.org/10.1021/cr500257c
- Политанская Л.В., Селиванова Г.А., Пантелеева Е.В., Третьяков Е.В., Платонов В.Е., Никульшин П.В., Виноградов А.С., Зонов Я.В., Карпов В.М., Меженкова Т.В., Васильев А.В., Колдобский А.Б., Шилова О.С., Морозова С.М., Бургарт Я.В., Щегольков Е.В., Салоутин В.И., Соколов В.Б., Аксиненко А.Ю., Ненайденко В.Г., Москалик М.Ю., Астахова В.В., Шаинян Б.А., Таболин А.А., Иоффе С.Л., Музалевский В.М., Баленкова Е.С., Шастин А.В., Тютюнов А.А., Бойко В.Э., Игумнов С.М., Дильман А.Д., Адонин Н.Ю., Бардин В.В., Масоуд С.М., Воробьева Д.В., Осипов С.Н., Носова Э.В., Липунова Г.Н., Чарушин В.Н., Прима Д.О., Макаров А.Г., Зибарев А.В., Трофимов Б.А., Собенина Л.Н., Беляева К.В., Сосновских В.Я., Обыденнов Д.Л., Усачев С.А. // Успехи химии. 2019. Т. 88. № 5 С. 425–569. https://doi.org/10.1070/rcr4871
- Zhou Y., Wang J., Gu Z., Wang S., Zhu W., Aceña J.L., Soloshonok V.A., Izawa K., Liu H. // Chem. Rev. 2016. V. 116. № 2. P. 422–518. https://doi.org/10.1021/acs.chemrev.5b00392
- Han J., Remete A.M., Dobson L.S., Kiss L., Izawa K., Moriwaki H., Soloshonok V.A., O’Hagan D. // J. Fluorine Chem. 2020. V. 239. 109639. https://doi.org/10.1016/j.jfluchem.2020.109639
- Han J., Kiss L., Mei H., Remete A.M., Ponikvar-Svet M., Sedgwick D.M., Roman R., Fustero S., Moriwaki H., Soloshonok V.A. // Chem. Rev. 2021. V. 121. № 8. P. 4678–4742. https://doi.org/10.1021/acs.chemrev.0c01263
- Wu Y., Wang Y., He M., Tao X., Li J., Shan D., Lv L. // Mini-Rev. Org. Chem. 2017. V. 14. № 5. P. 350–356. https://doi.org/10.2174/1570193x14666170511122820
- Inoue M., Sumii Y., Shibata N. // ACS Omega. 2020. V. 5. № 19. P. 10633–10640. https://doi.org/10.1021/acsomega.0c00830
- Nair A.S., Singh A.K., Kumar A., Kumar S., Sukumaran S., Koyiparambath V.P., Pappachen L.K., Rangarajan T.M., Kim H., Mathew B. // Processes. 2022. V. 10. № 10. 2054. https://doi.org/10.3390/pr10102054
- Meanwell N.A. // J. Med. Chem. 2018. V. 61. № 14. P. 5822–5880. https://doi.org/10.1021/acs.jmedchem.7b01788
- Isanbor C., O’Hagan D. // J. Fluorine Chem. 2006. V. 127. № 3. P. 303–319. https://doi.org/10.1016/j.jfluchem.2006.01.011
- Bégué J.-P., Bonnet-Delpon D. // J. Fluorine Chem. 2006. V. 127. № 8. P. 992–1012. https://doi.org/10.1016/j.jfluchem.2006.05.006
- Kirk K.L. // J. Fluorine Chem. 2006. V. 127. № 8. P. 1013–1029. https://doi.org/10.1016/j.jfluchem.2006.06.007
- Hagmann W.K. // J. Med. Chem. 2008. V. 51. № 15. P. 4359–4369. https://doi.org/10.1021/jm800219f
- O’Hagan D. // J. Fluorine Chem. 2010. V. 131. № 11. P. 1071–1081. https://doi.org/10.1016/j.jfluchem.2010.03.003
- Wang J., Sánchez-Roselló M., Aceña J.L., del Pozo C., Sorochinsky A.E., Fustero S., Soloshonok V.A., Liu H. // Chem. Rev. 2014. V. 114. № 4. P. 2432–506. https://doi.org/10.1021/cr4002879
- Щегольков Е.В., Бургарт Я.В., Щур И.В., Салоутин В.И. // Успехи химии. 2024. Т. 93. № 8. RCR5131. https://doi.org/10.59761/rcr5131
- Ronchetti R., Moroni G., Carotti A., Gioiello A., Camaioni E. // RSC Med. Chem. 2021. V. 12. № 7. P. 1046–1064. https://doi.org/10.1039/d1md00058f
- Junquera P., Hosking B., Gameiro M., Macdonald A. // Parasite. 2019. V. 26. P. 26. https://doi.org/10.1051/parasite/2019026
- Liu D., Tian Z., Yan Z., Wu L., Ma Y., Wang Q., Liu W., Zhou H., Yang C. // Bioorg. Med. Chem. 2013. V. 21. № 11. P. 2960–2967. https://doi.org/10.1016/j.bmc.2013.03.075
- Zhang B., Zhao Y.F., Zhai X., Fan W.J., Ren J.L., Wu C.F., Gong P. // Chin. Chem. Lett. 2012. V. 23. № 8. P. 915–918. https://doi.org/10.1016/j.cclet.2012.06.009
- Yao P., Zhai X., Liu D., Qi B.H., Tan H.L., Jin Y.C., Gong P. // Arch. Pharm. 2010. V. 343. № 1. P. 17–23. https://doi.org/10.1002/ardp.200900130
- Artamkina G.A., Sergeev A.G., Beletskaya I.P. // Tetrahedron Lett. 2001. V. 42. № 26. P. 4381–4384. https://doi.org/10.1016/s0040-4039(01)00716-x
- Xuan W., Ding W., Hui H.-x., Zhang S.-q. // Med. Chem. Res. 2013. V. 22. № 8. P. 3857–3862. https://doi.org/10.1007/s00044-012-0398-y
- Akhlaghinia B., Rouhi-Saadabad H. // Can. J. Chem. 2013. V. 91. № 3. P. 181–185. https://doi.org/10.1139/cjc-2011-0493
- Kim J.-G., Jang D. // Synlett. 2008. V. 2008. № 13. P. 2072–2074. https://doi.org/10.1055/s-2008-1077979
- Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. V. 7. P. 42717. https://doi.org/10.1038/srep42717
- Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug Delivery Rev. 1997. V. 23. № 1–3. P. 3–25. https://doi.org/10.1016/s0169-409x(96)00423-1
- Martin Y.C. // J. Med. Chem. 2005. V. 48. № 9. P. 3164–3170. https://doi.org/10.1021/jm0492002
- Российские рекомендации. Определение чувствительности микроорганизмов к антимикробным препаратам. Версия 2024-02. Год утверждения (частота пересмотра): 2024. – МАКМАХ, СГМУ: Смоленск, 2024. 192 с.
- Shchur I.V., Shchegolkov E.V., Burgart Y.V., Kozitsina A.N., Ivanova A.V., Alyamovskaya I.S., Evstigneeva N.P., Gerasimova N.A., Ganebnykh I.N., Zilberberg N.V., Kungurov N.V., Saloutin V.I., Chupakhin O.N. // Polyhedron. 2020. V. 177. 114279. https://doi.org/10.1016/j.poly.2019.114279
- Shchegolkov E.V., Shchur I.V., Burgart Y.V., Slepukhin P.A., Evstigneeva N.P., Gerasimova N.A., Zilberberg N.V., Kungurov N.V., Saloutin V.I., Chupakhin O.N. // Polyhedron. 2021. V. 194. 114900. https://doi.org/10.1016/j.poly.2020.114900
- Burgart Y.V., Elkina N.A., Shchegolkov E.V., Krasnykh O.P., Makhaeva G.F., Triandafilova G.A., Solodnikov S.Yu., Boltneva N.P., Rudakova E.V., Kovaleva N.V., Serebryakova O.G., Ulitko M.V., Borisevich S.S., Gerasimova N.A., Evstigneeva N.P., Kozlov S.A., Korolkova Y.V., Minin A.S., Belousova A.V., Mozhaitsev E.S., Klabukov A.M., Saloutin V.I. // Molecules. 2022. V. 28. № 1. 59. https://doi.org/10.3390/molecules28010059
- Zhao S., Duncan M., Tomberg J., Davies C., Unemo M., Nicholas R.A. // Antimicrob. Agents Chemother. 2009. V. 53. № 9. P. 3744–3751. https://doi.org/10.1128/AAC.00304-09
- Macheboeuf P., Contreras-Martel C., Job V., Dideberg O., Dessen A. // FEMS Microbiol. Rev. 2006. V. 30. № 5. P. 673–691. https://doi.org/10.1111/j.1574-6976.2006.00024.x
- Fenton B.A., Tomberg J., Sciandra C.A., Nicholas R.A., Davies C., Zhou P. // J. Biol. Chem. 2021. V. 297. № 4. P. 101188. https://doi.org/10.1016/j.jbc.2021.101188
- Bugnon M., Röhrig U.F., Goullieux M., Perez M.A.S., Daina A., Michielin O., Zoete V. // Nucleic Acids Res. 2024. V. 52. № W1. P. W324–W332. https://doi.org/10.1093/nar/gkae300
- Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. // J. Chem. Inf. Model. 2021. V. 61. № 8. P. 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
- Bell E.W., Zhang Y. // J. Cheminform. 2019. V. 11. № 1. P. 40. https://doi.org/10.1186/s13321-019-0362-7
- Stanzione F., Giangreco I., Cole J.C. // Prog. Med. Chem. 2021. V. 60. P. 273–343. https://doi.org/10.1016/bs.pmch.2021.01.004
- Shchegol'kov E.V., Shchur I.V., Burgart Y.V., Saloutin V.I., Trefilova A.N., Ljushina G.A., Solodnikov S.Y., Markova L.N., Maslova V.V., Krasnykh O.P., Borisevich S.S., Khursan S.L. // Bioorg. Med. Chem. 2017. V. 25. № 1. P. 91–99. https://doi.org/10.1016/j.bmc.2016.10.014
Supplementary files



